optum G2中排桩的桩径单位

回答

库仑产品朱沁 发起了问题 • 1 人关注 • 0 个回答 • 22 次浏览 • 2 天前 • 来自相关话题

GEO5重力式挡墙——导入CAD图形

库仑产品库仑刘工 发表了文章 • 0 个评论 • 375 次浏览 • 2024-01-31 16:37 • 来自相关话题

GEO5重力式挡墙——导入CAD图形GEO5重力式挡墙模块可以自定义挡墙样式,很多工程师反馈,想要在GEO5里面直接导入画好的CAD图形,目前GEO5企业版中已经能够导入dwg、dxf格式的图形,也能够通过导入坐标点的方式创建挡墙。cad挡墙案例文件.zip GEO5导入挡墙尺寸示意1.导入CAD图形 在CAD里面用多段线绘制挡墙,并把挡墙右上方的顶点移动到坐标原点,保存。 在【墙身截面尺寸】下面选择“?”或“生成任意形状”,在下拉框下面选择“导入数据”选项。 在弹窗的右下角选择对应的图形格式,选中挡墙图形。点击“打开”。 尺寸单位与CAD里面保持一致,CAD里面是mm这里也选mm,CAD里面是m,这里也选m。移动选项,一定要选不偏移。确定之后即可导入挡墙样式。 导入成功2. 导入坐标点类似导入CAD的操作,只是读取CAD图中的坐标点。把挡墙的xy坐标按图中示意,从①到⑩顺时针排列(可以在Excel中输好,复制到记事本中,保存为TXT格式)。  根据提示依次进行操作即可,不再赘述。3. 验算说明自定义挡墙样式的【截面强度验算】不再有墙身截面验算选项,仅保留【施工缝验算】。施工缝验算本质是指定任一位置进行截面强度验算,可以验算挡墙不同高度位置的截面强度,可以将施工缝深度指定在挡墙变截面和基础位置等不利位置。另外,导入的挡墙以最下面的线段作为基底,即图中紫色加粗的线。导入时,请不要导入凸榫结构。重力式挡土墙主要还是应该靠墙身自重来实现抗滑移、抗倾覆功能,建议凸榫当做构造措施放在施工图里面。  截面强度验算  查看全部
GEO5重力式挡墙——导入CAD图形GEO5重力式挡墙模块可以自定义挡墙样式,很多工程师反馈,想要在GEO5里面直接导入画好的CAD图形,目前GEO5企业版中已经能够导入dwg、dxf格式的图形,也能够通过导入坐标点的方式创建挡墙。cad挡墙案例文件.zip GEO5导入挡墙尺寸示意1.导入CAD图形 在CAD里面用多段线绘制挡墙,并把挡墙右上方的顶点移动到坐标原点,保存。 在【墙身截面尺寸】下面选择“?”或“生成任意形状”,在下拉框下面选择“导入数据”选项。 在弹窗的右下角选择对应的图形格式,选中挡墙图形。点击“打开”。 尺寸单位与CAD里面保持一致,CAD里面是mm这里也选mm,CAD里面是m,这里也选m。移动选项,一定要选不偏移。确定之后即可导入挡墙样式。 导入成功2. 导入坐标点类似导入CAD的操作,只是读取CAD图中的坐标点。把挡墙的xy坐标按图中示意,从①到⑩顺时针排列(可以在Excel中输好,复制到记事本中,保存为TXT格式)。  根据提示依次进行操作即可,不再赘述。3. 验算说明自定义挡墙样式的【截面强度验算】不再有墙身截面验算选项,仅保留【施工缝验算】。施工缝验算本质是指定任一位置进行截面强度验算,可以验算挡墙不同高度位置的截面强度,可以将施工缝深度指定在挡墙变截面和基础位置等不利位置。另外,导入的挡墙以最下面的线段作为基底,即图中紫色加粗的线。导入时,请不要导入凸榫结构。重力式挡土墙主要还是应该靠墙身自重来实现抗滑移、抗倾覆功能,建议凸榫当做构造措施放在施工图里面。  截面强度验算 

GEO5不同模块导出IFC格式效果展示

库仑产品南京库仑张工 发表了文章 • 0 个评论 • 372 次浏览 • 2024-01-23 09:02 • 来自相关话题

       GEO5 2023版中,大部分模块已支持导出IFC格式模型,本文将简单介绍挡墙、边坡、三维地质建模等三类模块导出IFC之后的效果。1. 挡墙模块导出IFC模型       使用悬臂式挡墙模块建模,下图分别展示GEO5中的模型、导出IFC后展示的模型及在BIMvision查看的属性信息。2. 边坡模块导出IFC模型       使用土坡模块建立边坡,下图分别展示GEO5中的模型、导出IFC后展示的模型及在BIMvision查看的属性信息。3 三维地质建模导出IFC模型       使用三维地质建模,下图分别展示GEO5中的模型,导出IFC后展示的模型及在BIMvision查看的属性信息。       另外,导出的IFC模型,除了包含GEO5模型自带属性信息,用户还可以根据后续应用需要,在GEO5中提前定义其他属性信息,定义的具体方法将在后续的文章中给大家介绍。 查看全部
       GEO5 2023版中,大部分模块已支持导出IFC格式模型,本文将简单介绍挡墙、边坡、三维地质建模等三类模块导出IFC之后的效果。1. 挡墙模块导出IFC模型       使用悬臂式挡墙模块建模,下图分别展示GEO5中的模型、导出IFC后展示的模型及在BIMvision查看的属性信息。2. 边坡模块导出IFC模型       使用土坡模块建立边坡,下图分别展示GEO5中的模型、导出IFC后展示的模型及在BIMvision查看的属性信息。3 三维地质建模导出IFC模型       使用三维地质建模,下图分别展示GEO5中的模型,导出IFC后展示的模型及在BIMvision查看的属性信息。       另外,导出的IFC模型,除了包含GEO5模型自带属性信息,用户还可以根据后续应用需要,在GEO5中提前定义其他属性信息,定义的具体方法将在后续的文章中给大家介绍。

