重磅更新!EVS 2020.5.1版本发布

库仑产品库仑杨工 发表了文章 • 0 个评论 • 2020 次浏览 • 2020-05-09 09:14 • 来自相关话题

许可证相关年费版许可证(Enterprise License)和网络版许可证(Floating License)的用户需要先卸载当前许可证服务(License Server),然后安装并配置新的通用许可证服务(Universal License Server)。新的许可证服务支持EVS和MVS的所有旧版本。之前的许可证服务无法运行2020.5.1版本。新增功能EVS 2020.5.1版本增加了很多重要功能,其中最主要的有:EVS演示模式(Presentation Mode):年费版(Enterprise License)和网络版(Floating License)用户可创建具有演示模式的项目,在该模式下客户或业主不需要EVS许可证即可查看三维模型并修改模型参数。关于演示模式的视频演示介绍请点击这里。快速地质统计实现(Fast Geostatistical Realization,简称FGR)技术:该技术是高斯地质统计模拟技术的扩展,可用于地层建模、岩性建模和二三维分析数据建模。新版例题库(Studio Projects)中加入了一些针对该功能的演示例题。该技术大大增强了我们对空间真三维模型不确定性的评价,可以更加有效的避免潜在的风险,进行更加科学的风险评价。关于「快速地质统计实现」技术的详细介绍请点击这里。新增两种地质数据文件格式,能够显著提高平滑岩性建模的效率和效果。LSDV(Lithology Screen Data Value)文件格式是PGF文件格式的升级版,不仅可用于非垂直的钻孔数据,也可用于具有间隔的钻孔数据(即钻孔某些段岩性缺失)。LPDV(Lithology Point Data Value)文件格式支持将地质数据作为点数据(相对于段数据而言)输入。通过这种方式,可以将地质填图数据用于平滑岩性建模。eff和efb格式中增加cell_set data属性,当同一个set中材料的属性一样时,例如材料ID、地层ID、岩土力学参数等,可以使用cell_set data。相比于使用cell data,cell_set data可以大幅减小模型文件的大小。EVS自带例题(Studio Projects)做了大幅增加,更新后自带例题数量近450个,而2016年8月版本的例题数量还不到200个。 查看全部
许可证相关年费版许可证(Enterprise License)和网络版许可证(Floating License)的用户需要先卸载当前许可证服务(License Server),然后安装并配置新的通用许可证服务(Universal License Server)。新的许可证服务支持EVS和MVS的所有旧版本。之前的许可证服务无法运行2020.5.1版本。新增功能EVS 2020.5.1版本增加了很多重要功能,其中最主要的有:EVS演示模式(Presentation Mode):年费版(Enterprise License)和网络版(Floating License)用户可创建具有演示模式的项目,在该模式下客户或业主不需要EVS许可证即可查看三维模型并修改模型参数。关于演示模式的视频演示介绍请点击这里。快速地质统计实现(Fast Geostatistical Realization,简称FGR)技术:该技术是高斯地质统计模拟技术的扩展,可用于地层建模、岩性建模和二三维分析数据建模。新版例题库(Studio Projects)中加入了一些针对该功能的演示例题。该技术大大增强了我们对空间真三维模型不确定性的评价,可以更加有效的避免潜在的风险,进行更加科学的风险评价。关于「快速地质统计实现」技术的详细介绍请点击这里。新增两种地质数据文件格式,能够显著提高平滑岩性建模的效率和效果。LSDV(Lithology Screen Data Value)文件格式是PGF文件格式的升级版,不仅可用于非垂直的钻孔数据,也可用于具有间隔的钻孔数据(即钻孔某些段岩性缺失)。LPDV(Lithology Point Data Value)文件格式支持将地质数据作为点数据(相对于段数据而言)输入。通过这种方式,可以将地质填图数据用于平滑岩性建模。eff和efb格式中增加cell_set data属性,当同一个set中材料的属性一样时,例如材料ID、地层ID、岩土力学参数等,可以使用cell_set data。相比于使用cell data,cell_set data可以大幅减小模型文件的大小。EVS自带例题(Studio Projects)做了大幅增加,更新后自带例题数量近450个,而2016年8月版本的例题数量还不到200个。

GEO5海外规范地震系数设置

库仑产品库仑赵 发表了文章 • 0 个评论 • 2820 次浏览 • 2020-04-21 09:20 • 来自相关话题

       很多用户在使用GEO5海外规范进行计算,当考虑到地震作用时常常会出现输入问题。主要的原因是受中国规范输入惯性思维影响,在这里具体讲解区别,方便后续大家的继续使用。       当我们选择中国规范进行计算的时候,通常考虑地震时拟静力法输入的参数为:地震设防烈度(加速度),如7度(0.15g).但是当我们切换到海外规范时,地震的输入变为:水平地震系数Kh和竖向地震系数Kv。        这时候受中国规范填写方式的习惯,或由于概念的混淆。以7度(0.15g)为例,很多工程师实际上直接将0.15作为水平地震系数填入。这样填写是有问题的。参照《水工建筑物抗震设计标准》中关于拟静力法的计算,我们还需要考虑【地震作用的效应折减系数】,规范中取值为0.25。故而实际上我们在使用海外规范填写水平地震系数的值的时候应该是0.15*0.25=0.0375(以7度0.15g为例),至于竖向地震系数的输入,大家同样可以参照《水工建筑物抗震设计标准》,这里不再赘述。       但是这里有两个问题:(1)【地震作用的效应折减系数】取0.25是中国规范中规定的,但是实际在其他国家计算并不是采用固定的折减系数;(2)同时对应的场地地震分区表达方式也有所不同。下面进行更深入地介绍。     (1) 以UBC规范为例,对于地震分区可以参见Section1629中1629.4.2介绍,可以查阅美国地震分区:       对于世界范围的地震分区,可见DVISION III,Section 1653.       这里我们可以看见,海外的表示方法和国内有比较大的差别,所以很多情况下不能草率等同。这里可以介绍大家一篇文献:《美国UBC规范之地震荷载介绍》,徐松波等。文献中总结了中国规范和美标关于地震分区的差异性。       通过这个文献我们能够比较快速地把陌生表达方式转化为我们熟悉地表达方式,具体感兴趣想要了解的工程师可以自行查阅该文献。      (2)弄清楚地震分区的对应关系之后,我们接下来需要讨论的是【地震作用的效应折减系数】的取值。       中国规范中采用拟静力法时通常取值0.25,但是在美标中采用拟静力法时的取值并非一个固定值,而是一个与震级M和震源距R相关的函数。参考文献:《中美边坡拟静力稳定分析方法的对比研究》,杨昕光等。但由于其方法计算起来需要考虑的参数众多,计算稍显复杂。       故而在实际工程中,审核时允许采用0.25的常数折减系数就会简单很多,若不行可以采用美国陆军工程师手册Slope stability中的2/3折减系数。若不允许采用常数值还需要依照当地规范进行详细计算。       以上便是使用GEO5海外规范在填写地震系数时的一些注意点和其原理。希望能够给大家使用软件提供一定的帮助。      查看全部
       很多用户在使用GEO5海外规范进行计算,当考虑到地震作用时常常会出现输入问题。主要的原因是受中国规范输入惯性思维影响,在这里具体讲解区别,方便后续大家的继续使用。       当我们选择中国规范进行计算的时候,通常考虑地震时拟静力法输入的参数为:地震设防烈度(加速度),如7度(0.15g).但是当我们切换到海外规范时,地震的输入变为:水平地震系数Kh和竖向地震系数Kv。        这时候受中国规范填写方式的习惯,或由于概念的混淆。以7度(0.15g)为例,很多工程师实际上直接将0.15作为水平地震系数填入。这样填写是有问题的。参照《水工建筑物抗震设计标准》中关于拟静力法的计算,我们还需要考虑【地震作用的效应折减系数】,规范中取值为0.25。故而实际上我们在使用海外规范填写水平地震系数的值的时候应该是0.15*0.25=0.0375(以7度0.15g为例),至于竖向地震系数的输入,大家同样可以参照《水工建筑物抗震设计标准》,这里不再赘述。       但是这里有两个问题:(1)【地震作用的效应折减系数】取0.25是中国规范中规定的,但是实际在其他国家计算并不是采用固定的折减系数;(2)同时对应的场地地震分区表达方式也有所不同。下面进行更深入地介绍。     (1) 以UBC规范为例,对于地震分区可以参见Section1629中1629.4.2介绍,可以查阅美国地震分区:       对于世界范围的地震分区,可见DVISION III,Section 1653.       这里我们可以看见,海外的表示方法和国内有比较大的差别,所以很多情况下不能草率等同。这里可以介绍大家一篇文献:《美国UBC规范之地震荷载介绍》,徐松波等。文献中总结了中国规范和美标关于地震分区的差异性。       通过这个文献我们能够比较快速地把陌生表达方式转化为我们熟悉地表达方式,具体感兴趣想要了解的工程师可以自行查阅该文献。      (2)弄清楚地震分区的对应关系之后,我们接下来需要讨论的是【地震作用的效应折减系数】的取值。       中国规范中采用拟静力法时通常取值0.25,但是在美标中采用拟静力法时的取值并非一个固定值,而是一个与震级M和震源距R相关的函数。参考文献:《中美边坡拟静力稳定分析方法的对比研究》,杨昕光等。但由于其方法计算起来需要考虑的参数众多,计算稍显复杂。       故而在实际工程中,审核时允许采用0.25的常数折减系数就会简单很多,若不行可以采用美国陆军工程师手册Slope stability中的2/3折减系数。若不允许采用常数值还需要依照当地规范进行详细计算。       以上便是使用GEO5海外规范在填写地震系数时的一些注意点和其原理。希望能够给大家使用软件提供一定的帮助。     

库仑地基固结沉降分析解决方案(GEO5&G2)

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 2308 次浏览 • 2020-04-20 23:33 • 来自相关话题

       针对地基固结沉降分析这类问题,在库仑的各产品中,主要有两款软件可以采用,分别是GEO5和Optum G2, 而GEO5中还包含了两个模块,地基固结沉降分析模块及有限元固结分析模块都可以进行分析,所以库仑给各位工程师提供了三种解决方案,不同模块功能略有差异,本文将对三个模块的使用做一简单介绍。1、GEO5地基固结沉降分析模块       GEO5地基固结沉降分析模块基于太沙基的一维固结理论,支持导入DXF文件快速建模,可以得到变形计算深度、地基总沉降、任意加载时间下的固结度和沉降值等结果。如果是分析简单的问题,一维的问题,只关注沉降和固结度的话,推荐使用此模块。      该模块总沉降的计算都是基于分层总和法,具体到参数的选取又包含了7种分析方法,其中压缩模量法和压缩指数法(e-logp曲线)在国内比较常用,至于另外一种国内常用的e-p曲线方法我们也在开发中。另外荷兰规范NEN(Buismann, Ladd)法是这几种方法中唯一可以同时考虑主固结沉降和次固结沉降的方法,而且还能计算超固结土。不同方法的详细介绍参考解读GEO5中计算地基固结沉降的方法。       地基固结沉降分析模块计算变形计算深度时考虑两方面的因素,一是确定变形计算深度的方法,比如国内常用应力比法,国外用结构强度理论。另外用户还可以输入不可压缩地基的深度,如果用户输入了不可压缩地基,那么软件会将两方面因素确定的较小值作为最终的变形计算深度。       需要说明的是,软件第一个工况始终计算的是初始应力,所以要实现固结分析,需要在第二个及之后的工况中通过填方或者施加超载,才能形成附加应力。       在地基固结沉降分析模块中可以得到任意时间下的沉降值:可以得到不同工况的孔隙水压力分布:还可以得到地表处固结度随时间的变化曲线:       需要注意的是,开始分析之前,在最后一个工况中需要勾选复选框后,软件才能进行固结分析计算。在第一个工况之后的工况中软件可以考虑地下水位变化、填方及荷载的变化对固结和沉降的影响。2、GEO5有限元地基固结分析模块       GEO5有限元模块可以进行固结分析,所采用的理论是Biot固结理论,该理论考虑了应力应变和渗流的耦合,所以可以分析一些太沙基一维固结理论无法分析的问题,比如加筋土地基的固结问题。另外有限元是二维分析,可以得到更多的应力应变和孔隙水压力的计算结果,所以如果是分析较复杂的问题,涉及二维的问题,建议使用该模块。       与一维固结分析不同,GEO5有限元固结分析可以得到回填土自身的沉降变形:还可以得到地基水平方向的位移:       与地基固结沉降分析模块不同,在有限元中,不需要指定确定变形计算深度的分析方法,也不需要指定最后一个工况计算总沉降,整个过程,只需要输入工况持续的时间,即可计算任意时刻的变形。此外,GEO5有限元可以采用接触面来模拟排水板,模拟过程可参考GEO5如何模拟有排水板的固结分析:       使用有限元分析,理论更加严格,也可以得到更多的结果,但是分析过程相较于地基固结沉降分析会更加耗时。3、Optum G2固结分析       Optum G2 是库仑的另一款数值分析软件,可以直接进行固结分析,所依据的理论也是Boit固结理论,而且软件也支持DXF文件导入建模。最重要的是,除了基本的固结分析,G2还能计算固结对地基承载力的影响以及填方边坡稳定性等。所以如果是分析复杂问题,还需要对固结地基进行下一步分析的话,推荐使用G2。       G2的固结分析可以实现任意时间土体固结度的计算,此时需要将分析目标设置为固结时间:也能计算达到任意固结度所需要的时间,此时将分析目标设置为某一固结度:        在进行了固结分析之后,可以直接使用G2的极限分析方法,分析不同固结情况下的地基承载力:以及分析不同阶段填方边坡稳定性:也可以在G2中添加排水板:       综上,针对具体的工程问题,用户可以根据实际情况选取合适的模块进行分析。       关于GEO5的地基固结沉降分析模块及有限元固结分析的详细介绍,可以点击此处查看视频教程。关于G2的固结分析及应用,可以点击此处查看视频教程。 查看全部
       针对地基固结沉降分析这类问题,在库仑的各产品中,主要有两款软件可以采用,分别是GEO5和Optum G2, 而GEO5中还包含了两个模块,地基固结沉降分析模块及有限元固结分析模块都可以进行分析,所以库仑给各位工程师提供了三种解决方案,不同模块功能略有差异,本文将对三个模块的使用做一简单介绍。1、GEO5地基固结沉降分析模块       GEO5地基固结沉降分析模块基于太沙基的一维固结理论,支持导入DXF文件快速建模,可以得到变形计算深度、地基总沉降、任意加载时间下的固结度和沉降值等结果。如果是分析简单的问题,一维的问题,只关注沉降和固结度的话,推荐使用此模块。      该模块总沉降的计算都是基于分层总和法,具体到参数的选取又包含了7种分析方法,其中压缩模量法和压缩指数法(e-logp曲线)在国内比较常用,至于另外一种国内常用的e-p曲线方法我们也在开发中。另外荷兰规范NEN(Buismann, Ladd)法是这几种方法中唯一可以同时考虑主固结沉降和次固结沉降的方法,而且还能计算超固结土。不同方法的详细介绍参考解读GEO5中计算地基固结沉降的方法。       地基固结沉降分析模块计算变形计算深度时考虑两方面的因素,一是确定变形计算深度的方法,比如国内常用应力比法,国外用结构强度理论。另外用户还可以输入不可压缩地基的深度,如果用户输入了不可压缩地基,那么软件会将两方面因素确定的较小值作为最终的变形计算深度。       需要说明的是,软件第一个工况始终计算的是初始应力,所以要实现固结分析,需要在第二个及之后的工况中通过填方或者施加超载,才能形成附加应力。       在地基固结沉降分析模块中可以得到任意时间下的沉降值:可以得到不同工况的孔隙水压力分布:还可以得到地表处固结度随时间的变化曲线:       需要注意的是,开始分析之前,在最后一个工况中需要勾选复选框后,软件才能进行固结分析计算。在第一个工况之后的工况中软件可以考虑地下水位变化、填方及荷载的变化对固结和沉降的影响。2、GEO5有限元地基固结分析模块       GEO5有限元模块可以进行固结分析,所采用的理论是Biot固结理论,该理论考虑了应力应变和渗流的耦合,所以可以分析一些太沙基一维固结理论无法分析的问题,比如加筋土地基的固结问题。另外有限元是二维分析,可以得到更多的应力应变和孔隙水压力的计算结果,所以如果是分析较复杂的问题,涉及二维的问题,建议使用该模块。       与一维固结分析不同,GEO5有限元固结分析可以得到回填土自身的沉降变形:还可以得到地基水平方向的位移:       与地基固结沉降分析模块不同,在有限元中,不需要指定确定变形计算深度的分析方法,也不需要指定最后一个工况计算总沉降,整个过程,只需要输入工况持续的时间,即可计算任意时刻的变形。此外,GEO5有限元可以采用接触面来模拟排水板,模拟过程可参考GEO5如何模拟有排水板的固结分析:       使用有限元分析,理论更加严格,也可以得到更多的结果,但是分析过程相较于地基固结沉降分析会更加耗时。3、Optum G2固结分析       Optum G2 是库仑的另一款数值分析软件,可以直接进行固结分析,所依据的理论也是Boit固结理论,而且软件也支持DXF文件导入建模。最重要的是,除了基本的固结分析,G2还能计算固结对地基承载力的影响以及填方边坡稳定性等。所以如果是分析复杂问题,还需要对固结地基进行下一步分析的话,推荐使用G2。       G2的固结分析可以实现任意时间土体固结度的计算,此时需要将分析目标设置为固结时间:也能计算达到任意固结度所需要的时间,此时将分析目标设置为某一固结度:        在进行了固结分析之后,可以直接使用G2的极限分析方法,分析不同固结情况下的地基承载力:以及分析不同阶段填方边坡稳定性:也可以在G2中添加排水板:       综上,针对具体的工程问题,用户可以根据实际情况选取合适的模块进行分析。       关于GEO5的地基固结沉降分析模块及有限元固结分析的详细介绍,可以点击此处查看视频教程。关于G2的固结分析及应用,可以点击此处查看视频教程。