GEO5三维地质模型导入Revit的效果

库仑产品南京库仑张工 发表了文章 • 0 个评论 • 325 次浏览 • 2024-01-23 08:57 • 来自相关话题

       随着三维地质模型的应用加深,有工程师咨询如何将GEO5的三维地质模型导入到Revit当中使用,本文将简要介绍导入方法及在Revit软件中导入的效果。1 导入Revit的方法       GEO5 2023版已经全面支持IFC格式,包括三维地质建模的多个模块都可以将模型导出为IFC文件,然后在Revit、Archicad、Solibri等BIM软件中打开,或者使用BIMvision进行浏览。2 导入Revit中的效果(1)模型整体展示效果(2)查看钻孔及坐标信息(3)查看剖面信息(4)在Revit中选择某一层,查看属性参数       需要说明的是,导出的IFC格式模型除了包含默认岩土材料参数外,用户还可以在GEO5当中定义其他IFC属性数据,这些数据也同样可以导出到BIM软件当中加载和识别。我们会在后续的文章中对如何自定义IFC其他属性数据进行说明。 查看全部
       随着三维地质模型的应用加深,有工程师咨询如何将GEO5的三维地质模型导入到Revit当中使用,本文将简要介绍导入方法及在Revit软件中导入的效果。1 导入Revit的方法       GEO5 2023版已经全面支持IFC格式,包括三维地质建模的多个模块都可以将模型导出为IFC文件,然后在Revit、Archicad、Solibri等BIM软件中打开,或者使用BIMvision进行浏览。2 导入Revit中的效果(1)模型整体展示效果(2)查看钻孔及坐标信息(3)查看剖面信息(4)在Revit中选择某一层,查看属性参数       需要说明的是,导出的IFC格式模型除了包含默认岩土材料参数外,用户还可以在GEO5当中定义其他IFC属性数据,这些数据也同样可以导出到BIM软件当中加载和识别。我们会在后续的文章中对如何自定义IFC其他属性数据进行说明。

GEO5 弹性地基梁模块计算龙门吊基础轨道梁

库仑产品库仑赵 发表了文章 • 0 个评论 • 263 次浏览 • 2024-01-22 14:10 • 来自相关话题

       龙门吊作为大型起重吊装设备在工程中的应用是比较广泛的,龙门吊轨道基础的设计、受力及地基承载力的评估就显得尤为重要。因而本帖给出借助GEO5弹性地基梁模块模拟计算的方法及龙门吊基础验算的一些关键公式。基本计算假设:①   轨道梁基础计算中不考虑轨道和基础的共同受力作用,忽略钢轨承载能力②   轨道梁基础按温克尔地基梁进行分析1 计算参数       龙门吊行走轨道基础采用钢筋混凝土条形基础,截面尺寸0.5x0.7m,基础材料采用c30混凝土,混凝土自重24 kN/m3,弹性模量Ec=30000MPa,使用过程中两台龙门吊之间最小净距为3m,作用于跨中的单轮轮压281.25kN(已考虑荷载分分项系数)。2 内力计算       采用GEO5弹性地基梁模块进行建模,输入上述关键参数。最终软件分析结果如下:(1)抗剪验算矩形梁截面:h/b=0.7/0.5=1.4<4,应满足:则 0.25*1.0*14.3x103*0.5*0.7=1251.25kN>153.25kN,满足要求(2)挠度验算采用叠加法计算根据规范,龙门吊轨道梁极限允许挠度应小于:满足要求3 地基承载力及配筋        地基承载力及配筋需要工程师自行计算,这里给出一个链接案例:《龙门吊基础轨道梁设计》https://www.doc88.com/p-10687514386541.html        计算方法和原理均比较简单,有需要的工程师可自行对照进行公式套用计算。       当采用优化的倒T型截面时,结构验算和上述案例中给定的公式有所区别,此时可参照《混凝土规范设计规范》中对正截面受弯承载力及斜截面受剪承载力进行配筋。  查看全部
       龙门吊作为大型起重吊装设备在工程中的应用是比较广泛的,龙门吊轨道基础的设计、受力及地基承载力的评估就显得尤为重要。因而本帖给出借助GEO5弹性地基梁模块模拟计算的方法及龙门吊基础验算的一些关键公式。基本计算假设:①   轨道梁基础计算中不考虑轨道和基础的共同受力作用,忽略钢轨承载能力②   轨道梁基础按温克尔地基梁进行分析1 计算参数       龙门吊行走轨道基础采用钢筋混凝土条形基础,截面尺寸0.5x0.7m,基础材料采用c30混凝土,混凝土自重24 kN/m3,弹性模量Ec=30000MPa,使用过程中两台龙门吊之间最小净距为3m,作用于跨中的单轮轮压281.25kN(已考虑荷载分分项系数)。2 内力计算       采用GEO5弹性地基梁模块进行建模,输入上述关键参数。最终软件分析结果如下:(1)抗剪验算矩形梁截面:h/b=0.7/0.5=1.4<4,应满足:则 0.25*1.0*14.3x103*0.5*0.7=1251.25kN>153.25kN,满足要求(2)挠度验算采用叠加法计算根据规范,龙门吊轨道梁极限允许挠度应小于:满足要求3 地基承载力及配筋        地基承载力及配筋需要工程师自行计算,这里给出一个链接案例:《龙门吊基础轨道梁设计》https://www.doc88.com/p-106875 ... sp%3B      计算方法和原理均比较简单,有需要的工程师可自行对照进行公式套用计算。       当采用优化的倒T型截面时,结构验算和上述案例中给定的公式有所区别,此时可参照《混凝土规范设计规范》中对正截面受弯承载力及斜截面受剪承载力进行配筋。 

某调蓄池边坡加固设计

库仑产品库仑赵 发表了文章 • 0 个评论 • 268 次浏览 • 2024-01-22 14:04 • 来自相关话题

一、   项目背景        拟建调蓄池,开挖深度3 m,用以满足30年一遇24小时设计暴雨时的蓄水要求。        场地地层自上而下分7个不同的单元层,具体为:①层杂填土(Qml)、②层淤泥(Q4l)、③层粉质黏土(Q4al)、④层淤泥质粘土(Q4l)、⑤层粉质黏土(Q4al)、⑥层淤泥质粘土(Q4l)、⑦粉质黏土(Q4al)。第①层杂填土:主要成份为素混凝土、粉质粘土、粉土,强度低,结构松散,工程性能差,全场分布。第②层淤泥:流塑,强度低,压缩性高,且具有触变性和流变性特点,易形成滑动面,工程性能差,全场分布。第③层粉质黏土:软塑,强度一般,压缩性中等,工程性能一般,全场分布。第④层淤泥质粘土:流塑,强度低,压缩性高,且具有触变性和流变性特点,易形成滑动面,工程性能差,稳定性差,全场分布。第⑤层粉质粘土:软塑,强度一般,压缩性中等,工程性能一般,全场分布。第⑥层淤泥质粘土:流塑,强度低,压缩性高,工程性能差,稳定性差,全场分布。第⑦层粉质粘土:呈可塑状态,承载力较高,压缩性中等,工程性能较好,部分孔揭露,层位相对稳定。       该调节池拟采用放坡开挖施工,设计为永久性边坡。二、设计方案考虑场地地质条件较差,边坡坡体及坡底以淤泥或软土为主,本永久性边坡拟采用1:4坡比放坡支护,采用GEO5计算发现该支护形式的安全系数不能满足规范要求。故采用水泥土墙在坑底对边坡进行加固,加固后边坡稳定安全系数大大提高。 三、 设计成果(1)分析1 :天然工况放坡稳定性(2)分析2:坑底加设水泥土墙四、总结       本项目为调蓄池永久边坡设计,采用放坡开挖施工。利用GEO5灵活多工况的特性,能够快速对天然工况及水泥土墙加固后稳定性进行评价,并对水泥土墙的深度和宽度进行经济性优化。 查看全部
一、   项目背景        拟建调蓄池,开挖深度3 m,用以满足30年一遇24小时设计暴雨时的蓄水要求。        场地地层自上而下分7个不同的单元层,具体为:①层杂填土(Qml)、②层淤泥(Q4l)、③层粉质黏土(Q4al)、④层淤泥质粘土(Q4l)、⑤层粉质黏土(Q4al)、⑥层淤泥质粘土(Q4l)、⑦粉质黏土(Q4al)。第①层杂填土:主要成份为素混凝土、粉质粘土、粉土,强度低,结构松散,工程性能差,全场分布。第②层淤泥:流塑,强度低,压缩性高,且具有触变性和流变性特点,易形成滑动面,工程性能差,全场分布。第③层粉质黏土:软塑,强度一般,压缩性中等,工程性能一般,全场分布。第④层淤泥质粘土:流塑,强度低,压缩性高,且具有触变性和流变性特点,易形成滑动面,工程性能差,稳定性差,全场分布。第⑤层粉质粘土:软塑,强度一般,压缩性中等,工程性能一般,全场分布。第⑥层淤泥质粘土:流塑,强度低,压缩性高,工程性能差,稳定性差,全场分布。第⑦层粉质粘土:呈可塑状态,承载力较高,压缩性中等,工程性能较好,部分孔揭露,层位相对稳定。       该调节池拟采用放坡开挖施工,设计为永久性边坡。二、设计方案考虑场地地质条件较差,边坡坡体及坡底以淤泥或软土为主,本永久性边坡拟采用1:4坡比放坡支护,采用GEO5计算发现该支护形式的安全系数不能满足规范要求。故采用水泥土墙在坑底对边坡进行加固,加固后边坡稳定安全系数大大提高。 三、 设计成果(1)分析1 :天然工况放坡稳定性(2)分析2:坑底加设水泥土墙四、总结       本项目为调蓄池永久边坡设计,采用放坡开挖施工。利用GEO5灵活多工况的特性,能够快速对天然工况及水泥土墙加固后稳定性进行评价,并对水泥土墙的深度和宽度进行经济性优化。