关于土钉墙混凝土面层板计算、构造及施工的规范要求

岩土工程库仑沈工 发表了文章 • 0 个评论 • 2010 次浏览 • 2020-04-10 10:32 • 来自相关话题

《基坑土钉支护技术规程》CECS 96:97计算要求如下:《复合土钉墙基坑支护技术规范》GB50739—2011土钉墙面层构造及施工要求:《建筑基坑支护技术规程》JGJ120-2012土钉墙面层构造及施工要求:
《基坑土钉支护技术规程》CECS 96:97计算要求如下:《复合土钉墙基坑支护技术规范》GB50739—2011土钉墙面层构造及施工要求:《建筑基坑支护技术规程》JGJ120-2012土钉墙面层构造及施工要求:

土钉边坡支护结构混凝土面层截面强度验算

库仑产品库仑沈工 发表了文章 • 0 个评论 • 2135 次浏览 • 2020-04-10 10:24 • 来自相关话题

在【尺寸】菜单内,面层类型有两种选择,一是混凝土面层,二是钢筋网,本文着重介绍混凝土面层的截面强度验算。进行截面强度验算之前,首先我们要明确结构受力,在GEO5帮助文档中的混凝土面层受力计算简图如下: 依据此图,软件会分析得到 面层竖向受力图 某一土钉处水平受力图软件能够计算出各竖向位置出的弯矩与剪力,与水平土钉相同高度处的水平方向的内力,在【截面强度验算】界面,进行钢筋配置,在这里面配置的钢筋起的是抗弯作用,钢筋的数量跟直径影响截面抗弯承载力Mv,而影响Vu是只是混凝土的参数(截面与材料),具体内容如下:当【分析设置】界面中选择“中国规范GB50010-2010”作为混凝土结构设计规范, 1. 混凝土面层抗剪计算软件抗剪计算,会根据《混凝土结构设计规范GB50010-2010》6.3.3条进行计算, 根据规范6.3.3条,这里也可以明确,板的抗剪由混凝土提供,我们在板内放置的直的钢筋(水平与竖向,单层或双层)是不提供抗剪作用,除非钢筋有弯起,通常我们不设置弯起钢筋,所有面板的抗剪验算还是由混凝土提供抗剪力如下: =0.7*1*1.43N/m2*1000*(200-20-6)/1000=174.17kN/m其中h0=h-as-d/2。手算Vc与我们上面截图数值一致,可以说明软件计算结果的正确性。如果软件计算提示抗剪不满足要求,需要配筋的话,建议提高混凝土面板的厚度。2. 混凝土面层抗弯计算2.1. 钢筋种类的区分及位置在截面【截面强度验算】界面,配筋可以有四种选项,可配置竖向钢筋、水平钢筋、双面钢筋网、单面钢筋网。 2.1.1. 竖向钢筋当选择竖向钢筋时,点击“添加”,在弹出的对话框中,可以取消勾选最大弯矩,设置深度,软件会自动获得该深度处的弯矩设计值,然后进行配筋。 这里的宽度是延着水平方向(垂直纸面的方向)的宽度,这里的宽度功能可以按真实的宽度输入,也可以只输入1m或其他数值输入,建议按1m输入,那么设置的钢筋根数即为每延米的需求量。竖向钢筋水平方向(垂直纸面的方向)是等间距布置的。对于竖向钢筋通常是沿竖向通常配置的,但是软件可以计算出各个竖向深度处的配筋量。通过这个功能,我们可以延竖向分段布筋(类似抗滑桩分段配筋一样,但是没必要,因为我们 面层板不厚,省不了多少钢筋,还增加施工的难道),因为支持分段配筋那么也可以分别配置面侧和背侧钢筋。关于钢筋的放置位置取决于所选的截面,软件按背侧弯矩为正,面侧弯矩为负,当依据正Md配筋计算,配置的钢筋应该在背面,也就是靠土一侧。2.1.2水平钢筋水平钢筋放置的位置于土钉齐平,因为不同高度处土钉受力不同,混凝土面层的内力也会不同。所以软件对于水平钢筋的配置可选择不同土钉编号处进行计算。 这里的截面宽度,指的是5号土钉所在位置深度方向(竖直方向)的范围,因为各个编号土钉受力可能不一样,如果想精确配筋的话,可以将这个宽度设置成上下土钉层间的间距值。但是没必要,通常都是按最不利的进行设计,也就是选择最底层的土钉,然后所有的水平钢筋延着深度方向(竖直)等间距布置。这里的截面宽度同样建议设置为1m,那么设置的钢筋根数即为每延米的需求量。所有的水平钢筋延着深度方向(竖直)等间距布置。 同样依据我们的计算理论,垂直纸面方向,计算出来的混凝土面层弯矩值有正有负,有大有小。我们可以需要挑选出正弯矩最大的进行背侧钢筋配置,负弯矩面侧进行靠土一侧钢筋配置。2.1.3双面钢筋网上面的竖向钢筋、水平钢筋选项支持的是面侧和背侧分别配筋或者单独只配置一侧或者一种。下面我们介绍的双面钢筋网其实就是双层等量配筋,面侧与背侧配筋量默认是相同的。可以双向(水平+竖直)或者仅配置某一方向(水平或者竖直)的钢筋。输入的是一侧的每延米的配筋量 注意此处的内力选择水平钢筋或者竖直钢筋,对计算结果没有影响,软件都会自动提取水平受力和竖直受力的正负弯矩的绝对值最大项去验算。具体如下:  2.1.4单面钢筋网混凝土面层板受力分析后弯矩必定都会有正负值,详细看开篇计算简图,也就是面侧或背侧都会有受拉,所以此处单面钢筋网显然不适用。通常用的比较少的。除非一侧弯矩计算的弯矩最大值很小可忽略。这侧的配筋可以自己按照最小配筋率设置。以上介绍的是混凝土面层的抗弯计算,如果面层不厚,可以依据经验直接按最小配筋率给配筋,此处的计算抗弯不满足的结果可以进行忽略。在打印计算书时候,将左侧树菜单截面强度验算进行勾选掉,这样计算书中将不会出现此内容。2.2. 面板抗弯钢筋配筋验算计算配筋面积时,会依据规范考虑计算截面的最小配筋率和最大配筋率。软件抗弯计算,会根据《混凝土结构设计规范GB50010-2010》6.2.10条进行计算,时,首先计算混凝土受压区高度: 如果受压区高度小于界限受压区高度(x < ξbh0),由下式计算得到受拉钢筋的截面面积Ast: 通常对面此处的面层板这些就足够了,基本上受压区高度小于界限受压区高度。  查看全部
在【尺寸】菜单内,面层类型有两种选择,一是混凝土面层,二是钢筋网,本文着重介绍混凝土面层的截面强度验算。进行截面强度验算之前,首先我们要明确结构受力,在GEO5帮助文档中的混凝土面层受力计算简图如下: 依据此图,软件会分析得到 面层竖向受力图 某一土钉处水平受力图软件能够计算出各竖向位置出的弯矩与剪力,与水平土钉相同高度处的水平方向的内力,在【截面强度验算】界面,进行钢筋配置,在这里面配置的钢筋起的是抗弯作用,钢筋的数量跟直径影响截面抗弯承载力Mv,而影响Vu是只是混凝土的参数(截面与材料),具体内容如下:当【分析设置】界面中选择“中国规范GB50010-2010”作为混凝土结构设计规范, 1. 混凝土面层抗剪计算软件抗剪计算,会根据《混凝土结构设计规范GB50010-2010》6.3.3条进行计算, 根据规范6.3.3条,这里也可以明确,板的抗剪由混凝土提供,我们在板内放置的直的钢筋(水平与竖向,单层或双层)是不提供抗剪作用,除非钢筋有弯起,通常我们不设置弯起钢筋,所有面板的抗剪验算还是由混凝土提供抗剪力如下: =0.7*1*1.43N/m2*1000*(200-20-6)/1000=174.17kN/m其中h0=h-as-d/2。手算Vc与我们上面截图数值一致,可以说明软件计算结果的正确性。如果软件计算提示抗剪不满足要求,需要配筋的话,建议提高混凝土面板的厚度。2. 混凝土面层抗弯计算2.1. 钢筋种类的区分及位置在截面【截面强度验算】界面,配筋可以有四种选项,可配置竖向钢筋、水平钢筋、双面钢筋网、单面钢筋网。 2.1.1. 竖向钢筋当选择竖向钢筋时,点击“添加”,在弹出的对话框中,可以取消勾选最大弯矩,设置深度,软件会自动获得该深度处的弯矩设计值,然后进行配筋。 这里的宽度是延着水平方向(垂直纸面的方向)的宽度,这里的宽度功能可以按真实的宽度输入,也可以只输入1m或其他数值输入,建议按1m输入,那么设置的钢筋根数即为每延米的需求量。竖向钢筋水平方向(垂直纸面的方向)是等间距布置的。对于竖向钢筋通常是沿竖向通常配置的,但是软件可以计算出各个竖向深度处的配筋量。通过这个功能,我们可以延竖向分段布筋(类似抗滑桩分段配筋一样,但是没必要,因为我们 面层板不厚,省不了多少钢筋,还增加施工的难道),因为支持分段配筋那么也可以分别配置面侧和背侧钢筋。关于钢筋的放置位置取决于所选的截面,软件按背侧弯矩为正,面侧弯矩为负,当依据正Md配筋计算,配置的钢筋应该在背面,也就是靠土一侧。2.1.2水平钢筋水平钢筋放置的位置于土钉齐平,因为不同高度处土钉受力不同,混凝土面层的内力也会不同。所以软件对于水平钢筋的配置可选择不同土钉编号处进行计算。 这里的截面宽度,指的是5号土钉所在位置深度方向(竖直方向)的范围,因为各个编号土钉受力可能不一样,如果想精确配筋的话,可以将这个宽度设置成上下土钉层间的间距值。但是没必要,通常都是按最不利的进行设计,也就是选择最底层的土钉,然后所有的水平钢筋延着深度方向(竖直)等间距布置。这里的截面宽度同样建议设置为1m,那么设置的钢筋根数即为每延米的需求量。所有的水平钢筋延着深度方向(竖直)等间距布置。 同样依据我们的计算理论,垂直纸面方向,计算出来的混凝土面层弯矩值有正有负,有大有小。我们可以需要挑选出正弯矩最大的进行背侧钢筋配置,负弯矩面侧进行靠土一侧钢筋配置。2.1.3双面钢筋网上面的竖向钢筋、水平钢筋选项支持的是面侧和背侧分别配筋或者单独只配置一侧或者一种。下面我们介绍的双面钢筋网其实就是双层等量配筋,面侧与背侧配筋量默认是相同的。可以双向(水平+竖直)或者仅配置某一方向(水平或者竖直)的钢筋。输入的是一侧的每延米的配筋量 注意此处的内力选择水平钢筋或者竖直钢筋,对计算结果没有影响,软件都会自动提取水平受力和竖直受力的正负弯矩的绝对值最大项去验算。具体如下:  2.1.4单面钢筋网混凝土面层板受力分析后弯矩必定都会有正负值,详细看开篇计算简图,也就是面侧或背侧都会有受拉,所以此处单面钢筋网显然不适用。通常用的比较少的。除非一侧弯矩计算的弯矩最大值很小可忽略。这侧的配筋可以自己按照最小配筋率设置。以上介绍的是混凝土面层的抗弯计算,如果面层不厚,可以依据经验直接按最小配筋率给配筋,此处的计算抗弯不满足的结果可以进行忽略。在打印计算书时候,将左侧树菜单截面强度验算进行勾选掉,这样计算书中将不会出现此内容。2.2. 面板抗弯钢筋配筋验算计算配筋面积时,会依据规范考虑计算截面的最小配筋率和最大配筋率。软件抗弯计算,会根据《混凝土结构设计规范GB50010-2010》6.2.10条进行计算,时,首先计算混凝土受压区高度: 如果受压区高度小于界限受压区高度(x < ξbh0),由下式计算得到受拉钢筋的截面面积Ast: 通常对面此处的面层板这些就足够了,基本上受压区高度小于界限受压区高度。 

EVS性能测试报告

库仑产品库仑杨工 发表了文章 • 0 个评论 • 2056 次浏览 • 2020-03-31 11:14 • 来自相关话题

本测试是在2016年7月进行的,使用的是早期的64位版本,以确定网格模型大小的限制和根据您的硬件确定实际的克里金插值参数设置。测试是在一台装有以下硬件和操作系统的台式电脑上进行的:Windows 10 Pro      64 bitIntel Core      i7-5820k CPU @ 3.30 GHz: 6 Cores, 12 Logical Processors32 GB of 2800      MHz RAMNVIDIA GeForce      GTX 980Ti Graphics一般来说,对于一个给定的网格,很难准确估计克里金插值特定数据集的时间。数据的空间分布确实会影响计算时间,就像您的计算机硬件和运行在其上的其他软件一样。然而,下面这些图不仅提供了一些关于预期计算时间的参考,而且还提供了硬件需求与网格分辨率以及克里格设置之间关系的参考。测试考察了两个主要的指标:1、    由节点数量决定的模型大小2、    采用“use all points”选项后,克里金插值的最大数据集规模我们记录了针对这两个指标的计算时间,另外也记录了需要的内存大小。结果表明,除了硬件限制和耐心之外,软件对模型大小或数据集规模没有任何实际限制。 我们开始第一个问题,模型大小(即网格节点数规模)。我们一直有用户希望创建比我们的32位版本软件更好更精细的模型。想要一个更好的网格的第一个原因是能够创建一个三维的体积模型,它可以从DEMs & grid(数字高程面网格)继承二维地形的高网格分辨率。过去,不需要高分辨率来体现数据的细微差别,然而,最近一段时间,通过MIP技术或者诸如3d电阻率探测器之类的地质仪器来收集高分辨率数据的趋势愈加显著,导致需要更高精度的模型,来更好的契合数据。下面第一张图展示了9次测试的结果,其中克里金插值的节点数量从1,000,000至160,000,000 。测试的插值模块是krig 3d,勾选“use all points”选项,插值数据使用的是railyard.apdv文件,里面有273个采样点数据。上图展示的结果相当令人鼓舞。我们的测试系统具有32G的内存,看起来一旦模型节点数超过8千万,所有可用内存都用上了。但是当采用1亿6千万节点插值时,我们发现速度并没有显著下降,看起来软件还使用了部分虚拟内存。对于我们的这个具有273个采样点数据集,克里金插值时间为 3 微秒每节点,或者3s每百万节点,他们之间是线型关系。线型关系很重要,(等下我们会发现另外一个指标就不是这样了),这意味着随着模型的规模变大,消耗的时间也是等比例增大,直到计算机硬件的极限。当然,必须指出的是,如果你仅仅具有的是一个273个采样点的数据集,那么完全不需要一个2千万节点的网格模型。你需要更好的理解这一点。下一张图考察的是,当使用“use all points”选项时,软件到底能处理多大的数据集。解释这个问题的重要性超出了本次主题的范围,但是对于在EVS中使用MIP数据的人来说很重要。在我们的32位软件中,这个极限是3500~4000个采样点,就像上图中你看到的。当然时间消耗也是很明显的。我们测试了50000个采样点的数据集,上图显示的是初始化时间,不包括克里金插值时间。因为勾选“Use All Points”选项耗费大量的初始化时间,因此这是一个关键参数,并且初始化时间和样本数的三次方成正比。所以,尽管我们可以使用12倍数据量的数据集,但是所消耗的初始化时间将是12的三次方1728倍,也就是48000个采样点对比4000的采样点的情况。 最后一张图展示了每百万节点计算耗时与数据集采样点数量的函数关系。可以粗略的认为在勾选“Use All Points”的情况下是2.2次方成正比关系。但是如果我们转到50个节点(最大200个节点)的八分搜索(勾选“Octant Search”),那么这种关系更加线性化并且时间显著减少。此外八分搜索没有明显的初始化时间。使用这些图可以预测总计算时间,其中克里金插值的情况如下:CASE 120,000,000个节点的网格8,000个采样点数据集勾选“Use All      Points Option”初始化时间:实际15秒左右660秒 = 11 分钟       每百万节点3.67小时 总克里金插值时间CASE 215,000,000个节点网格14000个采样点数据集勾选“Use All      Points Option”初始时间:58秒2350秒 = 39.2分钟 每百万节点9.8小时总克里金插值时间CASE 3最后一个例子,我们参照了第二个例子,但是采用了50个节点的八分搜索:15,000,000节点网格14000个采样点数据集50个节点的八分搜索:即勾选“Octant Search”,并且“Points in reach”设置为50290秒= 4.83分钟  每百万节点1.2小时总插值时间 查看全部
本测试是在2016年7月进行的,使用的是早期的64位版本,以确定网格模型大小的限制和根据您的硬件确定实际的克里金插值参数设置。测试是在一台装有以下硬件和操作系统的台式电脑上进行的:Windows 10 Pro      64 bitIntel Core      i7-5820k CPU @ 3.30 GHz: 6 Cores, 12 Logical Processors32 GB of 2800      MHz RAMNVIDIA GeForce      GTX 980Ti Graphics一般来说,对于一个给定的网格,很难准确估计克里金插值特定数据集的时间。数据的空间分布确实会影响计算时间,就像您的计算机硬件和运行在其上的其他软件一样。然而,下面这些图不仅提供了一些关于预期计算时间的参考,而且还提供了硬件需求与网格分辨率以及克里格设置之间关系的参考。测试考察了两个主要的指标:1、    由节点数量决定的模型大小2、    采用“use all points”选项后,克里金插值的最大数据集规模我们记录了针对这两个指标的计算时间,另外也记录了需要的内存大小。结果表明,除了硬件限制和耐心之外,软件对模型大小或数据集规模没有任何实际限制。 我们开始第一个问题,模型大小(即网格节点数规模)。我们一直有用户希望创建比我们的32位版本软件更好更精细的模型。想要一个更好的网格的第一个原因是能够创建一个三维的体积模型,它可以从DEMs & grid(数字高程面网格)继承二维地形的高网格分辨率。过去,不需要高分辨率来体现数据的细微差别,然而,最近一段时间,通过MIP技术或者诸如3d电阻率探测器之类的地质仪器来收集高分辨率数据的趋势愈加显著,导致需要更高精度的模型,来更好的契合数据。下面第一张图展示了9次测试的结果,其中克里金插值的节点数量从1,000,000至160,000,000 。测试的插值模块是krig 3d,勾选“use all points”选项,插值数据使用的是railyard.apdv文件,里面有273个采样点数据。上图展示的结果相当令人鼓舞。我们的测试系统具有32G的内存,看起来一旦模型节点数超过8千万,所有可用内存都用上了。但是当采用1亿6千万节点插值时,我们发现速度并没有显著下降,看起来软件还使用了部分虚拟内存。对于我们的这个具有273个采样点数据集,克里金插值时间为 3 微秒每节点,或者3s每百万节点,他们之间是线型关系。线型关系很重要,(等下我们会发现另外一个指标就不是这样了),这意味着随着模型的规模变大,消耗的时间也是等比例增大,直到计算机硬件的极限。当然,必须指出的是,如果你仅仅具有的是一个273个采样点的数据集,那么完全不需要一个2千万节点的网格模型。你需要更好的理解这一点。下一张图考察的是,当使用“use all points”选项时,软件到底能处理多大的数据集。解释这个问题的重要性超出了本次主题的范围,但是对于在EVS中使用MIP数据的人来说很重要。在我们的32位软件中,这个极限是3500~4000个采样点,就像上图中你看到的。当然时间消耗也是很明显的。我们测试了50000个采样点的数据集,上图显示的是初始化时间,不包括克里金插值时间。因为勾选“Use All Points”选项耗费大量的初始化时间,因此这是一个关键参数,并且初始化时间和样本数的三次方成正比。所以,尽管我们可以使用12倍数据量的数据集,但是所消耗的初始化时间将是12的三次方1728倍,也就是48000个采样点对比4000的采样点的情况。 最后一张图展示了每百万节点计算耗时与数据集采样点数量的函数关系。可以粗略的认为在勾选“Use All Points”的情况下是2.2次方成正比关系。但是如果我们转到50个节点(最大200个节点)的八分搜索(勾选“Octant Search”),那么这种关系更加线性化并且时间显著减少。此外八分搜索没有明显的初始化时间。使用这些图可以预测总计算时间,其中克里金插值的情况如下:CASE 120,000,000个节点的网格8,000个采样点数据集勾选“Use All      Points Option”初始化时间:实际15秒左右660秒 = 11 分钟       每百万节点3.67小时 总克里金插值时间CASE 215,000,000个节点网格14000个采样点数据集勾选“Use All      Points Option”初始时间:58秒2350秒 = 39.2分钟 每百万节点9.8小时总克里金插值时间CASE 3最后一个例子,我们参照了第二个例子,但是采用了50个节点的八分搜索:15,000,000节点网格14000个采样点数据集50个节点的八分搜索:即勾选“Octant Search”,并且“Points in reach”设置为50290秒= 4.83分钟  每百万节点1.2小时总插值时间

GEO5土坡模块导入渗流场的方法

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 2241 次浏览 • 2020-03-30 22:34 • 来自相关话题

       在GEO5有限元模块导出浸润面到土坡模块的方法这篇文章当中,介绍了如何将GEO5有限元分析得到的浸润面导入到土坡模块中,然后计算有地下水位的边坡稳定性。然而,有时在做更细致分析的时候,有的工程师希望软件能考虑渗流作用(渗流力)对边坡稳定性的影响,那么如何将渗流场导入到边坡当中进行分析呢,本篇文章将介绍GEO5土坡模块导入渗流场的过程和方法。1、使用GEO5有限元分析得到边坡的渗流场       这里以稳定流为例介绍。首先在有限元分析模块当中建立模型,输入材料参数及渗流边界条件之后,分析得到模型的稳定流渗流场,此时可以在计算书中查看每个网格和栅格点的孔隙水压力值,下图即是显示栅格点数值的稳定渗流场:       根据具体的模型尺寸,选择构建渗流场的数据点。当模型较大,网格也偏大时,可以选则网格节点数据;当模型较小,网格偏密时,可以选择栅格点数据。这样后面插值处理的数据量不会太大。       导出的数据只需要三列:节点X坐标,节点Y(或Z)坐标,节点孔隙水压力。2、使用GEO5三维地质建模模块插值       渗流场数据可以看作是带高程属性的地形点,那么就可以通过GEO5三维地质建模模块来插值生成等值线图。新建一个空白文档,按照导入地形点的方式导入步骤1中保存的渗流场数据:       导入成功后,软件会自动插值生成等值线。此时,在图形显示窗口中,勾选上“主等高线”和“次等高线”,就能查看软件插值出来的效果。可以通过设置“等值线间距”的大小,调整等值线的疏密程度,软件默认等值线间距为0.5m。接下来,导出调整好间距之后的等值线。点击【文件】→【导出】→【DXF格式】,在弹出的数据框中,只勾选“地形等高线”,然后导出。3、插值后的多段线的处理       打开导出的DXF文件,还需要对该文件做3方面的处理:       (1)删除不需要的线条,包括等值线数值为0的线条;       (2)导出的每条等值线都是由小的线段组成的,需要将这些小线段进行合并;       (3)选择需要导入到土坡的等值线,并将所有线条的高程坐标归0。4、土坡模块导入孔隙水压力等值线       在GEO5土坡模块中新建一个文件,导入处理过的等值线。点击【文件】→【导入】→【将DXF文件以多段线导入】,对于无法直接导入的多段线可以以模板方式导入后手动描一下。       复制步骤1中的模型数据,再新建一个土坡文件使得模型尺寸和材料参数和有限元中的相同,点击【地下水】,选择地下水类型为孔隙水压力,并将有限元生成的浸润面复制到土坡模块中。然后通过GEO剪贴板复制前一个文件中导入的多段线,然后对每条多段线的孔隙水压力进行赋值:       赋值后,即可在土坡模块中计算考虑渗流场的边坡稳定性。       如果想了解更多的操作细节,点击此处,可查看视频教程。 查看全部
       在GEO5有限元模块导出浸润面到土坡模块的方法这篇文章当中,介绍了如何将GEO5有限元分析得到的浸润面导入到土坡模块中,然后计算有地下水位的边坡稳定性。然而,有时在做更细致分析的时候,有的工程师希望软件能考虑渗流作用(渗流力)对边坡稳定性的影响,那么如何将渗流场导入到边坡当中进行分析呢,本篇文章将介绍GEO5土坡模块导入渗流场的过程和方法。1、使用GEO5有限元分析得到边坡的渗流场       这里以稳定流为例介绍。首先在有限元分析模块当中建立模型,输入材料参数及渗流边界条件之后,分析得到模型的稳定流渗流场,此时可以在计算书中查看每个网格和栅格点的孔隙水压力值,下图即是显示栅格点数值的稳定渗流场:       根据具体的模型尺寸,选择构建渗流场的数据点。当模型较大,网格也偏大时,可以选则网格节点数据;当模型较小,网格偏密时,可以选择栅格点数据。这样后面插值处理的数据量不会太大。       导出的数据只需要三列:节点X坐标,节点Y(或Z)坐标,节点孔隙水压力。2、使用GEO5三维地质建模模块插值       渗流场数据可以看作是带高程属性的地形点,那么就可以通过GEO5三维地质建模模块来插值生成等值线图。新建一个空白文档,按照导入地形点的方式导入步骤1中保存的渗流场数据:       导入成功后,软件会自动插值生成等值线。此时,在图形显示窗口中,勾选上“主等高线”和“次等高线”,就能查看软件插值出来的效果。可以通过设置“等值线间距”的大小,调整等值线的疏密程度,软件默认等值线间距为0.5m。接下来,导出调整好间距之后的等值线。点击【文件】→【导出】→【DXF格式】,在弹出的数据框中,只勾选“地形等高线”,然后导出。3、插值后的多段线的处理       打开导出的DXF文件,还需要对该文件做3方面的处理:       (1)删除不需要的线条,包括等值线数值为0的线条;       (2)导出的每条等值线都是由小的线段组成的,需要将这些小线段进行合并;       (3)选择需要导入到土坡的等值线,并将所有线条的高程坐标归0。4、土坡模块导入孔隙水压力等值线       在GEO5土坡模块中新建一个文件,导入处理过的等值线。点击【文件】→【导入】→【将DXF文件以多段线导入】,对于无法直接导入的多段线可以以模板方式导入后手动描一下。       复制步骤1中的模型数据,再新建一个土坡文件使得模型尺寸和材料参数和有限元中的相同,点击【地下水】,选择地下水类型为孔隙水压力,并将有限元生成的浸润面复制到土坡模块中。然后通过GEO剪贴板复制前一个文件中导入的多段线,然后对每条多段线的孔隙水压力进行赋值:       赋值后,即可在土坡模块中计算考虑渗流场的边坡稳定性。       如果想了解更多的操作细节,点击此处,可查看视频教程。