某矿山高边坡稳定性评价

库仑产品库仑赵 发表了文章 • 0 个评论 • 322 次浏览 • 2024-01-22 11:43 • 来自相关话题

一、项目背景        拟评价矿山所在勘查区水文地质条件属简单类型。勘查区岩体完整、稳定性好,但在勘查区南侧最高台阶后侧,发现一滑坡裂缝,裂缝错坎高0.5m-1.0m,裂缝长度约30m已被夯填,矿山目前开采形成边坡高陡,特别是南西侧顶部未完全按照开采设计方案进行开采,部分台阶形成的坡面坡度过大,易发生残积层滑坡。出于人员作业安全性及对经济财产的保护,需要对矿山高边坡进行稳定性评价工作。二、 稳定性评价方案       本次高边坡稳定性评价方案如下:(1)局部(残积层)稳定性评价,采用折减滑面     工况一:自重+地下水     工况二:自重+地下水+地震(2)整体稳定性评价,采用圆弧滑面     工况一:自重+地下水     工况二:自重+地下水+地震三、稳定性评价成果(1)局部(残积层)稳定性评价工况一:不考虑地震荷载,荷载组合Ⅰ:自重+地下水。工况二:考虑地震荷载,荷载组合Ⅲ:自重+地下水+地震,综合水平地震系数aw=0.0125,地震作用重要性系数:Ci=1.0。(2)整体稳定性评价工况一:不考虑地震荷载,荷载组合Ⅰ:自重+地下水  工况二:考虑地震荷载,荷载组合Ⅲ:自重+地下水+地震,综合水平地震系数aw=0.0125,地震作用重要性系数:Ci=1.0。四、总结       本项目为矿山高边坡稳定性评价,运用GEO5边坡稳定性分析模块能够快速建立模型及相应分析工况的荷载组合。并能够借助灵活多样的分析设置,实现浅层稳定性评价与整体稳定性评价快速切换。在分析时能够同时采用多种计算方法,对比差异的同时更能保障安全性。 查看全部
一、项目背景        拟评价矿山所在勘查区水文地质条件属简单类型。勘查区岩体完整、稳定性好,但在勘查区南侧最高台阶后侧,发现一滑坡裂缝,裂缝错坎高0.5m-1.0m,裂缝长度约30m已被夯填,矿山目前开采形成边坡高陡,特别是南西侧顶部未完全按照开采设计方案进行开采,部分台阶形成的坡面坡度过大,易发生残积层滑坡。出于人员作业安全性及对经济财产的保护,需要对矿山高边坡进行稳定性评价工作。二、 稳定性评价方案       本次高边坡稳定性评价方案如下:(1)局部(残积层)稳定性评价,采用折减滑面     工况一:自重+地下水     工况二:自重+地下水+地震(2)整体稳定性评价,采用圆弧滑面     工况一:自重+地下水     工况二:自重+地下水+地震三、稳定性评价成果(1)局部(残积层)稳定性评价工况一:不考虑地震荷载,荷载组合Ⅰ:自重+地下水。工况二:考虑地震荷载,荷载组合Ⅲ:自重+地下水+地震,综合水平地震系数aw=0.0125,地震作用重要性系数:Ci=1.0。(2)整体稳定性评价工况一:不考虑地震荷载,荷载组合Ⅰ:自重+地下水  工况二:考虑地震荷载,荷载组合Ⅲ:自重+地下水+地震,综合水平地震系数aw=0.0125,地震作用重要性系数:Ci=1.0。四、总结       本项目为矿山高边坡稳定性评价,运用GEO5边坡稳定性分析模块能够快速建立模型及相应分析工况的荷载组合。并能够借助灵活多样的分析设置,实现浅层稳定性评价与整体稳定性评价快速切换。在分析时能够同时采用多种计算方法,对比差异的同时更能保障安全性。

某河道基坑支护设计及分析

库仑产品库仑赵 发表了文章 • 0 个评论 • 298 次浏览 • 2024-01-22 11:32 • 来自相关话题

一、项目背景       拟建主体结构为一跨河桥梁,项目基坑工程主要针对桥梁范围及上游10m、下游10m进行河道疏挖时形成的基坑进行临时支护,局部需对桥梁桩基系梁开挖进行支护,基坑开挖深度约为4.4~9.4m,河道铺砌完成后形成永久河岸边坡。二、设计方案       本基坑采用的支护方案为:上部一级边坡采用1:2坡率放坡开挖,坡面采用挂网喷砼结合钢花管土钉进行护坡,下部二级坡采用1:1.45坡率土钉墙进行支护,局部桥梁桩基系梁处采用拉森钢板桩结合一道钢筋锚杆进行支护。基坑支护典型剖面图      三、 设计成果        对放坡河段选取典型剖面1-1’采用GEO5边坡稳定性模块进行验算 (毕肖普法(Bishop)),左侧安全系数=1.58 > 1.35,右侧安全系数=1.73 > 1.35边坡稳定性均满足要求。同时还可考虑河道水位变化对安全系数的影响。四、 数值分析       对部分开挖深度较深河段,采用拉森钢板桩结合一道钢筋锚杆支护,需要评估开挖对周围环境的影响。选取该路段典型剖面2-2’进行数值分析模拟。五、总结本项目为河道基坑临时支护设计,考虑多级放坡、河道水位变化、河道两岸超载的影响,部分河段采用拉森钢板桩结合一道钢筋锚杆支护的联合支挡形式。通过GEO5软件能够快速结合规范传统条分法和数值分析法的优势,形成理论互补。在满足规范稳定性评价的同时,又能够评价工程对周边环境变形、应力等方面的影响。 查看全部
一、项目背景       拟建主体结构为一跨河桥梁,项目基坑工程主要针对桥梁范围及上游10m、下游10m进行河道疏挖时形成的基坑进行临时支护,局部需对桥梁桩基系梁开挖进行支护,基坑开挖深度约为4.4~9.4m,河道铺砌完成后形成永久河岸边坡。二、设计方案       本基坑采用的支护方案为:上部一级边坡采用1:2坡率放坡开挖,坡面采用挂网喷砼结合钢花管土钉进行护坡,下部二级坡采用1:1.45坡率土钉墙进行支护,局部桥梁桩基系梁处采用拉森钢板桩结合一道钢筋锚杆进行支护。基坑支护典型剖面图      三、 设计成果        对放坡河段选取典型剖面1-1’采用GEO5边坡稳定性模块进行验算 (毕肖普法(Bishop)),左侧安全系数=1.58 > 1.35,右侧安全系数=1.73 > 1.35边坡稳定性均满足要求。同时还可考虑河道水位变化对安全系数的影响。四、 数值分析       对部分开挖深度较深河段,采用拉森钢板桩结合一道钢筋锚杆支护,需要评估开挖对周围环境的影响。选取该路段典型剖面2-2’进行数值分析模拟。五、总结本项目为河道基坑临时支护设计,考虑多级放坡、河道水位变化、河道两岸超载的影响,部分河段采用拉森钢板桩结合一道钢筋锚杆支护的联合支挡形式。通过GEO5软件能够快速结合规范传统条分法和数值分析法的优势,形成理论互补。在满足规范稳定性评价的同时,又能够评价工程对周边环境变形、应力等方面的影响。

桩基础水平变形限值——欧标&美标

岩土工程库仑赵 发表了文章 • 0 个评论 • 412 次浏览 • 2024-01-22 11:21 • 来自相关话题

       受水平荷载影响的桩基础一般会涉及水平变形的评价,在这里给出常见的欧标&美标的水平变形限值要求,方便工程师在海外项目中采用。本文中给出的是建议值,实际工程中仍需要根据工程要求、国家及地区相关规定对限值进行调整。1 美标      具体要求可参见《The Engineering of Foundations , Slopes and Retaining Structures -CRC Press》,如下图:2 欧标       欧标涉及的国家较多,这里给一个统领规范EN1997中的指导性值。 查看全部
       受水平荷载影响的桩基础一般会涉及水平变形的评价,在这里给出常见的欧标&美标的水平变形限值要求,方便工程师在海外项目中采用。本文中给出的是建议值,实际工程中仍需要根据工程要求、国家及地区相关规定对限值进行调整。1 美标      具体要求可参见《The Engineering of Foundations , Slopes and Retaining Structures -CRC Press》,如下图:2 欧标       欧标涉及的国家较多,这里给一个统领规范EN1997中的指导性值。