GEO5抗滑桩嵌固段设计与理正的异同

库仑产品库仑沈工 发表了文章 • 0 个评论 • 3495 次浏览 • 2020-03-24 10:08 • 来自相关话题

最近,有GEO5用户反馈,采用同样的设计参数,理正抗滑桩设计中设置很小的岩石单轴极限抗压强度能计算通过,GEO5的抗滑桩设计模块却显示嵌岩段“岩石横向承载力不满足要求”。其实理正抗滑桩设计并没有严格的按照规范对嵌岩段的承载力进行验算,即使嵌岩段岩石横向承载力小于计算的岩石反力时,软件也不会给出提示的。下面我们将结合案例,针对两款软件在抗滑桩嵌固段(嵌岩段及嵌土段)计算的异同做详细说明。1. 嵌固段计算模型理正抗滑桩的帮助文档介绍内力、位移采用弹性法计算。嵌固段并没有区分嵌岩和嵌土,分析模型为桩前有弹簧支座。但是从计算结果看嵌土时土反力不会大于桩前被动土压力,嵌岩时岩石反力不会大于岩石的横向承载力。 理正抗滑桩计算模型简图GEO5抗滑桩的内力、位移采用弹塑性共同变形法计算,并考虑了嵌岩跟嵌土计算模型上的差异。嵌土时,桩前及桩后相当于土弹簧作用,土体按弹塑性材料考虑,最大应力不能大于被动土压力,最小应力不能小于主动土压力。嵌岩段,桩身一侧有弹簧作用(位置由桩身位移决定),岩体按弹性材料考虑,分析时岩石反力可以达到任意值,最终验算最大应力是否大于岩石的横向承载力。 GEO5抗滑桩计算模型简图具体可参考:抗滑桩计算中土体嵌固段和岩石嵌固段的区别2. 抗滑桩嵌岩段设计2.1 嵌岩段承载力验算抗滑桩设计应满足嵌固段承载力要求。依据《铁路路基支挡结构设计规范TB10025-2006(2009局部修订版)》,针对嵌岩段应当满足规范第10.2.10.1条规定,具体内容如下:1 地层为岩层时,桩的最大横向压应力 σmax应小于或等于地基的横向容许承载力。地基的横向容许承载力与岩石单轴抗压极限强度的对应关系可按本规范附录表B.0.1采用。当桩为矩形截面时,地基的横向容许承载力可按下式计算:                (10.2.10- 1)式中:--在水平方向的换算系数,根据岩石的完整程度、层理或片理产状、层间的股结物与胶结程度、节理裂隙的密度和充填物,可采用 0.5-1.0;--折减系数,根据岩层的裂隙、风化及软化程度,可采用 0.3-0.45;--岩石单轴抗压极限强度 (kPa)。GEO5软件严格按照上述规范验算,当不满足规范中的10.2.10-1公式时,软件会给出“岩石地基横向承载力 不满足要求”提示,如下图: 而理正软件目前只有「抗滑桩综合治理」模块可以进行嵌岩段设计。理正「抗滑桩综合治理」模块仅在桩的计算结果-->内力计算结果-->土反力图形上用红色线条表示的允许值。而关于它的设计值,也就是土反力由白色线条表示。 理正土反力结果图依据理正土反力结果图,「抗滑桩综合治理」模块似乎也对嵌岩段进行了验算,但其实这里的验算与规范要求是不相同。下面举例说明,当嵌岩段设置如下:  计算模型其他参数保持不变,仅设置单轴极限抗压强度R为变量,R分别取值1MPa,2MPa,2.5Mpa,5Mpa,10Mpa。在滑面上受滑坡推力的作用下(理正的第1种情况:滑坡推力),内力计算结果如下: 单轴极限抗压强度R=1Mpa 单轴极限抗压强度R=2Mpa 单轴极限抗压强度R=2.5Mpa 单轴极限抗压强度R=5Mpa 单轴极限抗压强度R=10Mpa对比1MPa,2MPa,2.5Mpa的计算结果,我们发现软件的岩石反力取值是不会大于横向允许承载力的。当岩石反力(=位移*岩石水平反力系数)>横向允许承载力时,取横向允许承载力值。即岩石反力=min{弹簧刚度K*位移X,横向允许承载力},理正软件将岩石视为弹塑性材料。软件没有且不会出现“岩石横向承载力不满足要求”。2.2 理正嵌岩段设计的正确性校验为进一步验证,我们缩短嵌固段,嵌岩段设置为1m,单轴极限抗压强度R=5MPa。此时对应的岩石地基横向容许承载力Rd=5000*0.3*0.5=750kPa,在此参数下进行对比分析。GEO5抗滑桩软件计算会提示地基横向承载力不满足要求(岩石当成弹性材料考虑)。如下图: 抗滑桩嵌岩段1m,R=5Mpa,允许反力=750kPa若将岩石当成弹塑性材料考虑,我们用两款软件对比计算。注:在GEO5中,我们用c足够大的弹塑性土体,来模拟理正模型中的弹塑性岩石,只要GEO5的允许反力(计算的被动土压力)与理正R=5MPa所能提供的岩石地基横向容许承载力Rd相当即可。GEO5计算出在允许反力≈780kPa时,结构不稳定,此时无法给出内力及位移详细计算结果。此时减小允许反力值,结构会更不稳,所以在允许反力=750kPa时,GEO5计算结构是会不稳定的。如下图:  弹塑性的土体模拟岩体,嵌岩1m深,允许反力≈780kPa理正岩石允许反力=750kPa时,分析仍能给出内力及位移结果。虽然结果明显错误但有结果给出说明计算是收敛。如下图: 嵌岩1m深,R=5Mpa,允许反力=750kPa如果岩石当成弹塑性材料考虑,那么当计算出的岩石反力>横向承载力的时候,计算出的岩石反力会进行调整然后进行二次迭代,而当变形足够大,势必会出现计算不收敛的情况,不收敛是计算不出结果的,此时结构不稳定,正如上面GEO5软件的提示。但我们发现无论理正中嵌岩段的岩石反力多小,软件都能计算出内力及位移。2.3结论理正抗滑桩软件岩石是当成弹塑性材料考虑的,岩石反力=min{弹簧刚度K*位移X,横向允许承载力},软件没有且不会出现“岩石横向承载力不满足要求”。软件并没有严格按照规范要求去验算嵌岩段。若岩石按弹塑性材料考虑,理正软件在嵌固段明显不满足要求,结构不稳定的时候,仍能输出内力及位移计算结果。GEO5抗滑桩软件岩石按弹性考虑,岩石反力=弹簧刚度K*位移X,分析时岩石反力可以达到任意值,最终验算最大应力是否大于岩石的横向承载力。验算是严格按照规范要求。3. 抗滑桩嵌土段设计3.1 嵌土段承载力验算针对嵌土段,规范10.2.10-2和10.2.10-3给出了横向允许承载力计算公式,可以按公式计算,此外规范10.2.10的条文说明对于规范正文也做了进一步说明,具体内容如下:10.2.10 对于较完整的岩质岩层及半岩质岩层的地基,桩身作用于围岩的侧向压应力,一般不应大于容许强度。桩周围岩的侧向允许抗压强度,必要时可直接在现场试验取得,一般按岩石的完整程度、层理或片理产状、层间的胶结物与胶结程度、节理裂隙的密度和充填物、各种构造裂面的性质和产状及其贯通程度等情况,分别采用垂直允许抗压强度的0.5 ~ 1.0倍。当围岩为密实土或砂层时,其值为0.5倍,较完整的半岩质岩层为0.60~0.75倍,块状或厚层少裂隙的岩层为 0.75~ 1.0倍。对于一般土层或风化成土、砂砾状的岩层地基,抗滑桩在侧向荷载作用下发生转动变位时,桩前的土体产生被动土压力,而在桩后的土体产生主动土压力。桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。在工程设计中,要使锚固段完全满足要求,有时会很困难,所以根据多年的工程经验,满足滑动面以下深度 h2/3 和h2(滑动面以下桩长)处的横向压应力应小于或等于被动土压力与主动士压力之差即可。此时滑动面以下h2/3深度范围内进入塑性区。依据GEO5抗滑桩计算理论,GEO5土体按弹塑性材料考虑,采用弹塑性共同变形法,嵌土段桩前及桩后都有土弹簧作用,结构受力由下式计算:针对GEO5抗滑桩的嵌土段,作用在变形结构上的土压力最大不能大于被动土压力,最小不能小于主动土压力。即桩前计算土压力≤桩前被动土压力,桩后计算土压力≥桩后主动土压力。那么-桩后计算土压力≤-桩后主动土压力。据此可推导得到,桩前计算土压力-桩后计算土压力≤桩前被动土压力-桩后主动土压力恒成立。而GEO5的土反力是桩前桩后计算土压力的合力。也就是GEO5抗滑桩的计算土反力≤桩前被动土压力-桩后主动土压力,依据GEO5的计算理论,如果软件计算结果收敛,无结构不稳定的提示,那么计算结果将严格满足规范第10.2.10的条文说明的“桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。”此外,我们可以依据GEO5分析结果的“土压力+位移”图示很容易判断被动区土体的塑性区的范围。 理正土体也是按弹塑性材料考虑,由于计算模型的不同,理正软件的计算土反力特指滑坡面以下桩的土抗力,由下式计算:在桩的计算结果-->内力计算结果-->土反力图形上用红色线条表示的被动土压力数值。理正软件计算的土反力不会大于被动土压力,同样也可以根据图形来判断被动区塑性区范围。 首先,理正软件是没有按照规范正文要求去进行计算允许横向承载力计算,其次,因为没有考虑桩后主动土压力,所以也不能按规范条文说明去验算嵌土段是否满足滑动面以下深度 h2/3 和h2(滑动面以下桩长)处土反力是否小于等于被动土压力与主动土压力之差。综上,理正抗滑桩的嵌土段并没有按照规范要求进行验算。3.2 理正嵌土段设计的正确性校验举例用两款软件分析下列抗滑桩: 计算简图两款软件的计算结果: 理正计算最大位移= -73.28(mm) GEO5计算最大位移= -26.9(mm)两款软件位移计算结果相差太多,下面我们用有限元分析软件OptumG2进行复核。将抗滑桩桩后嵌固段以上9m以上的土折算成超载施加在模型里,同时将理正计算出来的滑坡推力的水平和竖直分布力施加在模型中。选择弹塑性分析方法,具体如下: 初始地应力分析弹塑性分析分析结果: Optumn G2的计算结果(位移28.02mm)相比较理正的70.28mm的水平位移,Optumn G2的计算结果(位移28.02mm)与GEO5(位移26.9mm)的更接近。3.3结论理正跟GEO5两款抗滑桩软件,均可以依据结果图示判断被动区塑性区范围,但是两款软件土反力计算公式不相同,由于理正嵌固段不考虑桩后土弹簧作用,所以计算结果只考虑桩前土抗力。嵌土段没有考虑桩后主动土压力,所以无法按照规范正文或条文说明的要求去验算。而GEO5软件只要计算结果收敛,没有结构不稳定的提示,那么计算结果将严格满足规范第10.2.10的条文说明的“桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。” 查看全部
最近,有GEO5用户反馈,采用同样的设计参数,理正抗滑桩设计中设置很小的岩石单轴极限抗压强度能计算通过,GEO5的抗滑桩设计模块却显示嵌岩段“岩石横向承载力不满足要求”。其实理正抗滑桩设计并没有严格的按照规范对嵌岩段的承载力进行验算,即使嵌岩段岩石横向承载力小于计算的岩石反力时,软件也不会给出提示的。下面我们将结合案例,针对两款软件在抗滑桩嵌固段(嵌岩段及嵌土段)计算的异同做详细说明。1. 嵌固段计算模型理正抗滑桩的帮助文档介绍内力、位移采用弹性法计算。嵌固段并没有区分嵌岩和嵌土,分析模型为桩前有弹簧支座。但是从计算结果看嵌土时土反力不会大于桩前被动土压力,嵌岩时岩石反力不会大于岩石的横向承载力。 理正抗滑桩计算模型简图GEO5抗滑桩的内力、位移采用弹塑性共同变形法计算,并考虑了嵌岩跟嵌土计算模型上的差异。嵌土时,桩前及桩后相当于土弹簧作用,土体按弹塑性材料考虑,最大应力不能大于被动土压力,最小应力不能小于主动土压力。嵌岩段,桩身一侧有弹簧作用(位置由桩身位移决定),岩体按弹性材料考虑,分析时岩石反力可以达到任意值,最终验算最大应力是否大于岩石的横向承载力。 GEO5抗滑桩计算模型简图具体可参考:抗滑桩计算中土体嵌固段和岩石嵌固段的区别2. 抗滑桩嵌岩段设计2.1 嵌岩段承载力验算抗滑桩设计应满足嵌固段承载力要求。依据《铁路路基支挡结构设计规范TB10025-2006(2009局部修订版)》,针对嵌岩段应当满足规范第10.2.10.1条规定,具体内容如下:1 地层为岩层时,桩的最大横向压应力 σmax应小于或等于地基的横向容许承载力。地基的横向容许承载力与岩石单轴抗压极限强度的对应关系可按本规范附录表B.0.1采用。当桩为矩形截面时,地基的横向容许承载力可按下式计算:                (10.2.10- 1)式中:--在水平方向的换算系数,根据岩石的完整程度、层理或片理产状、层间的股结物与胶结程度、节理裂隙的密度和充填物,可采用 0.5-1.0;--折减系数,根据岩层的裂隙、风化及软化程度,可采用 0.3-0.45;--岩石单轴抗压极限强度 (kPa)。GEO5软件严格按照上述规范验算,当不满足规范中的10.2.10-1公式时,软件会给出“岩石地基横向承载力 不满足要求”提示,如下图: 而理正软件目前只有「抗滑桩综合治理」模块可以进行嵌岩段设计。理正「抗滑桩综合治理」模块仅在桩的计算结果-->内力计算结果-->土反力图形上用红色线条表示的允许值。而关于它的设计值,也就是土反力由白色线条表示。 理正土反力结果图依据理正土反力结果图,「抗滑桩综合治理」模块似乎也对嵌岩段进行了验算,但其实这里的验算与规范要求是不相同。下面举例说明,当嵌岩段设置如下:  计算模型其他参数保持不变,仅设置单轴极限抗压强度R为变量,R分别取值1MPa,2MPa,2.5Mpa,5Mpa,10Mpa。在滑面上受滑坡推力的作用下(理正的第1种情况:滑坡推力),内力计算结果如下: 单轴极限抗压强度R=1Mpa 单轴极限抗压强度R=2Mpa 单轴极限抗压强度R=2.5Mpa 单轴极限抗压强度R=5Mpa 单轴极限抗压强度R=10Mpa对比1MPa,2MPa,2.5Mpa的计算结果,我们发现软件的岩石反力取值是不会大于横向允许承载力的。当岩石反力(=位移*岩石水平反力系数)>横向允许承载力时,取横向允许承载力值。即岩石反力=min{弹簧刚度K*位移X,横向允许承载力},理正软件将岩石视为弹塑性材料。软件没有且不会出现“岩石横向承载力不满足要求”。2.2 理正嵌岩段设计的正确性校验为进一步验证,我们缩短嵌固段,嵌岩段设置为1m,单轴极限抗压强度R=5MPa。此时对应的岩石地基横向容许承载力Rd=5000*0.3*0.5=750kPa,在此参数下进行对比分析。GEO5抗滑桩软件计算会提示地基横向承载力不满足要求(岩石当成弹性材料考虑)。如下图: 抗滑桩嵌岩段1m,R=5Mpa,允许反力=750kPa若将岩石当成弹塑性材料考虑,我们用两款软件对比计算。注:在GEO5中,我们用c足够大的弹塑性土体,来模拟理正模型中的弹塑性岩石,只要GEO5的允许反力(计算的被动土压力)与理正R=5MPa所能提供的岩石地基横向容许承载力Rd相当即可。GEO5计算出在允许反力≈780kPa时,结构不稳定,此时无法给出内力及位移详细计算结果。此时减小允许反力值,结构会更不稳,所以在允许反力=750kPa时,GEO5计算结构是会不稳定的。如下图:  弹塑性的土体模拟岩体,嵌岩1m深,允许反力≈780kPa理正岩石允许反力=750kPa时,分析仍能给出内力及位移结果。虽然结果明显错误但有结果给出说明计算是收敛。如下图: 嵌岩1m深,R=5Mpa,允许反力=750kPa如果岩石当成弹塑性材料考虑,那么当计算出的岩石反力>横向承载力的时候,计算出的岩石反力会进行调整然后进行二次迭代,而当变形足够大,势必会出现计算不收敛的情况,不收敛是计算不出结果的,此时结构不稳定,正如上面GEO5软件的提示。但我们发现无论理正中嵌岩段的岩石反力多小,软件都能计算出内力及位移。2.3结论理正抗滑桩软件岩石是当成弹塑性材料考虑的,岩石反力=min{弹簧刚度K*位移X,横向允许承载力},软件没有且不会出现“岩石横向承载力不满足要求”。软件并没有严格按照规范要求去验算嵌岩段。若岩石按弹塑性材料考虑,理正软件在嵌固段明显不满足要求,结构不稳定的时候,仍能输出内力及位移计算结果。GEO5抗滑桩软件岩石按弹性考虑,岩石反力=弹簧刚度K*位移X,分析时岩石反力可以达到任意值,最终验算最大应力是否大于岩石的横向承载力。验算是严格按照规范要求。3. 抗滑桩嵌土段设计3.1 嵌土段承载力验算针对嵌土段,规范10.2.10-2和10.2.10-3给出了横向允许承载力计算公式,可以按公式计算,此外规范10.2.10的条文说明对于规范正文也做了进一步说明,具体内容如下:10.2.10 对于较完整的岩质岩层及半岩质岩层的地基,桩身作用于围岩的侧向压应力,一般不应大于容许强度。桩周围岩的侧向允许抗压强度,必要时可直接在现场试验取得,一般按岩石的完整程度、层理或片理产状、层间的胶结物与胶结程度、节理裂隙的密度和充填物、各种构造裂面的性质和产状及其贯通程度等情况,分别采用垂直允许抗压强度的0.5 ~ 1.0倍。当围岩为密实土或砂层时,其值为0.5倍,较完整的半岩质岩层为0.60~0.75倍,块状或厚层少裂隙的岩层为 0.75~ 1.0倍。对于一般土层或风化成土、砂砾状的岩层地基,抗滑桩在侧向荷载作用下发生转动变位时,桩前的土体产生被动土压力,而在桩后的土体产生主动土压力。桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。在工程设计中,要使锚固段完全满足要求,有时会很困难,所以根据多年的工程经验,满足滑动面以下深度 h2/3 和h2(滑动面以下桩长)处的横向压应力应小于或等于被动土压力与主动士压力之差即可。此时滑动面以下h2/3深度范围内进入塑性区。依据GEO5抗滑桩计算理论,GEO5土体按弹塑性材料考虑,采用弹塑性共同变形法,嵌土段桩前及桩后都有土弹簧作用,结构受力由下式计算:针对GEO5抗滑桩的嵌土段,作用在变形结构上的土压力最大不能大于被动土压力,最小不能小于主动土压力。即桩前计算土压力≤桩前被动土压力,桩后计算土压力≥桩后主动土压力。那么-桩后计算土压力≤-桩后主动土压力。据此可推导得到,桩前计算土压力-桩后计算土压力≤桩前被动土压力-桩后主动土压力恒成立。而GEO5的土反力是桩前桩后计算土压力的合力。也就是GEO5抗滑桩的计算土反力≤桩前被动土压力-桩后主动土压力,依据GEO5的计算理论,如果软件计算结果收敛,无结构不稳定的提示,那么计算结果将严格满足规范第10.2.10的条文说明的“桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。”此外,我们可以依据GEO5分析结果的“土压力+位移”图示很容易判断被动区土体的塑性区的范围。 理正土体也是按弹塑性材料考虑,由于计算模型的不同,理正软件的计算土反力特指滑坡面以下桩的土抗力,由下式计算:在桩的计算结果-->内力计算结果-->土反力图形上用红色线条表示的被动土压力数值。理正软件计算的土反力不会大于被动土压力,同样也可以根据图形来判断被动区塑性区范围。 首先,理正软件是没有按照规范正文要求去进行计算允许横向承载力计算,其次,因为没有考虑桩后主动土压力,所以也不能按规范条文说明去验算嵌土段是否满足滑动面以下深度 h2/3 和h2(滑动面以下桩长)处土反力是否小于等于被动土压力与主动土压力之差。综上,理正抗滑桩的嵌土段并没有按照规范要求进行验算。3.2 理正嵌土段设计的正确性校验举例用两款软件分析下列抗滑桩: 计算简图两款软件的计算结果: 理正计算最大位移= -73.28(mm) GEO5计算最大位移= -26.9(mm)两款软件位移计算结果相差太多,下面我们用有限元分析软件OptumG2进行复核。将抗滑桩桩后嵌固段以上9m以上的土折算成超载施加在模型里,同时将理正计算出来的滑坡推力的水平和竖直分布力施加在模型中。选择弹塑性分析方法,具体如下: 初始地应力分析弹塑性分析分析结果: Optumn G2的计算结果(位移28.02mm)相比较理正的70.28mm的水平位移,Optumn G2的计算结果(位移28.02mm)与GEO5(位移26.9mm)的更接近。3.3结论理正跟GEO5两款抗滑桩软件,均可以依据结果图示判断被动区塑性区范围,但是两款软件土反力计算公式不相同,由于理正嵌固段不考虑桩后土弹簧作用,所以计算结果只考虑桩前土抗力。嵌土段没有考虑桩后主动土压力,所以无法按照规范正文或条文说明的要求去验算。而GEO5软件只要计算结果收敛,没有结构不稳定的提示,那么计算结果将严格满足规范第10.2.10的条文说明的“桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。”

CAD地形点提取命令dataextraction的详细用法

库仑产品库仑赵 发表了文章 • 0 个评论 • 5381 次浏览 • 2020-03-22 19:18 • 来自相关话题

       很多工程师在使用GEO5三维地质建模的时候,对于从CAD中提取地形点这一步有些疑惑,这里进行一个详细讲解,方便大家后续使用。       首先,将CAD文件多余图层隐藏或者是删除,然后在CAD界面中直接输入【dataextraction】命令,并点击回车键。       这时会跳出如下界面:        我们可以【创建新数据提取】,并点击【下一步】,选择合适的另存为目录后,点击【保存】可以来到下面这个界面:       在这个界面上我们选择【在当前图形中选择对象】,并点击中间位置的“按钮”,这时会进入cad图形界面,在界面中按住鼠标左键并拖动来进行区域选择,选择好放开左键,点击【回车】。这时就捕捉完数据了,这时上述界面的下一步选项就可以点击了。      然后来到下个界面,继续点击【下一步】:       这时会来到下一个界面,在这个界面,我们在仅勾线【几何图形】的情况下,然后筛选,仅保留点相关的数据,如下图所示,其他数据均布勾选。调整完成后,再点击【下一步】。      这时来到新的界面,在新界面可以预览提取的数据,预览观察数据正常后,继续点击【下一步】:        然后来到下一个界面,在此界面中,我们选择【将数据输出至外部文件】,并选择合适的路径,然后点击【下一步】:         在最后的界面,点击【完成】即可。这时我们可以在选择的路径中,找到导出的文件,excel或txt格式。         当然,很多时候,我们提取的数据过于密集,其实有时候我们并不需要这么多的点,在这里可以给大家介绍一个excel的操作小技巧:等间距选择数据。此方法的具体操作,大家可见:  https://jingyan.baidu.com/article/2c8c281d8aaf8a0008252aa7.html        查看全部
       很多工程师在使用GEO5三维地质建模的时候,对于从CAD中提取地形点这一步有些疑惑,这里进行一个详细讲解,方便大家后续使用。       首先,将CAD文件多余图层隐藏或者是删除,然后在CAD界面中直接输入【dataextraction】命令,并点击回车键。       这时会跳出如下界面:        我们可以【创建新数据提取】,并点击【下一步】,选择合适的另存为目录后,点击【保存】可以来到下面这个界面:       在这个界面上我们选择【在当前图形中选择对象】,并点击中间位置的“按钮”,这时会进入cad图形界面,在界面中按住鼠标左键并拖动来进行区域选择,选择好放开左键,点击【回车】。这时就捕捉完数据了,这时上述界面的下一步选项就可以点击了。      然后来到下个界面,继续点击【下一步】:       这时会来到下一个界面,在这个界面,我们在仅勾线【几何图形】的情况下,然后筛选,仅保留点相关的数据,如下图所示,其他数据均布勾选。调整完成后,再点击【下一步】。      这时来到新的界面,在新界面可以预览提取的数据,预览观察数据正常后,继续点击【下一步】:        然后来到下一个界面,在此界面中,我们选择【将数据输出至外部文件】,并选择合适的路径,然后点击【下一步】:         在最后的界面,点击【完成】即可。这时我们可以在选择的路径中,找到导出的文件,excel或txt格式。         当然,很多时候,我们提取的数据过于密集,其实有时候我们并不需要这么多的点,在这里可以给大家介绍一个excel的操作小技巧:等间距选择数据。此方法的具体操作,大家可见:  https://jingyan.baidu.com/arti ... sp%3B      