欧标——岩土作用、设计状况和设计方法介绍

库仑产品库仑赵 发表了文章 • 0 个评论 • 257 次浏览 • 2024-01-22 11:16 • 来自相关话题

        GEO5为广大海外工程用户提供了便利,降低了海外规范及工程应用的准入门槛。为更好地协助工程师使用软件,本文从欧标最基本层次上介绍欧标中的作用、设计状况和设计方法。部分内容因需要保持原始含义可能采用英文或中英对照,造成不必要篇幅敬请谅解。一、作用       欧标中的作用类型及规定可以参照EN1990,在这里可以给出一个大致的划分表格:       在GEO5软件中根据上述分类进行作用类型的选择,软件界面如下:二、设计状况        欧标中设计状况及取用可以参照EN1990 1.5.2.2,其具体说明如下:持久设计状况——最常用的设计状况,适用于结构使用时的正常情况。当需要验算结构在设计使用年限内的安全性时,采用该设计状况。短暂设计状况——适用于结构出现的临时情况,包括结构施工和维修时的情况等。通常,该设计状况对安全性的要求要低于持久设计状况。偶然设计状况——适用于结构出现的异常情况,包括结构遭受火灾、爆炸、撞击时的情况等。通常,该设计状况下的分项系数等于1。地震设计状况——适用于结构遭受地震时的情况,在抗震设防地区必须考虑地震设计状况。该设计状况看上去和偶然设计状况很像,但是相较于偶然设计状况,地震设计状况要求更高的安全性。在某些国家,对地震设计状况安全性的要求甚至和持久设计状况一样。       在GEO5软件中根据上述设计状况进行选择,软件界面如下:三、设计方法3.1方法分类      欧标中设计方法具体说明如下:(1)DA1       设计方法1采用两套分项系数分别对结构安全性进行验算(荷载组合1和荷载组合2)。荷载组合1,只设置作用的分项系数,其他分项系数均默认为1.0。对于荷载组合2,只设置材料性能(岩土体参数)的分项系数和可变作用的分项系数,其他分项系数均默认为1.0。进行分析时,应同时对两种不同的荷载组合进行验算,选择二者中最不利结果。(2)DA2        设计方法2采用的分项系数种类为作用的分项系数和抗力的分项系数(结构承载力)。(3)DA3        设计方法3采用的分项系数种类为作用的分项系数和材料性能的分项系数(岩土体参数)。不同于其他的设计方法,设计方法3将作用分为岩土作用State GEO(由岩土体引起的作用,例如,土压力、超载引起的土压力增量、地下水作用)和结构作用State STR(结构自重、作用在结构上的输入作用力、锚杆、加筋材料、悬挑钢丝)。       在GEO5软件中根据上述设计状况进行选择,软件界面如下: 查看全部
        GEO5为广大海外工程用户提供了便利,降低了海外规范及工程应用的准入门槛。为更好地协助工程师使用软件,本文从欧标最基本层次上介绍欧标中的作用、设计状况和设计方法。部分内容因需要保持原始含义可能采用英文或中英对照,造成不必要篇幅敬请谅解。一、作用       欧标中的作用类型及规定可以参照EN1990,在这里可以给出一个大致的划分表格:       在GEO5软件中根据上述分类进行作用类型的选择,软件界面如下:二、设计状况        欧标中设计状况及取用可以参照EN1990 1.5.2.2,其具体说明如下:持久设计状况——最常用的设计状况,适用于结构使用时的正常情况。当需要验算结构在设计使用年限内的安全性时,采用该设计状况。短暂设计状况——适用于结构出现的临时情况,包括结构施工和维修时的情况等。通常,该设计状况对安全性的要求要低于持久设计状况。偶然设计状况——适用于结构出现的异常情况,包括结构遭受火灾、爆炸、撞击时的情况等。通常,该设计状况下的分项系数等于1。地震设计状况——适用于结构遭受地震时的情况,在抗震设防地区必须考虑地震设计状况。该设计状况看上去和偶然设计状况很像,但是相较于偶然设计状况,地震设计状况要求更高的安全性。在某些国家,对地震设计状况安全性的要求甚至和持久设计状况一样。       在GEO5软件中根据上述设计状况进行选择,软件界面如下:三、设计方法3.1方法分类      欧标中设计方法具体说明如下:(1)DA1       设计方法1采用两套分项系数分别对结构安全性进行验算(荷载组合1和荷载组合2)。荷载组合1,只设置作用的分项系数,其他分项系数均默认为1.0。对于荷载组合2,只设置材料性能(岩土体参数)的分项系数和可变作用的分项系数,其他分项系数均默认为1.0。进行分析时,应同时对两种不同的荷载组合进行验算,选择二者中最不利结果。(2)DA2        设计方法2采用的分项系数种类为作用的分项系数和抗力的分项系数(结构承载力)。(3)DA3        设计方法3采用的分项系数种类为作用的分项系数和材料性能的分项系数(岩土体参数)。不同于其他的设计方法,设计方法3将作用分为岩土作用State GEO(由岩土体引起的作用,例如,土压力、超载引起的土压力增量、地下水作用)和结构作用State STR(结构自重、作用在结构上的输入作用力、锚杆、加筋材料、悬挑钢丝)。       在GEO5软件中根据上述设计状况进行选择,软件界面如下:

美标桩基规范及原理

岩土工程库仑赵 发表了文章 • 0 个评论 • 272 次浏览 • 2024-01-22 11:09 • 来自相关话题

       目前国内越来越多实力雄厚的设计研究院开始走出国门承接海外工程。桩基是海外工程中常见的设计方向,为方便广大海外项目用户更快熟悉欧标和美标相关规范关于桩基的相关理论。此次原理说明采用类比法,从工程师熟悉的中国规范方法类比到美标,掌握其中的异同点,以帮助工程师更快理解。部分重要参考文献列表如下:中国规范:《建筑桩基技术规范 JGJ 94-2008》《地基基础设计规范》附录R美标:NAVFAC DM 7.2, Foundation and Earth Structures, U.S. Department of the Navy 1984FHWA-NHI-16009Design and Construction of Driven Pile Foundation—volume I, Chapter7The Foundation Engineering Book, Chapter 6         一般规范主要由计算方法和验算方法两部分构成。对桩基规范来说,计算方法指承载力、沉降等计算方法(本次主要以解析法为主,不涉及弹性法内容);验算方法指安全系数法、分项系数法等。一、计算方法1、单桩(1)中国规范       中国规范桩基竖向承载力核心原理是:总承载力=桩侧承载力+桩端承载力。在《建筑桩基技术规范 JGJ 94-2008》中给出的计算公式如下:     拆分理解:       桩侧承载力=桩侧承载力参数*桩周长*有效侧阻桩长       桩端承载力=桩端承载力参数*桩端面积       在中国规范经验参数法中,桩侧承载力参数和桩端承载力参数由地区经验参数给出。如果采用静力触探等原位测试时,桩侧承载力参数和桩端承载力参数通常由原位测试值*修正系数得到。(2)美标       其核心原理同样是:总承载力=桩端承载力+桩侧承载力。拆分同样可以表达成:      桩侧承载力=桩侧承载力参数*桩周长*有效侧阻桩长      桩端承载力=桩端承载力参数*桩端面积       但和中国规范的区别在于桩侧承载力参数和桩端承载力参数的计算方式,美标大多数方法采用计算点位置处有效自重应力(无粘性土)或不排水强度(粘性土)乘以相应的端承或侧摩擦修正系数。这里以美标里面比较常用的NAVFAC DM 7.2 为例:1)桩侧承载力计算①对无粘性土:②对粘性土:2)桩端承载力计算①对无粘性土:②对粘性土:        以上便是美标计算方法的原理,其他如α,β,λ法均和此方法类似,均是用有效自重应力(无粘性土)或不排水强度(粘性土)乘以相应的端承或侧摩擦修正系数计算桩侧承载力参数和桩端承载力参数,但修正系数的表达形式略有不同,有兴趣的工程师可以自行了解。2、群桩(1)承载力计算1)中国规范      在计算群桩承载力时,将上部力平均至各个桩记为Nk,然后和Rg对比2)美标       由以上公式可见,相对于中国规范,美标在计算群桩承载力时多了一项修正系数,即群桩效应系数,其具体含义如下:(2)沉降1)中国规范2)美标       美标常用的方法和地基规范附录R中等代实体法一致,但是其扩散起始点不同。中国规范从承台底开始扩散,角度为φ/4;但是美标自承台低以下2L/3处开始扩散,角度为固定角度如下图:二、验算方法       通常情况下桩基的验算均采用安全系数法,美标也是如此。但如果监理要求美标计算情况下要采用分项系数法时,设计状况和分项系数如下所示:(1)Strength limit state(2)Service I Limit State         以上便是美标桩基规范基本原理,编者水平有限,有错误请随时指正。想要了解更多深入内容或结合GEO5的软件操作,请加入GEO5海外规范交流群:QQ273013644 查看全部
       目前国内越来越多实力雄厚的设计研究院开始走出国门承接海外工程。桩基是海外工程中常见的设计方向,为方便广大海外项目用户更快熟悉欧标和美标相关规范关于桩基的相关理论。此次原理说明采用类比法,从工程师熟悉的中国规范方法类比到美标,掌握其中的异同点,以帮助工程师更快理解。部分重要参考文献列表如下:中国规范:《建筑桩基技术规范 JGJ 94-2008》《地基基础设计规范》附录R美标:NAVFAC DM 7.2, Foundation and Earth Structures, U.S. Department of the Navy 1984FHWA-NHI-16009Design and Construction of Driven Pile Foundation—volume I, Chapter7The Foundation Engineering Book, Chapter 6         一般规范主要由计算方法和验算方法两部分构成。对桩基规范来说,计算方法指承载力、沉降等计算方法(本次主要以解析法为主,不涉及弹性法内容);验算方法指安全系数法、分项系数法等。一、计算方法1、单桩(1)中国规范       中国规范桩基竖向承载力核心原理是:总承载力=桩侧承载力+桩端承载力。在《建筑桩基技术规范 JGJ 94-2008》中给出的计算公式如下:     拆分理解:       桩侧承载力=桩侧承载力参数*桩周长*有效侧阻桩长       桩端承载力=桩端承载力参数*桩端面积       在中国规范经验参数法中,桩侧承载力参数和桩端承载力参数由地区经验参数给出。如果采用静力触探等原位测试时,桩侧承载力参数和桩端承载力参数通常由原位测试值*修正系数得到。(2)美标       其核心原理同样是:总承载力=桩端承载力+桩侧承载力。拆分同样可以表达成:      桩侧承载力=桩侧承载力参数*桩周长*有效侧阻桩长      桩端承载力=桩端承载力参数*桩端面积       但和中国规范的区别在于桩侧承载力参数和桩端承载力参数的计算方式,美标大多数方法采用计算点位置处有效自重应力(无粘性土)或不排水强度(粘性土)乘以相应的端承或侧摩擦修正系数。这里以美标里面比较常用的NAVFAC DM 7.2 为例:1)桩侧承载力计算①对无粘性土:②对粘性土:2)桩端承载力计算①对无粘性土:②对粘性土:        以上便是美标计算方法的原理,其他如α,β,λ法均和此方法类似,均是用有效自重应力(无粘性土)或不排水强度(粘性土)乘以相应的端承或侧摩擦修正系数计算桩侧承载力参数和桩端承载力参数,但修正系数的表达形式略有不同,有兴趣的工程师可以自行了解。2、群桩(1)承载力计算1)中国规范      在计算群桩承载力时,将上部力平均至各个桩记为Nk,然后和Rg对比2)美标       由以上公式可见,相对于中国规范,美标在计算群桩承载力时多了一项修正系数,即群桩效应系数,其具体含义如下:(2)沉降1)中国规范2)美标       美标常用的方法和地基规范附录R中等代实体法一致,但是其扩散起始点不同。中国规范从承台底开始扩散,角度为φ/4;但是美标自承台低以下2L/3处开始扩散,角度为固定角度如下图:二、验算方法       通常情况下桩基的验算均采用安全系数法,美标也是如此。但如果监理要求美标计算情况下要采用分项系数法时,设计状况和分项系数如下所示:(1)Strength limit state(2)Service I Limit State         以上便是美标桩基规范基本原理,编者水平有限,有错误请随时指正。想要了解更多深入内容或结合GEO5的软件操作,请加入GEO5海外规范交流群:QQ273013644