土钉边坡支护钢筋网片面层截面强度验算理论解析

库仑产品库仑沈工 发表了文章 • 0 个评论 • 2050 次浏览 • 2020-03-22 18:06 • 来自相关话题

在【尺寸】菜单内,面层类型有两种选择,一是混凝土面层,二是钢筋网,本文着重介绍钢筋网的计算原理。当选择钢筋网面层时,要注意此时土钉的位置是交错布置的。这里还需要设置风化层的厚度和岩土材料参数。风化层的厚度和岩土材料参数直接影响到土钉和钢筋网的受力。在【钢筋网类型】菜单中,确定钢筋网的各项承载力及安全系数,最后在进行钢筋网的冲切和受剪力验算,需要将承载力除以安全系数作为验算标准。即Rp/SFmesh与Rs/SFmesh。  同理,在【土钉类型】菜单中,确定土钉的各项强度及安全系数,将各强度允许值除以安全系数,作为验算标准: 坡段,明确土钉的空间布置: 这里的板指的是土钉下面的垫板,板宽度hw对受力计算没有影响,但是该尺寸可以明确垫板尺寸,板的长度lw参与钢筋网冲切计算,垫板长度越大越有利,但是不可能无限大。最后,在【截面强度验算】菜单中,共进行四项验算:土钉受剪承载力验算、钢筋网受冲切承载力验算、钢筋网受剪承载力验算、土钉组合应变验算。此处需要设置是否考虑渗流,压力锥角度及土钉轴力。 关于渗流的影响,在计算土钉剪力和钢筋网剪力时,可以考虑由风化层中水流引起的渗流力Fw。关于压力锥的角度确定了土钉轴力在风化层中的传递扩散角度,这对钢筋网剪力的计算会产生影响。该角度使得作用在钢筋网上的各土钉轴力的水平间距减小了,同时也减小了单元土块的宽度。折减后的单元土块是一个梯形,可以等效为一个等面积的矩形,矩形的宽度为。压力锥角度θ通常在30°到80°之间。压力锥上部半径取板长度的一半。   关于土钉轴力,土钉轴力直接参与钢筋网抗冲切验算。轴力过大可能会导致钢筋网抗冲切不满足要求。1.土钉受剪承载力验算满足Fs≤Rs/SFmesh即可。在土钉抗剪验算中,选择风化层底面作为滑面,土钉剪力Fs则由单根土钉分担的单元土块引起的剪力计算得到。   上面的公式看似复杂,其实就是土块重力W、土钉轴力Fnail及渗流力Fw延着的滑面分力减去摩擦力,为摩擦系数,土块重力W、土钉轴力Fnail垂直与滑面的分力乘以摩擦系数即为摩擦力,在国内规范中不考虑作用,可以设置c=0。2.钢筋网受冲切承载力验算满足Fnail≤Rp/SFmesh即可。Fnail为土钉轴力3.钢筋网受剪承载力验算满足Sd≤Rs/SFmesh即可。软件自动计算由四根土钉包围的单元土块中两种类型滑面下的最大钢筋网剪力。直线滑面 - 在整个风化层厚度范围内自动找到使得钢筋网剪力最大的滑面。 剪力 - 直线滑面 分子很复杂,其实就是土块重力W、渗流力Fw延着的直线滑面分力减去摩擦力,这个力就是下图中的F分子,力的方向是沿滑面水平向下的。钢筋网所受的剪力跟此大小相等,方向相反。 折线滑面 - 在整个风化层厚度范围内自动找到使得钢筋网剪力最大的土块底面倾角。 剪力 - 折线滑面当采用折线滑面计算时,两个滑块之间的作用力X按下式计算:   公式的解析可以参考上面的直线滑面。注意:考虑压力锥影响,替代上面的,影响单元土块的宽度,最终体现在公式里面的滑块重量。4. 土钉组合应变验算 查看全部
在【尺寸】菜单内,面层类型有两种选择,一是混凝土面层,二是钢筋网,本文着重介绍钢筋网的计算原理。当选择钢筋网面层时,要注意此时土钉的位置是交错布置的。这里还需要设置风化层的厚度和岩土材料参数。风化层的厚度和岩土材料参数直接影响到土钉和钢筋网的受力。在【钢筋网类型】菜单中,确定钢筋网的各项承载力及安全系数,最后在进行钢筋网的冲切和受剪力验算,需要将承载力除以安全系数作为验算标准。即Rp/SFmesh与Rs/SFmesh。  同理,在【土钉类型】菜单中,确定土钉的各项强度及安全系数,将各强度允许值除以安全系数,作为验算标准: 坡段,明确土钉的空间布置: 这里的板指的是土钉下面的垫板,板宽度hw对受力计算没有影响,但是该尺寸可以明确垫板尺寸,板的长度lw参与钢筋网冲切计算,垫板长度越大越有利,但是不可能无限大。最后,在【截面强度验算】菜单中,共进行四项验算:土钉受剪承载力验算、钢筋网受冲切承载力验算、钢筋网受剪承载力验算、土钉组合应变验算。此处需要设置是否考虑渗流,压力锥角度及土钉轴力。 关于渗流的影响,在计算土钉剪力和钢筋网剪力时,可以考虑由风化层中水流引起的渗流力Fw。关于压力锥的角度确定了土钉轴力在风化层中的传递扩散角度,这对钢筋网剪力的计算会产生影响。该角度使得作用在钢筋网上的各土钉轴力的水平间距减小了,同时也减小了单元土块的宽度。折减后的单元土块是一个梯形,可以等效为一个等面积的矩形,矩形的宽度为。压力锥角度θ通常在30°到80°之间。压力锥上部半径取板长度的一半。   关于土钉轴力,土钉轴力直接参与钢筋网抗冲切验算。轴力过大可能会导致钢筋网抗冲切不满足要求。1.土钉受剪承载力验算满足Fs≤Rs/SFmesh即可。在土钉抗剪验算中,选择风化层底面作为滑面,土钉剪力Fs则由单根土钉分担的单元土块引起的剪力计算得到。   上面的公式看似复杂,其实就是土块重力W、土钉轴力Fnail及渗流力Fw延着的滑面分力减去摩擦力,为摩擦系数,土块重力W、土钉轴力Fnail垂直与滑面的分力乘以摩擦系数即为摩擦力,在国内规范中不考虑作用,可以设置c=0。2.钢筋网受冲切承载力验算满足Fnail≤Rp/SFmesh即可。Fnail为土钉轴力3.钢筋网受剪承载力验算满足Sd≤Rs/SFmesh即可。软件自动计算由四根土钉包围的单元土块中两种类型滑面下的最大钢筋网剪力。直线滑面 - 在整个风化层厚度范围内自动找到使得钢筋网剪力最大的滑面。 剪力 - 直线滑面 分子很复杂,其实就是土块重力W、渗流力Fw延着的直线滑面分力减去摩擦力,这个力就是下图中的F分子,力的方向是沿滑面水平向下的。钢筋网所受的剪力跟此大小相等,方向相反。 折线滑面 - 在整个风化层厚度范围内自动找到使得钢筋网剪力最大的土块底面倾角。 剪力 - 折线滑面当采用折线滑面计算时,两个滑块之间的作用力X按下式计算:   公式的解析可以参考上面的直线滑面。注意:考虑压力锥影响,替代上面的,影响单元土块的宽度,最终体现在公式里面的滑块重量。4. 土钉组合应变验算

GEO5水位骤降边坡稳定性分析方法

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 4984 次浏览 • 2020-03-13 16:33 • 来自相关话题

       GEO5土坡模块可以分析考虑水位骤降下的边坡稳定性,但在实际的使用中,有工程师反映不知道该怎么使用,也有人说输入了地下水之后边坡安全系数并没有发生改变,十分困惑,所以本文将对GEO5中分析水位骤降的方法进行详细说明。1、注意事项       无论是分析水位骤降下边坡稳定性,还是一般情况下分析有地下水位的边坡稳定性,都需要注意的是在岩土材料输入的时候选择有效应力法进行计算,只有选择了有效应力法,软件才会考虑孔隙水压力对条块的作用。如果选择了总应力法或者总应力ccu,φcu,软件都不会考虑坡内地下水位对边坡的影响,但坡外水位的有利作用软件还是会考虑。有效应力法和总应力法不同选择的区别可以查看GEO5中有效应力法、总应力法,水土分算、水土合算的说明。2、传统分析方法       传统分析水位骤降的方法是通过设置初始地下水位和水位骤降后的地下水位面来分析,最简单的做法是认为坡内的水来不及排出,那么水位骤降后坡内的水位保持不变,只改变坡外的静水面,随着水位的下降,边坡安全系数将逐渐降低。       在GEO5土坡模块中,选择【地下水】中的类型为“水位骤降”,可以直接定义边坡的初始地下水位和骤降后的地下水位:       定义完成后,和一般的边坡计算一样直接进行分析即可。下图展示的是相同的初始地下水位,不同水位骤降情况的边坡安全系数。3、结合GEO5中的初始孔压折减系数分析       传统的考虑坡内水来不及排出的方法实际上是一种偏保守的方法,因为水位骤降其实也是有一个过程的,那么坡内的水或多或少都会渗出坡外,如果是对于渗透性较好的土体,那么坡内的水位还会有明显的下降,但是针对这个问题,再去使用非稳定流分析浸润线就会显得有点麻烦。所以,GEO5通过巧妙地设置初始孔压折减系数X这样一个值,使得我们可以去考虑有水排出的情况。       当我们在【地下水】中选择的地下水类型为“水位骤降”时,需要在【岩土材料】中输入初始孔压折减系数的值:这里X的取值范围为[0,1],当土体完全透水时X=1,完全不透水时X=0,其他情况介于0和1之间,X值的作用原理可查看GEO5的帮助文档,或者直接点击GEO5土坡模块中地下水类型。       这里需要对三种情况的取值进一步说明:(1)X=1       X=1意味着土体完全透水,它的实际意义是:不考虑骤降后的水位与初始水位之间土体的孔隙水压力,所以X=1时,坡内不同的地下水位面会得到不同的结果。(2)X=0       X=0意味着土体完全不透水,它的实际意义是:认为骤降后的水位与初始水位之间土体仍然处于饱和状态,所以X=0时,坡内不同的地下水位面会得到相同的结果。(3)0 查看全部
       GEO5土坡模块可以分析考虑水位骤降下的边坡稳定性,但在实际的使用中,有工程师反映不知道该怎么使用,也有人说输入了地下水之后边坡安全系数并没有发生改变,十分困惑,所以本文将对GEO5中分析水位骤降的方法进行详细说明。1、注意事项       无论是分析水位骤降下边坡稳定性,还是一般情况下分析有地下水位的边坡稳定性,都需要注意的是在岩土材料输入的时候选择有效应力法进行计算,只有选择了有效应力法,软件才会考虑孔隙水压力对条块的作用。如果选择了总应力法或者总应力ccu,φcu,软件都不会考虑坡内地下水位对边坡的影响,但坡外水位的有利作用软件还是会考虑。有效应力法和总应力法不同选择的区别可以查看GEO5中有效应力法、总应力法,水土分算、水土合算的说明。2、传统分析方法       传统分析水位骤降的方法是通过设置初始地下水位和水位骤降后的地下水位面来分析,最简单的做法是认为坡内的水来不及排出,那么水位骤降后坡内的水位保持不变,只改变坡外的静水面,随着水位的下降,边坡安全系数将逐渐降低。       在GEO5土坡模块中,选择【地下水】中的类型为“水位骤降”,可以直接定义边坡的初始地下水位和骤降后的地下水位:       定义完成后,和一般的边坡计算一样直接进行分析即可。下图展示的是相同的初始地下水位,不同水位骤降情况的边坡安全系数。3、结合GEO5中的初始孔压折减系数分析       传统的考虑坡内水来不及排出的方法实际上是一种偏保守的方法,因为水位骤降其实也是有一个过程的,那么坡内的水或多或少都会渗出坡外,如果是对于渗透性较好的土体,那么坡内的水位还会有明显的下降,但是针对这个问题,再去使用非稳定流分析浸润线就会显得有点麻烦。所以,GEO5通过巧妙地设置初始孔压折减系数X这样一个值,使得我们可以去考虑有水排出的情况。       当我们在【地下水】中选择的地下水类型为“水位骤降”时,需要在【岩土材料】中输入初始孔压折减系数的值:这里X的取值范围为[0,1],当土体完全透水时X=1,完全不透水时X=0,其他情况介于0和1之间,X值的作用原理可查看GEO5的帮助文档,或者直接点击GEO5土坡模块中地下水类型。       这里需要对三种情况的取值进一步说明:(1)X=1       X=1意味着土体完全透水,它的实际意义是:不考虑骤降后的水位与初始水位之间土体的孔隙水压力,所以X=1时,坡内不同的地下水位面会得到不同的结果。(2)X=0       X=0意味着土体完全不透水,它的实际意义是:认为骤降后的水位与初始水位之间土体仍然处于饱和状态,所以X=0时,坡内不同的地下水位面会得到相同的结果。(3)0<X<1       0<X<1其实模拟的是真实的情况,即水位骤降后考虑部分水的排出,既不是完全透水也不是完全不透水,在相同水位条件下,边坡安全系数将位于X=0和X=1之间。       至于X如何取值,则需要根据实际岩土材料的渗透性以及水位骤降的速度和阶段综合选取。另外,通过以上分析,我们也不难发现,如果采用传统的通过控制坡内水位面不变化的方法来分析,那么X值无论设置为多少,对最终结果都没有影响。

GEO5海外规范抗滑桩计算依据

库仑产品库仑赵 发表了文章 • 0 个评论 • 1293 次浏览 • 2020-03-09 10:26 • 来自相关话题

        GEO5土质边坡模块能够将支护结构作用综合考虑在内,给出最终的安全系数评估结果。这里以抗滑桩海外设计方法为例,以点带面,介绍GEO5在极限平衡理论下考虑支护结构作用的计算原理,希望能够帮助广大用户更加深入地了解和使用软件。       无论是在国内还是国际,计算抗滑桩计算的两个要素:1、桩身作用的滑坡推力;2、抗滑桩计算模型。其中抗滑桩的计算模型基本都是大同小异,但关于桩身作用的滑坡推力的计算方法却存在一定的差别。在中国我们习惯性使用传递系数法进行计算,这里大致介绍一下国外的算法:      首先我们可以参考文献:Methods to estimate lateral force acting on stabilizing piles : ITO, T OSAKA UNIV. OSAKA, JAPAN MATSUI, T SOILS FOUND. V15, N4, 1975, P43–59[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1976, 13(6):0-0.     图1 抗滑桩对滑体的作用模型        其核心原理是将桩的抗滑力作为分布力施加在滑体之上,这里和GEO5是完全一致的,不过GEO5中对这个抗滑力的分布能够进行更为细致的设置,不光局限于三角形的分布,还能够由工程师根据判断选择相应的分布模式,和抗滑力的作用方向。图2 GEO5抗滑桩细化设置       上述文献中还给出了桩后推力的解析解,方便工程师使用。当然,随着软件技术的发展,我们能够利用更加方便的模式,在GEO5中用户可以选择Spencer法、MP法等更有效的方式直接计算出作用在桩后的推力和桩前的抗力,其原理和不平衡推力法类似。因而在国外利用GEO5进行抗滑桩设计的步骤实际上和国内基本一致。关于这几类国际上通用的方法和传递系数法在滑坡推力计算上的差异,我国知名专家学者陈祖煜、王恭先、郑颖人、凌天清在著书《边坡与滑坡工程治理》6.8.4章节中已经做过详细地对比工作,在此不再赘述。       实际上,GEO5中各类支护结构的作用都是基于以上的模式,所以能够非常便利地计算在综合支护模式下的安全系数。在《The Foundation Engineering Handbook》一书中,各位工程师能够阅读各类支护结构在极限平衡法下对边坡作用的具体计算原理,感兴趣的工程师可以自行查阅。                        查看全部
        GEO5土质边坡模块能够将支护结构作用综合考虑在内,给出最终的安全系数评估结果。这里以抗滑桩海外设计方法为例,以点带面,介绍GEO5在极限平衡理论下考虑支护结构作用的计算原理,希望能够帮助广大用户更加深入地了解和使用软件。       无论是在国内还是国际,计算抗滑桩计算的两个要素:1、桩身作用的滑坡推力;2、抗滑桩计算模型。其中抗滑桩的计算模型基本都是大同小异,但关于桩身作用的滑坡推力的计算方法却存在一定的差别。在中国我们习惯性使用传递系数法进行计算,这里大致介绍一下国外的算法:      首先我们可以参考文献:Methods to estimate lateral force acting on stabilizing piles : ITO, T OSAKA UNIV. OSAKA, JAPAN MATSUI, T SOILS FOUND. V15, N4, 1975, P43–59[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1976, 13(6):0-0.     图1 抗滑桩对滑体的作用模型        其核心原理是将桩的抗滑力作为分布力施加在滑体之上,这里和GEO5是完全一致的,不过GEO5中对这个抗滑力的分布能够进行更为细致的设置,不光局限于三角形的分布,还能够由工程师根据判断选择相应的分布模式,和抗滑力的作用方向。图2 GEO5抗滑桩细化设置       上述文献中还给出了桩后推力的解析解,方便工程师使用。当然,随着软件技术的发展,我们能够利用更加方便的模式,在GEO5中用户可以选择Spencer法、MP法等更有效的方式直接计算出作用在桩后的推力和桩前的抗力,其原理和不平衡推力法类似。因而在国外利用GEO5进行抗滑桩设计的步骤实际上和国内基本一致。关于这几类国际上通用的方法和传递系数法在滑坡推力计算上的差异,我国知名专家学者陈祖煜、王恭先、郑颖人、凌天清在著书《边坡与滑坡工程治理》6.8.4章节中已经做过详细地对比工作,在此不再赘述。       实际上,GEO5中各类支护结构的作用都是基于以上的模式,所以能够非常便利地计算在综合支护模式下的安全系数。在《The Foundation Engineering Handbook》一书中,各位工程师能够阅读各类支护结构在极限平衡法下对边坡作用的具体计算原理,感兴趣的工程师可以自行查阅。                       

GEO5深基坑预留土堤盆式开挖计算介绍

岩土工程库仑刘工 发表了文章 • 0 个评论 • 2643 次浏览 • 2020-03-07 23:17 • 来自相关话题

概述:GEO5可以设计计算桩前预留土堤,进行盆式开挖的深基坑。有不少工程师朋友可能都试用过该功能,但是由于没有详细去了解软件对这种情况的计算原理,有时会出现一些与预期不太一样的结果。导致一些工程师朋友使用软件设计时,只是用软件做一个辅助验算,出一个计算书。针对这种情况,非常有必要对软件的计算原理做一个详细的说明。视频讲解部分:基坑盆式开挖设计计算1. 悬臂式结构土压力计算首先我们先看一下规范里面关于基坑支护结构的计算原理图。基坑外侧土压力计算采用,主动土压力(一般利用库仑土压力公式进行计算)。基坑内侧的土压力,不再使用被动土压力,而是利用竖向温克尔弹性地基梁进行迭代计算土反力。图1 悬臂式结构土反力p由弹簧刚度k和变形得到;弹簧刚度与水平反力系数m(K、c)和桩前土体埋深决定。岩土材料确定之后,m是个定值,当做常量考虑,弹簧刚度仅与埋深有关(z-h)。图2 基坑开挖示意图这里h为当前工况的基坑开挖深度,z为土层计算点到地面的距离,z-h即为桩前土体的埋深。随着开挖进行,开挖深度加深,弹簧刚度会变小,土反力调整,位移调整,结构内力调整。根据施工情况进行分步开挖分析,土反力就会随之调整,这也是规范里推荐使用增量法进行设计的原因所在。2. 土反力最大值图3 土体分步开挖主动土压力大小不变,随着开挖加深,弹簧范围和大小都在减小,弹簧为提供足够的抗力,需要有足够大的变形。但土体(弹簧)变形又不能无限增大,那么土体最大位移为多少时,土体会破坏?直接通过土体变形来判断土体是否能破坏,是很难实现的。那么我们应该怎么判断土体破坏呢?我们可以换一个思路——用土反力和极限土压力进行对比,来判断土体变形是否可控。岩土体是弹塑性的,土体变形到一定程度,就会进入塑形状态,这时候,变形继续增加,土反力却不会继续增大。土反力最大值不应大于被动土压力,大过被动土压力,土体就超出临界状态,会产生破坏。综上,由变形与弹簧刚度计算的土反力,最大值不应大于被动土压力。当土反力不大于被动土压力时,应取实际计算值;当土反力大于被动土压力时,即土体进入塑形变形区时,应对土反力进行调整。调整方法介绍如下。3. 土体塑形变形时土反力取值图4 土压力和位移(弹性)该图是深基坑分析模块分析结果图,绿色虚线代表经典土压力(极限土压力),蓝色实线代表土反力。相同条件下,作用在挡土构件上的土压力,被动土压力>静止土压力>主动土压力。同一深度下,最外侧绿线是被动土压力,最内侧绿线为主动土压力,中间绿线为静止土压力。蓝色的线为土反力,即真实土压力。真实土压力大小,应介于主动土压力与被动土压力之间。图5 土压力和位移(弹塑性)随着开挖深度加深,会导致计算土反力继续增大,土体进入塑形状态,这时按p=ky计算土压力,会导致计算土反力超过被动土压力,这不符合土体规律。软件在这个时候会有一个调整(如图红色线框标注位置)。软件比较计算土反力,与被动土压力的大小。当该单元的土反力大于被动土压力的时,会用该单元范围内的被动土压力代替土反力,进行下一次迭代,直到所有单元的土反力都不大于被动土压力为止。图中红框标注位置,被动土压力线与土压力线重合。4. 盆式开挖土压力计算图6 盆式开挖桩后土体依然使用土压力,桩前土体依然使用土弹簧计算,比较土弹簧与被动土压力的大小。难点在于预留土堤之后,土弹簧和被动土压力应该如何考虑,我们不妨先看一下桩前土体的被动土压力的变化。与水平开挖相比,如果盆式开挖范围在破裂面以外,那么不必考虑被动土压力变化;开挖范围在破裂面内时,则需要考虑被动土压力的减小。这里被动土压力计算,需要联合使用图解法和解析法,具体计算可以参考土力学教程中特殊土压力计算。预留土堤部分的土弹簧,依然按正常土体取值(土弹簧刚度与岩土材料和埋深有关)计算土反力。这时需要考虑的一个问题就是,预留土堤能否像水平土层那样提供那么大的土反力,如何判断,标准是什么。判断标准依然是土反力与被动土压力的大小。假如土反力小于被动土压力力,那么 计算土压力取土反力;假如土反力大于被动土压力,那么就将土反力调整为被动土压力。注意,这里提到的被动土压力是考虑了盆式开挖之后的被动土压力。这样就确保了预留土提部分的土反力计算是合理的。5. 盆式开挖预留土堤注意事项(1)假如预留土堤部分,计算出来大范围都进入塑性变形,即土反力与被动土压力线重合,那么需要考虑,是否开挖过大,或者预留土堤宽度过窄。(2)预留土堤部分,需验证边坡是否稳定,可以调用外部稳定性验算,用限制搜索,完成桩前边坡的验算。(3)当预留土堤宽开挖计算结果与未进行盆式开挖相比几乎没有变化时,说明预留土堤宽度已经足够大了。我们也可以通过调整预留土堤宽度,找到临界值。如果变形、塑性变形、土堤边坡稳定性都能满足要求时,我们可以认为预留土堤形状是合适的。(4)上海市基坑工程技术规范DGTJ08-61-2010对盆式开挖有一些要求,这里贴出来以供参考。 查看全部
概述:GEO5可以设计计算桩前预留土堤,进行盆式开挖的深基坑。有不少工程师朋友可能都试用过该功能,但是由于没有详细去了解软件对这种情况的计算原理,有时会出现一些与预期不太一样的结果。导致一些工程师朋友使用软件设计时,只是用软件做一个辅助验算,出一个计算书。针对这种情况,非常有必要对软件的计算原理做一个详细的说明。视频讲解部分:基坑盆式开挖设计计算1. 悬臂式结构土压力计算首先我们先看一下规范里面关于基坑支护结构的计算原理图。基坑外侧土压力计算采用,主动土压力(一般利用库仑土压力公式进行计算)。基坑内侧的土压力,不再使用被动土压力,而是利用竖向温克尔弹性地基梁进行迭代计算土反力。图1 悬臂式结构土反力p由弹簧刚度k和变形得到;弹簧刚度与水平反力系数m(K、c)和桩前土体埋深决定。岩土材料确定之后,m是个定值,当做常量考虑,弹簧刚度仅与埋深有关(z-h)。图2 基坑开挖示意图这里h为当前工况的基坑开挖深度,z为土层计算点到地面的距离,z-h即为桩前土体的埋深。随着开挖进行,开挖深度加深,弹簧刚度会变小,土反力调整,位移调整,结构内力调整。根据施工情况进行分步开挖分析,土反力就会随之调整,这也是规范里推荐使用增量法进行设计的原因所在。2. 土反力最大值图3 土体分步开挖主动土压力大小不变,随着开挖加深,弹簧范围和大小都在减小,弹簧为提供足够的抗力,需要有足够大的变形。但土体(弹簧)变形又不能无限增大,那么土体最大位移为多少时,土体会破坏?直接通过土体变形来判断土体是否能破坏,是很难实现的。那么我们应该怎么判断土体破坏呢?我们可以换一个思路——用土反力和极限土压力进行对比,来判断土体变形是否可控。岩土体是弹塑性的,土体变形到一定程度,就会进入塑形状态,这时候,变形继续增加,土反力却不会继续增大。土反力最大值不应大于被动土压力,大过被动土压力,土体就超出临界状态,会产生破坏。综上,由变形与弹簧刚度计算的土反力,最大值不应大于被动土压力。当土反力不大于被动土压力时,应取实际计算值;当土反力大于被动土压力时,即土体进入塑形变形区时,应对土反力进行调整。调整方法介绍如下。3. 土体塑形变形时土反力取值图4 土压力和位移(弹性)该图是深基坑分析模块分析结果图,绿色虚线代表经典土压力(极限土压力),蓝色实线代表土反力。相同条件下,作用在挡土构件上的土压力,被动土压力>静止土压力>主动土压力。同一深度下,最外侧绿线是被动土压力,最内侧绿线为主动土压力,中间绿线为静止土压力。蓝色的线为土反力,即真实土压力。真实土压力大小,应介于主动土压力与被动土压力之间。图5 土压力和位移(弹塑性)随着开挖深度加深,会导致计算土反力继续增大,土体进入塑形状态,这时按p=ky计算土压力,会导致计算土反力超过被动土压力,这不符合土体规律。软件在这个时候会有一个调整(如图红色线框标注位置)。软件比较计算土反力,与被动土压力的大小。当该单元的土反力大于被动土压力的时,会用该单元范围内的被动土压力代替土反力,进行下一次迭代,直到所有单元的土反力都不大于被动土压力为止。图中红框标注位置,被动土压力线与土压力线重合。4. 盆式开挖土压力计算图6 盆式开挖桩后土体依然使用土压力,桩前土体依然使用土弹簧计算,比较土弹簧与被动土压力的大小。难点在于预留土堤之后,土弹簧和被动土压力应该如何考虑,我们不妨先看一下桩前土体的被动土压力的变化。与水平开挖相比,如果盆式开挖范围在破裂面以外,那么不必考虑被动土压力变化;开挖范围在破裂面内时,则需要考虑被动土压力的减小。这里被动土压力计算,需要联合使用图解法和解析法,具体计算可以参考土力学教程中特殊土压力计算。预留土堤部分的土弹簧,依然按正常土体取值(土弹簧刚度与岩土材料和埋深有关)计算土反力。这时需要考虑的一个问题就是,预留土堤能否像水平土层那样提供那么大的土反力,如何判断,标准是什么。判断标准依然是土反力与被动土压力的大小。假如土反力小于被动土压力力,那么 计算土压力取土反力;假如土反力大于被动土压力,那么就将土反力调整为被动土压力。注意,这里提到的被动土压力是考虑了盆式开挖之后的被动土压力。这样就确保了预留土提部分的土反力计算是合理的。5. 盆式开挖预留土堤注意事项(1)假如预留土堤部分,计算出来大范围都进入塑性变形,即土反力与被动土压力线重合,那么需要考虑,是否开挖过大,或者预留土堤宽度过窄。(2)预留土堤部分,需验证边坡是否稳定,可以调用外部稳定性验算,用限制搜索,完成桩前边坡的验算。(3)当预留土堤宽开挖计算结果与未进行盆式开挖相比几乎没有变化时,说明预留土堤宽度已经足够大了。我们也可以通过调整预留土堤宽度,找到临界值。如果变形、塑性变形、土堤边坡稳定性都能满足要求时,我们可以认为预留土堤形状是合适的。(4)上海市基坑工程技术规范DGTJ08-61-2010对盆式开挖有一些要求,这里贴出来以供参考。

如何正确预估最大抗滑承载力Vu

库仑产品库仑沈工 发表了文章 • 0 个评论 • 5965 次浏览 • 2020-02-15 23:26 • 来自相关话题

     首先应了解在【土质边坡稳定性分析】模块,抗滑桩的作用就是提供一个抗力,这个力对计算结果的影响主要在于它的大小和作用点位置。本文着重说明抗力大小的影响,不介绍力的作用点的影响。     抗滑桩支护结构是有桩间距的,并非连续结构。所以在整体稳定性安全系数的计算过程中,需要考虑桩间距的影响,抗滑桩对于边坡稳定性贡献的大小取决于它可以提供给边坡的每延米的最大抗力Vu,最大抗力是由「最大抗滑承载力」除以「桩间距」得到的,因此边坡稳定性安全系数计算结果和「最大抗滑承载力」、「桩间距」有关,此处和桩的截面尺寸无关,桩的截面参数只有在调用【抗滑桩设计】模块进一步分析的时候才起作用。     对于滑面确定的坡体而言,使用抗滑桩支护时,能够确定其嵌固段,在输入抗滑桩参数时,抗滑桩承载力沿桩身分布可选择均匀分布,施加在滑面上的抗滑力可以采用桩身最大承载力(抗剪力)Vc。为什么最大抗滑承载力要用受剪承载力公式来计算?因为用受剪承载力进行估算相对简单,好确定。而抗弯承载力计算复杂,桩的抗弯主要还是看配筋量,在截面纵向配筋没有明确的时候不好进行预估。真实的抗剪与抗弯验算在【抗滑桩设计】的【截面强度验算】里都需要进行。根据《混凝土结构设计规范GB50010-2010》6.3.4条,桩的受剪承载力计算公式如下:(6.3.4-2)     式中:混凝土提供的抗剪力,一般受弯构件,而是箍筋提供的抗剪承载力。     在没有分析桩身受力前,我们并不知道是否需要配置剪力筋,保守起见我们先拿也就是混凝土提供的抗剪力去估算,如果采用后计算的安全系数满足要求,可以调用【抗滑桩设计】进行进一步分析。如果不满足要求,我们可以反过来,适当放大Vu数值,一般桩都是有配剪力筋的,所以你在土坡模块里面填入的Vu数据可以稍微大一点,再去计算安全系数!软件对于输入的Vu会进行校核,如果说Vu预估的高了,在调用【抗滑桩设计】进行【截面强度验算】会有提醒。     注:只有安全系数满足要求以后,再调用抗滑桩模块去进一步设计,否则安全系数不满足要求,整个设计也是不满足要求的!     举例:桩截面尺寸1.8mX2m,采用C30的混凝土。ft=1.43N/mm2,fc=14.3N/mm2。因为是估算最大抗滑承载力值,所以计算没有必要非常精确,这里不考虑保护层厚度,h0近似按h取值,如下:Vc=0.7*1.43*1800*2000/1000=3603.6kN,通常我们建议还是按千数量级去预估Vu这里我们输入Vu=5000KN,如下图:      软件会对输入的Vu进行验算,如果满足要求,软件默认不提醒。当不满足时会有警告提示,如下图:      此时,我们在保证稳定性安全系数满足要求的前提下,可以去【土质边坡稳定性分析】模块里【抗滑桩】对话框中减小Vu的数值,或者在【抗滑桩设计】模块的【截面强度验算】一栏,增加剪力筋。提高抗滑桩抗剪承载力。     至此,你是否会有疑问,既然可以放大数值,那就按大的取!越大越好!这样的想法是不可取的!因为有的时候桩的位置不合理,或者其他一些原因,会导致抗力增加到一定程度之后,再增加对提高稳定性几乎没有作用。     其次,桩的抗剪承载力是有限值的,原因如下:1. 不可能无限制的去配置箍筋来增大抗剪承载力,所以Vcs有限值;2. 设计得按照《混凝土结构设计规范GB50010-2010》6.3.1条满足截面限制条件!V不得大于按下式计算出来的Vmax,具体如下: 查看全部
     首先应了解在【土质边坡稳定性分析】模块,抗滑桩的作用就是提供一个抗力,这个力对计算结果的影响主要在于它的大小和作用点位置。本文着重说明抗力大小的影响,不介绍力的作用点的影响。     抗滑桩支护结构是有桩间距的,并非连续结构。所以在整体稳定性安全系数的计算过程中,需要考虑桩间距的影响,抗滑桩对于边坡稳定性贡献的大小取决于它可以提供给边坡的每延米的最大抗力Vu,最大抗力是由「最大抗滑承载力」除以「桩间距」得到的,因此边坡稳定性安全系数计算结果和「最大抗滑承载力」、「桩间距」有关,此处和桩的截面尺寸无关,桩的截面参数只有在调用【抗滑桩设计】模块进一步分析的时候才起作用。     对于滑面确定的坡体而言,使用抗滑桩支护时,能够确定其嵌固段,在输入抗滑桩参数时,抗滑桩承载力沿桩身分布可选择均匀分布,施加在滑面上的抗滑力可以采用桩身最大承载力(抗剪力)Vc。为什么最大抗滑承载力要用受剪承载力公式来计算?因为用受剪承载力进行估算相对简单,好确定。而抗弯承载力计算复杂,桩的抗弯主要还是看配筋量,在截面纵向配筋没有明确的时候不好进行预估。真实的抗剪与抗弯验算在【抗滑桩设计】的【截面强度验算】里都需要进行。根据《混凝土结构设计规范GB50010-2010》6.3.4条,桩的受剪承载力计算公式如下:(6.3.4-2)     式中:混凝土提供的抗剪力,一般受弯构件,而是箍筋提供的抗剪承载力。     在没有分析桩身受力前,我们并不知道是否需要配置剪力筋,保守起见我们先拿也就是混凝土提供的抗剪力去估算,如果采用后计算的安全系数满足要求,可以调用【抗滑桩设计】进行进一步分析。如果不满足要求,我们可以反过来,适当放大Vu数值,一般桩都是有配剪力筋的,所以你在土坡模块里面填入的Vu数据可以稍微大一点,再去计算安全系数!软件对于输入的Vu会进行校核,如果说Vu预估的高了,在调用【抗滑桩设计】进行【截面强度验算】会有提醒。     注:只有安全系数满足要求以后,再调用抗滑桩模块去进一步设计,否则安全系数不满足要求,整个设计也是不满足要求的!     举例:桩截面尺寸1.8mX2m,采用C30的混凝土。ft=1.43N/mm2,fc=14.3N/mm2。因为是估算最大抗滑承载力值,所以计算没有必要非常精确,这里不考虑保护层厚度,h0近似按h取值,如下:Vc=0.7*1.43*1800*2000/1000=3603.6kN,通常我们建议还是按千数量级去预估Vu这里我们输入Vu=5000KN,如下图:      软件会对输入的Vu进行验算,如果满足要求,软件默认不提醒。当不满足时会有警告提示,如下图:      此时,我们在保证稳定性安全系数满足要求的前提下,可以去【土质边坡稳定性分析】模块里【抗滑桩】对话框中减小Vu的数值,或者在【抗滑桩设计】模块的【截面强度验算】一栏,增加剪力筋。提高抗滑桩抗剪承载力。     至此,你是否会有疑问,既然可以放大数值,那就按大的取!越大越好!这样的想法是不可取的!因为有的时候桩的位置不合理,或者其他一些原因,会导致抗力增加到一定程度之后,再增加对提高稳定性几乎没有作用。     其次,桩的抗剪承载力是有限值的,原因如下:1. 不可能无限制的去配置箍筋来增大抗剪承载力,所以Vcs有限值;2. 设计得按照《混凝土结构设计规范GB50010-2010》6.3.1条满足截面限制条件!V不得大于按下式计算出来的Vmax,具体如下:

城市地质建模案例介绍

库仑产品库仑杨工 发表了文章 • 0 个评论 • 2251 次浏览 • 2020-02-14 14:49 • 来自相关话题

城市级别的地质建模,我们需要考虑的是模型的应用范围以及具备的原始资料。通常,对于城市级别精度的地质模型,我们比较关心的是宏观上的地质构造,比如不同时代的地质界面、基岩面、断裂带等。另外,对大多数城市来说,能够提供基础数据一般是地质钻孔、剖面、地质填图等资料。下面我们取湖北某地的一个城市级别地质模型来进行简单介绍。1、该地区具备原始资料中只有钻孔和剖面图,其中典型的地质剖面如下图:图1 该区域典型的地质剖面图通过观察和分析,我们可以把地质情况分为基岩面上下两个部分,上部的图层部分具有明显的成层性,下部岩石部分具有复杂的地质情况,比如侵入、断裂等,没有明显的分层特征。因此我们把整个地质模型分为上下两个部分,使用EVS中的地层建模和岩性建模两种方式来进行地质模型的创建。2、模型创建(1)地层模型:对原始钻孔的土层数据进行分析、整理和合并,划分标准层序,建立地层模型。图2 上部地层模型(2)岩性模型:提取基岩面以下的地质钻孔数据,制作PGF文件,采用指示克里金算法进行空间的岩性插值,创建下部岩性模型。图3 下部岩性模型(3)模型的整合:将上下部模型合并为一个综合地质模型。图4 综合地质模型3、模型的管理和应用。将EVS创建的模型对接至GBIM平台,进行方便的的查看和应用,以及与其他专业模型的统一管理。图5 制定位置提取虚拟钻孔图6 岩性的查询图7 模型透明度的调整图8 层厚筛选图9 提取地质剖面图10 地质开挖图11 与其他专业模型的整合展示 查看全部
城市级别的地质建模,我们需要考虑的是模型的应用范围以及具备的原始资料。通常,对于城市级别精度的地质模型,我们比较关心的是宏观上的地质构造,比如不同时代的地质界面、基岩面、断裂带等。另外,对大多数城市来说,能够提供基础数据一般是地质钻孔、剖面、地质填图等资料。下面我们取湖北某地的一个城市级别地质模型来进行简单介绍。1、该地区具备原始资料中只有钻孔和剖面图,其中典型的地质剖面如下图:图1 该区域典型的地质剖面图通过观察和分析,我们可以把地质情况分为基岩面上下两个部分,上部的图层部分具有明显的成层性,下部岩石部分具有复杂的地质情况,比如侵入、断裂等,没有明显的分层特征。因此我们把整个地质模型分为上下两个部分,使用EVS中的地层建模和岩性建模两种方式来进行地质模型的创建。2、模型创建(1)地层模型:对原始钻孔的土层数据进行分析、整理和合并,划分标准层序,建立地层模型。图2 上部地层模型(2)岩性模型:提取基岩面以下的地质钻孔数据,制作PGF文件,采用指示克里金算法进行空间的岩性插值,创建下部岩性模型。图3 下部岩性模型(3)模型的整合:将上下部模型合并为一个综合地质模型。图4 综合地质模型3、模型的管理和应用。将EVS创建的模型对接至GBIM平台,进行方便的的查看和应用,以及与其他专业模型的统一管理。图5 制定位置提取虚拟钻孔图6 岩性的查询图7 模型透明度的调整图8 层厚筛选图9 提取地质剖面图10 地质开挖图11 与其他专业模型的整合展示

“模量”大荟萃——GEO5和G2常见模量参数简介

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 5800 次浏览 • 2020-02-13 09:43 • 来自相关话题

        在使用GEO5或G2进行计算分析的时候,我们经常会遇到要输入各种模量参数,很多用户不知道这些模量到底是什么意思,该怎么取值,所以本文做一个简单梳理,以便于各位用户更好的使用软件。        模量是指材料在受力状态下应力和应变的比值,量纲是L-1MT-2,常用单位是MPa和GPa。如果在应力和应变上加上限定条件和修饰词语,就会衍生出不同的模量,比如最常用的弹性模量E(或杨氏模量),是指材料在弹性变形阶段正应力与正应变的比值,如图1就是低碳钢拉伸过程的应力-应变曲线图,图中Oa段为弹性变形,该段的斜率值即为弹性模量。图1:低碳钢拉伸过程的应力-应变曲线图        在弹性变形阶段剪切应力与剪切应变的比值,则称为切变模量G(或剪切模量)。此外,还有一种体积模量K,指的是材料在弹性变形范围内,平均应力(某一点三个主应力的平均值)和体积应变的比值,与弹性模量的关系可表示为,其中μ为泊松比。        以上三个概念在弹性力学或线弹性材料当中应用比较广泛。除了弹性模量,切变模量和体积模量这两个模量在岩土分析当中则用的比较少。        实际上,我们在用软件分析岩土问题的时候,遇到最多的是弹性模量E、压缩模量Es和变形模量E0。弹性模量的概念在上文中已给出,而对于压缩模量和变形模量,笔者在查阅资料之前,认为二者的区别主要在于压缩模量是室内试验得到的结果,变形模量是野外原位测试的结果。然而这种认识是不准确的,实际上二者最大的区别在于试验条件是否完全侧限(即不允许侧向变形)。压缩模量是指土在完全侧限条件下,竖向正应力与相应的变形稳定情况下正应变的比值,一般通过室内固结试验测得。变形模量则是指土体在侧向自由膨胀条件下,正应力与相应正应变的比值,既可通过现场原位试验(比如平板载荷试验、扁铲侧胀试验、旁压试验等)测得,也可以通过室内三轴压缩试验获得。               与弹性模量不同,测量压缩模量和变形模量的应力-应变曲线是非线性的。如图2所示,在侧限压缩条件下,压缩模量随竖向应力的增加而增加;在常规三轴条件下,变形模量随偏差应力的增加而减小。由此可见压缩模量和变形模量都具有分段性,不同压力范围有不同的取值。因此也就衍生出不同取值方法下的模量参数,如图3展示的就是变形模量的不同取值,包括了切线模量和割线模量。      图2:两种室内试验的应力-应变关系曲线                       图3:变形模量的不同模量类型               典型的切线模量是初始切线模量(或叫初始弹性模量),是土体应力-应变曲线初始段切线斜率最大的部分,可以用来表征土体弹性变形阶段的模量。典型的割线模量是E50,对应土体峰值应力(破坏时的应力)一半时的应力与相应应变的比值,如图4。        从图4和图5可知,土体在荷载的作用下产生变形,在外荷载卸除后,土的应力-应变关系并没有回到原点,变形中有一部分是可以恢复的,而另一部分是不可恢复的,这个过程说明了土体材料典型的弹塑性。土体回弹和再加载过程一般可以用一个模量表示,即回弹模量Eur,假设能够回弹的变形都是弹性变形,那么回弹模量近似等于初始弹性模量,根据经验,土体初始弹性模量约为变形模量的3~5倍,所以当没有试验资料时,回弹模量一般按变形模量的3~5倍取值。这个经验十分有用,比如在使用GEO5有限元分析模块定义修正线弹性模型、Mohr-Coulomb弹塑性模型或者D-P模型时,以及使用G2定义HMC(硬化摩尔库仑)材料时,都需要输入材料的回弹模量。图4:割线模量E50图5:土的加载-卸载应力应变曲线        在假定相同起始状态的条件下,三轴压缩的变形模量E0和侧限压缩试验中的压缩模量Es可以通过广义胡克定律推导出二者的关系,公式如下:其中μ为泊松比。上式是基于线弹性假定的理论关系式,但土体并不是理想弹性体,所以按上述公式换算在大部分土体中都不太符合。在GEO5的帮助文档中也提到:实践经验表明由变形模量推导而来的压缩模量和由现场实测荷载沉降曲线得到的压缩模量往往会出现很大的不同,甚至处于不同的数量级。一般来说结构性较弱的软土比较符合这个公式。        此外,当使用G2分析,选择Tresca材料时,需要输入不排水变形模量Eu,该值可通过室内不排水三轴压缩试验或野外原位测试试验获得。另外,GEO5有限元分析模块进行应力应变分析时,允许用户定义随深度增加的材料刚度,即土体不同深度处具有不同的模量,如图6所示,可以输入弹性模量随深度的变化率,相关理论可参考http://www.wen.kulunsoft.com/question/865。图6:GEO5有限元模块岩土材料参数中定义随深度变化的弹性模量        综上所述,那么应该何时采用何种模量呢。本文建议,在一维沉降分析时,比如利用分层总和法计算沉降或者固结分析时,建议土体采用压缩模量进行分析;而在进行三维变形分析,比如边坡稳定性分析和基坑开挖分析时,土体则可以采用变形模量;而岩体和混凝土结构一般采用弹性模量进行分析。土体的初始弹性模量主要用于计算瞬时沉降。        以上介绍的各种模量都应当通过可靠的实验来测得,如果没有试验资料,可参考地区经验取值或参考GEO5帮助文档给出的建议值。 查看全部
        在使用GEO5或G2进行计算分析的时候,我们经常会遇到要输入各种模量参数,很多用户不知道这些模量到底是什么意思,该怎么取值,所以本文做一个简单梳理,以便于各位用户更好的使用软件。        模量是指材料在受力状态下应力和应变的比值,量纲是L-1MT-2,常用单位是MPa和GPa。如果在应力和应变上加上限定条件和修饰词语,就会衍生出不同的模量,比如最常用的弹性模量E(或杨氏模量),是指材料在弹性变形阶段正应力与正应变的比值,如图1就是低碳钢拉伸过程的应力-应变曲线图,图中Oa段为弹性变形,该段的斜率值即为弹性模量。图1:低碳钢拉伸过程的应力-应变曲线图        在弹性变形阶段剪切应力与剪切应变的比值,则称为切变模量G(或剪切模量)。此外,还有一种体积模量K,指的是材料在弹性变形范围内,平均应力(某一点三个主应力的平均值)和体积应变的比值,与弹性模量的关系可表示为,其中μ为泊松比。        以上三个概念在弹性力学或线弹性材料当中应用比较广泛。除了弹性模量,切变模量和体积模量这两个模量在岩土分析当中则用的比较少。        实际上,我们在用软件分析岩土问题的时候,遇到最多的是弹性模量E、压缩模量Es和变形模量E0。弹性模量的概念在上文中已给出,而对于压缩模量和变形模量,笔者在查阅资料之前,认为二者的区别主要在于压缩模量是室内试验得到的结果,变形模量是野外原位测试的结果。然而这种认识是不准确的,实际上二者最大的区别在于试验条件是否完全侧限(即不允许侧向变形)。压缩模量是指土在完全侧限条件下,竖向正应力与相应的变形稳定情况下正应变的比值,一般通过室内固结试验测得。变形模量则是指土体在侧向自由膨胀条件下,正应力与相应正应变的比值,既可通过现场原位试验(比如平板载荷试验、扁铲侧胀试验、旁压试验等)测得,也可以通过室内三轴压缩试验获得。               与弹性模量不同,测量压缩模量和变形模量的应力-应变曲线是非线性的。如图2所示,在侧限压缩条件下,压缩模量随竖向应力的增加而增加;在常规三轴条件下,变形模量随偏差应力的增加而减小。由此可见压缩模量和变形模量都具有分段性,不同压力范围有不同的取值。因此也就衍生出不同取值方法下的模量参数,如图3展示的就是变形模量的不同取值,包括了切线模量和割线模量。      图2:两种室内试验的应力-应变关系曲线                       图3:变形模量的不同模量类型               典型的切线模量是初始切线模量(或叫初始弹性模量),是土体应力-应变曲线初始段切线斜率最大的部分,可以用来表征土体弹性变形阶段的模量。典型的割线模量是E50,对应土体峰值应力(破坏时的应力)一半时的应力与相应应变的比值,如图4。        从图4和图5可知,土体在荷载的作用下产生变形,在外荷载卸除后,土的应力-应变关系并没有回到原点,变形中有一部分是可以恢复的,而另一部分是不可恢复的,这个过程说明了土体材料典型的弹塑性。土体回弹和再加载过程一般可以用一个模量表示,即回弹模量Eur,假设能够回弹的变形都是弹性变形,那么回弹模量近似等于初始弹性模量,根据经验,土体初始弹性模量约为变形模量的3~5倍,所以当没有试验资料时,回弹模量一般按变形模量的3~5倍取值。这个经验十分有用,比如在使用GEO5有限元分析模块定义修正线弹性模型、Mohr-Coulomb弹塑性模型或者D-P模型时,以及使用G2定义HMC(硬化摩尔库仑)材料时,都需要输入材料的回弹模量。图4:割线模量E50图5:土的加载-卸载应力应变曲线        在假定相同起始状态的条件下,三轴压缩的变形模量E0和侧限压缩试验中的压缩模量Es可以通过广义胡克定律推导出二者的关系,公式如下:其中μ为泊松比。上式是基于线弹性假定的理论关系式,但土体并不是理想弹性体,所以按上述公式换算在大部分土体中都不太符合。在GEO5的帮助文档中也提到:实践经验表明由变形模量推导而来的压缩模量和由现场实测荷载沉降曲线得到的压缩模量往往会出现很大的不同,甚至处于不同的数量级。一般来说结构性较弱的软土比较符合这个公式。        此外,当使用G2分析,选择Tresca材料时,需要输入不排水变形模量Eu,该值可通过室内不排水三轴压缩试验或野外原位测试试验获得。另外,GEO5有限元分析模块进行应力应变分析时,允许用户定义随深度增加的材料刚度,即土体不同深度处具有不同的模量,如图6所示,可以输入弹性模量随深度的变化率,相关理论可参考http://www.wen.kulunsoft.com/question/865。图6:GEO5有限元模块岩土材料参数中定义随深度变化的弹性模量        综上所述,那么应该何时采用何种模量呢。本文建议,在一维沉降分析时,比如利用分层总和法计算沉降或者固结分析时,建议土体采用压缩模量进行分析;而在进行三维变形分析,比如边坡稳定性分析和基坑开挖分析时,土体则可以采用变形模量;而岩体和混凝土结构一般采用弹性模量进行分析。土体的初始弹性模量主要用于计算瞬时沉降。        以上介绍的各种模量都应当通过可靠的实验来测得,如果没有试验资料,可参考地区经验取值或参考GEO5帮助文档给出的建议值。

EVS三维地质模型导入GEO5进行岩土设计

库仑产品库仑刘工 发表了文章 • 0 个评论 • 2436 次浏览 • 2020-02-10 09:38 • 来自相关话题

EVS是一款功能强大的三维地质建模软件,能够快速准确地建立用户期望的三维地质模型并对模型进行多方位的展示和应用。随着三维地质模型应用需求的发展,如何将地质模型应用于岩土工程实际设计,成为很多岩土从业者关注、探索的方向。基于此,本文重点介绍如何将EVS生成的地质模型导入GEO5岩土设计软件进行设计分析。整个应用流程首先基于EVS建立目标模型,然后利用GEO5 2020版新增【多段线】功能读取EVS模型中的层面数据并重构三维地质模型,最终利用GEO5三维地质建模和其他模块的调用和数据共享能力进行岩土设计分析。下面我们就做一个详细地图文介绍:1 EVS地质建模基于地形和勘察数据在EVS中快速生成三维地质模型。图1 EVS生成地质模型2 GEO5重构地质模型GEO5 2020版三维地质建模模块新增【多段线】功能,能够通过dxf、txt等格式文件读取其他专业建模软件生成的地层面(图2)。我们利用此项功能将EVS模型中的地层面分层导出,再读入GEO5中即可快速准确重构三维地质模型(图3)。图2 GEO5软件读取dxf格式的地层面数据图3 GEO5软件根据导入的EVS地层面重新生成地质模型3 GEO5地质模型应用于岩土设计GEO5生成地质模型后,在目标位置截取二维剖面(图4、图5),生成地质剖面围栅图。生成的二维剖面具有真实的几何信息、岩土材料参数信息。图4 在三维模型上切割生成的二维剖面图5 地质剖面围栅图 将生成的剖面1-1’复制粘贴到地基固结沉降模型进行分析(图6)。GEO5各个模块之间能够实现几何信息、岩土参数信息的快速对接。本文中用地基固结沉降分析模块为例进行说明,如果需要进行其他分析,如边坡稳定性、基坑等,只需把生成的二维剖面复制粘贴到相应的分析模块中即可,相关操作均相同。 图6 复制二维剖面至对应的分析模块4 岩土设计成果展示4.1 地基固结沉降分析在工况1阶段,分析初始地应力;工况2阶段,在地层表面添加超载,计算沉降情况。其结果如图7、图8所示。图7 工况1分析结果图8工况2分析结果4.2 生成计算书图9 打印计算书5 总结本篇技术贴介绍了EVS软件生成的三维地质模型快速对接GEO5三维建模和岩土设计的过程。三维地质模型,并不仅仅局限于三维可视化的展示功能,也可以用于岩土设计。本文为各位工程师提供一个思路,希望能起到抛砖引玉的效果。 查看全部
EVS是一款功能强大的三维地质建模软件,能够快速准确地建立用户期望的三维地质模型并对模型进行多方位的展示和应用。随着三维地质模型应用需求的发展,如何将地质模型应用于岩土工程实际设计,成为很多岩土从业者关注、探索的方向。基于此,本文重点介绍如何将EVS生成的地质模型导入GEO5岩土设计软件进行设计分析。整个应用流程首先基于EVS建立目标模型,然后利用GEO5 2020版新增【多段线】功能读取EVS模型中的层面数据并重构三维地质模型,最终利用GEO5三维地质建模和其他模块的调用和数据共享能力进行岩土设计分析。下面我们就做一个详细地图文介绍:1 EVS地质建模基于地形和勘察数据在EVS中快速生成三维地质模型。图1 EVS生成地质模型2 GEO5重构地质模型GEO5 2020版三维地质建模模块新增【多段线】功能,能够通过dxf、txt等格式文件读取其他专业建模软件生成的地层面(图2)。我们利用此项功能将EVS模型中的地层面分层导出,再读入GEO5中即可快速准确重构三维地质模型(图3)。图2 GEO5软件读取dxf格式的地层面数据图3 GEO5软件根据导入的EVS地层面重新生成地质模型3 GEO5地质模型应用于岩土设计GEO5生成地质模型后,在目标位置截取二维剖面(图4、图5),生成地质剖面围栅图。生成的二维剖面具有真实的几何信息、岩土材料参数信息。图4 在三维模型上切割生成的二维剖面图5 地质剖面围栅图 将生成的剖面1-1’复制粘贴到地基固结沉降模型进行分析(图6)。GEO5各个模块之间能够实现几何信息、岩土参数信息的快速对接。本文中用地基固结沉降分析模块为例进行说明,如果需要进行其他分析,如边坡稳定性、基坑等,只需把生成的二维剖面复制粘贴到相应的分析模块中即可,相关操作均相同。 图6 复制二维剖面至对应的分析模块4 岩土设计成果展示4.1 地基固结沉降分析在工况1阶段,分析初始地应力;工况2阶段,在地层表面添加超载,计算沉降情况。其结果如图7、图8所示。图7 工况1分析结果图8工况2分析结果4.2 生成计算书图9 打印计算书5 总结本篇技术贴介绍了EVS软件生成的三维地质模型快速对接GEO5三维建模和岩土设计的过程。三维地质模型,并不仅仅局限于三维可视化的展示功能,也可以用于岩土设计。本文为各位工程师提供一个思路,希望能起到抛砖引玉的效果。

GEO5三维地质建模——钻孔和剖面混合建模

库仑产品库仑赵 发表了文章 • 0 个评论 • 2336 次浏览 • 2020-02-10 09:34 • 来自相关话题

        在《GEO5三维地质建模、设计和三维有限元分析应用》一文中我们已经对GEO5三维地质建模模块的基础应用功能(勘察数据管理、柱状图和剖面图、三维地质建模)及基于三维地质模型对接岩土设计和三维有限元分析的相关应用做了介绍。想要进行回顾的工程师可以点击此处:http://www.wen.kulunsoft.com/article/333.图1 GEO5三维地质建模模块基础功能       本篇文章在上文的基础上对GEO5 2020新版三维地质建模中的重要优化功能:钻孔和剖面混合建模功能做一详细地介绍。在2020版之前,GEO5三维地质建模模块仅能够通过钻孔在三维空间的关系进行建模,GEO5 2020版新增基于地质剖面的建模功能,使得我们建模的精度、速度、合理性大大地提升。GEO5 2020版对应三维地质建模方法扩展如下:      1、基于钻孔建模。本功能和2020版之前的功能完全相同,具体教程见:http://www.wen.kulunsoft.com/dochelp/1840;      2、基于二维地质剖面建模。能够允许工程师依据工程经验绘制地层分界面并参与三维建模,通过传统二维工程经验建立三维地质模型;      3、钻孔和二维地质剖面的混合建模。即能够基于工程师绘制的二维剖面,又能够通过钻孔进行细部的优化,使得三维地质模型更加精确。     下面我们就对GEO5 2020版三维地质建模中的:钻孔和剖面混合建模功能做一个简单地图文介绍。1 勘察数据的管理        我们首先进行勘察数据的录入管理,这里可以进行地形数据、勘察数据、室内试验数据的管理,以及内业整理、柱状图和剖面图的绘制等工作。图2 勘察数据录入和内业整理图3 柱状图的生成图4 柱状图和剖面图关联2 钻孔和二维剖面混合建模2.1 二维剖面关联至三维建模        GEO5 2020版【地质剖面】功能的提升使得软件可独立完成二维地质剖面的绘制,不需要借助任何CAD软件;支持自定义地层线和断面线,可进行特殊地地质构造的表达:例如透镜体、断层等;支持定义多种情况下的地下水位,可定义任意图形和文字注释信息,满足不同行业需求(场地边界、道路、构筑物等)。       在绘制二维地质剖面的过程中,地层线和构造线的能够进行关联并在后续三维地质建模过程中参与三维地层面的建立。简单理解就是通过一系列二维剖面上面的同一类分界线延伸成地层面,最终构成三维地质模型。图5 二维地层线关联到三维建模      我们将一系列的二维剖面关联到最终的三维模型上:图6 参与建模的二维地质剖面2.2 基于二维剖面建立三维模型图7 混合建模设置界面       在最终生成三维地质模型时,如图7,我们在界面右侧采用【指定层面】,完全利用绘制二维剖面时关联的层面进行三维地质模型的建立。       当然我们为了让模型更加精细,还可以同时使用【指定层面】和【钻孔】混合建模。在界面左侧可以看见,我们除使用了一个“层序控制孔”外,还加入了一个“虚拟钻孔”用于局部精细化模型。当然也可 以部分或完全加入原始存在的真实钻孔。       最终生成的三维地质模型如下:图8 混合建模生成的三维地质模型2.3 混合建模效果展示      这里我们对建模效果进行一个展示,以案例文件中的1-1’剖面为例。CAD剖面图中的地层线如下:图9 CAD中绘制的1-1’剖面地层线        新版GEO5 2020允许用户在GEO5直接实现在CAD中绘图的各种功能,用户完全可以跳过CAD绘制柱状图和剖面图的环节,直接在GEO5中生成需要的图件,并能够绘制相关的图名、坐标、标尺等信息。利用GEO5绘制二维剖面的功能我们能够完全复制这个剖面,而且能够达到非常美观的效果:图10 GEO5中绘制的1-1’剖面       最终我们通过一系列的二维剖面延伸生成三维地质模型后,我们在相同的位置从三维模上截取一个剖面,如下图:图11 三维地质模型切割生成的1-1’剖面        我们可以看到,最终从三维地质模型上切割形成的剖面与我们在二维平面上绘制的剖面图相似度非常高。由此可以看出基于工程师绘制好的二维剖面,并加入一定的钻孔的混合建模方式能够的得到效果非常好的三维地质模型,大大提升了工作质量。        总体来说,GEO5 2020三维地质建模模块新增基于二维剖面的建模功能后,建模的能力、精度、速度和合理性大大提升。同时能够充分利用工程师的工程经验,通过工程师熟悉的方式从二维剖面的绘制过渡到三维地质模型的建立,更加符合工程师的使用习惯。这里欢迎广大工程师尝试新功能。 查看全部
        在《GEO5三维地质建模、设计和三维有限元分析应用》一文中我们已经对GEO5三维地质建模模块的基础应用功能(勘察数据管理、柱状图和剖面图、三维地质建模)及基于三维地质模型对接岩土设计和三维有限元分析的相关应用做了介绍。想要进行回顾的工程师可以点击此处:http://www.wen.kulunsoft.com/article/333.图1 GEO5三维地质建模模块基础功能       本篇文章在上文的基础上对GEO5 2020新版三维地质建模中的重要优化功能:钻孔和剖面混合建模功能做一详细地介绍。在2020版之前,GEO5三维地质建模模块仅能够通过钻孔在三维空间的关系进行建模,GEO5 2020版新增基于地质剖面的建模功能,使得我们建模的精度、速度、合理性大大地提升。GEO5 2020版对应三维地质建模方法扩展如下:      1、基于钻孔建模。本功能和2020版之前的功能完全相同,具体教程见:http://www.wen.kulunsoft.com/dochelp/1840;      2、基于二维地质剖面建模。能够允许工程师依据工程经验绘制地层分界面并参与三维建模,通过传统二维工程经验建立三维地质模型;      3、钻孔和二维地质剖面的混合建模。即能够基于工程师绘制的二维剖面,又能够通过钻孔进行细部的优化,使得三维地质模型更加精确。     下面我们就对GEO5 2020版三维地质建模中的:钻孔和剖面混合建模功能做一个简单地图文介绍。1 勘察数据的管理        我们首先进行勘察数据的录入管理,这里可以进行地形数据、勘察数据、室内试验数据的管理,以及内业整理、柱状图和剖面图的绘制等工作。图2 勘察数据录入和内业整理图3 柱状图的生成图4 柱状图和剖面图关联2 钻孔和二维剖面混合建模2.1 二维剖面关联至三维建模        GEO5 2020版【地质剖面】功能的提升使得软件可独立完成二维地质剖面的绘制,不需要借助任何CAD软件;支持自定义地层线和断面线,可进行特殊地地质构造的表达:例如透镜体、断层等;支持定义多种情况下的地下水位,可定义任意图形和文字注释信息,满足不同行业需求(场地边界、道路、构筑物等)。       在绘制二维地质剖面的过程中,地层线和构造线的能够进行关联并在后续三维地质建模过程中参与三维地层面的建立。简单理解就是通过一系列二维剖面上面的同一类分界线延伸成地层面,最终构成三维地质模型。图5 二维地层线关联到三维建模      我们将一系列的二维剖面关联到最终的三维模型上:图6 参与建模的二维地质剖面2.2 基于二维剖面建立三维模型图7 混合建模设置界面       在最终生成三维地质模型时,如图7,我们在界面右侧采用【指定层面】,完全利用绘制二维剖面时关联的层面进行三维地质模型的建立。       当然我们为了让模型更加精细,还可以同时使用【指定层面】和【钻孔】混合建模。在界面左侧可以看见,我们除使用了一个“层序控制孔”外,还加入了一个“虚拟钻孔”用于局部精细化模型。当然也可 以部分或完全加入原始存在的真实钻孔。       最终生成的三维地质模型如下:图8 混合建模生成的三维地质模型2.3 混合建模效果展示      这里我们对建模效果进行一个展示,以案例文件中的1-1’剖面为例。CAD剖面图中的地层线如下:图9 CAD中绘制的1-1’剖面地层线        新版GEO5 2020允许用户在GEO5直接实现在CAD中绘图的各种功能,用户完全可以跳过CAD绘制柱状图和剖面图的环节,直接在GEO5中生成需要的图件,并能够绘制相关的图名、坐标、标尺等信息。利用GEO5绘制二维剖面的功能我们能够完全复制这个剖面,而且能够达到非常美观的效果:图10 GEO5中绘制的1-1’剖面       最终我们通过一系列的二维剖面延伸生成三维地质模型后,我们在相同的位置从三维模上截取一个剖面,如下图:图11 三维地质模型切割生成的1-1’剖面        我们可以看到,最终从三维地质模型上切割形成的剖面与我们在二维平面上绘制的剖面图相似度非常高。由此可以看出基于工程师绘制好的二维剖面,并加入一定的钻孔的混合建模方式能够的得到效果非常好的三维地质模型,大大提升了工作质量。        总体来说,GEO5 2020三维地质建模模块新增基于二维剖面的建模功能后,建模的能力、精度、速度和合理性大大提升。同时能够充分利用工程师的工程经验,通过工程师熟悉的方式从二维剖面的绘制过渡到三维地质模型的建立,更加符合工程师的使用习惯。这里欢迎广大工程师尝试新功能。

GBIM操作卡?教你几个小技巧

库仑产品库仑李建 发表了文章 • 0 个评论 • 1836 次浏览 • 2020-02-09 13:43 • 来自相关话题

GBIM平台为B/S(浏览器/服务器)运行模式,对客户端硬件无特别需求,可以在Windows7(64位)及以上操作系统上运行,原则上当前主流计算机上均可正常运行。但如果做一下几点设置,GBIM运行会更加流畅:1、浏览器的选择目前,GBIM适配最完美的浏览器是 Chrome,即安装Chrome75.0及以上版本的浏览器均可。2、将 Chrome 设置成高性能显卡此处以 NVIDIA显卡 为例,设置方法为:1)桌面右键,选择NVIDIA控制面板,打开NVIDIA显卡设置窗口;2)左侧导航选择 「3D设置 – 管理3D设置」,在右侧显示的是「全局设置」窗口中,「首选图形处理器(P)」下拉框中选择「高性能NVIDIA处理器」;3)在打开右侧「程序设置」窗口,在「1.选择要自定义的程序(S)」下拉框中选择「Google Chrome(chrome.exe)」,如果下拉框中没有,则点击添加按钮,选择Chrome浏览器。4)选择之后,在「2.为此程序选择首选图形处理器(O)」下拉框中选择「高性能NVIDIA处理器」。 查看全部
GBIM平台为B/S(浏览器/服务器)运行模式,对客户端硬件无特别需求,可以在Windows7(64位)及以上操作系统上运行,原则上当前主流计算机上均可正常运行。但如果做一下几点设置,GBIM运行会更加流畅:1、浏览器的选择目前,GBIM适配最完美的浏览器是 Chrome,即安装Chrome75.0及以上版本的浏览器均可。2、将 Chrome 设置成高性能显卡此处以 NVIDIA显卡 为例,设置方法为:1)桌面右键,选择NVIDIA控制面板,打开NVIDIA显卡设置窗口;2)左侧导航选择 「3D设置 – 管理3D设置」,在右侧显示的是「全局设置」窗口中,「首选图形处理器(P)」下拉框中选择「高性能NVIDIA处理器」;3)在打开右侧「程序设置」窗口,在「1.选择要自定义的程序(S)」下拉框中选择「Google Chrome(chrome.exe)」,如果下拉框中没有,则点击添加按钮,选择Chrome浏览器。4)选择之后,在「2.为此程序选择首选图形处理器(O)」下拉框中选择「高性能NVIDIA处理器」。

流体力学体积模量

回答

库仑产品十三天尼 发起了问题 • 1 人关注 • 0 个回答 • 1967 次浏览 • 2020-02-03 09:25 • 来自相关话题