基础沉降要求——欧标&美标

库仑产品库仑赵 发表了文章 • 0 个评论 • 210 次浏览 • 2024-01-22 10:50 • 来自相关话题

       很多工程师在使用GEO5海外规范时,对应具体项目的沉降分析结果缺少评估依据。在这里为了方便广大工程师的使用,整理了欧标和美标的沉降基本要求。以下内容仅供参考,实际工程中需要按照项目实际需求及区域标准相关要求进行调整。1 美标1.1 浅基础       美标浅基础的沉降限值可参考《Foundation Engineering Handbook》中的汇总表格,与中国《地基基础设计规范》类似,美标浅基础的沉降要求是根据上部结构类型进行分类的。具体如下表:1.2 深基础     美标深基础沉降要求可参见FHWA-16-009,内容节选如下:      还可参见《Geotechnical Engineering Handbook》一书中5.18节:2 欧标2.1 浅基础    欧标由于国家规范众多,这里无法一一列举,仅给出EN1997-1统领规范中附录H的要求,在进行具体项目实施时,仍需要根据国家、地区及项目实际要求进行调整。2.2 深基础 查看全部
       很多工程师在使用GEO5海外规范时,对应具体项目的沉降分析结果缺少评估依据。在这里为了方便广大工程师的使用,整理了欧标和美标的沉降基本要求。以下内容仅供参考,实际工程中需要按照项目实际需求及区域标准相关要求进行调整。1 美标1.1 浅基础       美标浅基础的沉降限值可参考《Foundation Engineering Handbook》中的汇总表格,与中国《地基基础设计规范》类似,美标浅基础的沉降要求是根据上部结构类型进行分类的。具体如下表:1.2 深基础     美标深基础沉降要求可参见FHWA-16-009,内容节选如下:      还可参见《Geotechnical Engineering Handbook》一书中5.18节:2 欧标2.1 浅基础    欧标由于国家规范众多,这里无法一一列举,仅给出EN1997-1统领规范中附录H的要求,在进行具体项目实施时,仍需要根据国家、地区及项目实际要求进行调整。2.2 深基础

(法标)基坑分析部分关键问题回复

库仑产品库仑赵 发表了文章 • 0 个评论 • 226 次浏览 • 2024-01-22 10:41 • 来自相关话题

1、技术支持途径       关于GEO5海外项目相关技术支持请加入 QQ群273013644 2、水平反力系数计算方法选择       在软件中内置两种方法,分别为Menard(梅纳)法 和法标NF P 94-282法。就意味着在法国规范中这两种方法均可以采用。以下为说明:截图自《Eurocode 7 – Application aux écrans de soutènement (NF P94-282)》      关于这两个方法具体理论可参见GEO5帮助文档,内含中文翻译。3、关于内支撑两侧条件不对称     内支撑计算公式为        如果两侧不同,按照最不利情况考虑。4、关于欧标被动区反力修正说明       http://www.wen.kulunsoft.com/article/4225、SMW隔二缺1设置情况下尺寸参数输入      例如上图所示的支护结构,在输入间距的时候输入 a/2 ,剩下参数按照单个工字钢进行填写。 查看全部
1、技术支持途径       关于GEO5海外项目相关技术支持请加入 QQ群273013644 2、水平反力系数计算方法选择       在软件中内置两种方法,分别为Menard(梅纳)法 和法标NF P 94-282法。就意味着在法国规范中这两种方法均可以采用。以下为说明:截图自《Eurocode 7 – Application aux écrans de soutènement (NF P94-282)》      关于这两个方法具体理论可参见GEO5帮助文档,内含中文翻译。3、关于内支撑两侧条件不对称     内支撑计算公式为        如果两侧不同,按照最不利情况考虑。4、关于欧标被动区反力修正说明       http://www.wen.kulunsoft.com/article/4225、SMW隔二缺1设置情况下尺寸参数输入      例如上图所示的支护结构,在输入间距的时候输入 a/2 ,剩下参数按照单个工字钢进行填写。

GEO5多点位差异性沉降快速评估

库仑产品库仑赵 发表了文章 • 0 个评论 • 209 次浏览 • 2024-01-22 10:12 • 来自相关话题

        实际工程中,沉降评估时通常需要多个点位的计算,有时还需要进行沉降差异性的对比。但传统岩土软件采用经典分层总和法进行沉降计算时仅能计算单个点位,多点位时需要重复建模及参数输入,这就导致效率低下且充斥着大量无意义的重复工作。针对这个问题,GEO5采用了优化的分层总和法,在不脱离规范计算方法的同时,优化计算模式,实现了多点位沉降同时计算。      下面通过一个线性工程案例来展示多点位沉降计算的过程:(1)首先绘制线性工程的剖面图(2)将剖面导入GEO5【地基固结沉降分析】模块中(3)选择合适的沉降计算方法,并补充相应计算方法所需的计算参数(4)定义场地荷载、填方、挖方等(5)进行沉降计算①填方1结果②填方2结果         以上便是多点位沉降分析的基本过程及最终的结果图,在最终的计算书中会给出整体沉降的极值(最大值、最小值),以及各个点位的沉降,并能够非常便利地实现多工况模拟。如果场地涉及较复杂的地基处理措施,在进行沉降评估时请参照案例贴:http://www.wen.kulunsoft.com/article/675 查看全部
        实际工程中,沉降评估时通常需要多个点位的计算,有时还需要进行沉降差异性的对比。但传统岩土软件采用经典分层总和法进行沉降计算时仅能计算单个点位,多点位时需要重复建模及参数输入,这就导致效率低下且充斥着大量无意义的重复工作。针对这个问题,GEO5采用了优化的分层总和法,在不脱离规范计算方法的同时,优化计算模式,实现了多点位沉降同时计算。      下面通过一个线性工程案例来展示多点位沉降计算的过程:(1)首先绘制线性工程的剖面图(2)将剖面导入GEO5【地基固结沉降分析】模块中(3)选择合适的沉降计算方法,并补充相应计算方法所需的计算参数(4)定义场地荷载、填方、挖方等(5)进行沉降计算①填方1结果②填方2结果         以上便是多点位沉降分析的基本过程及最终的结果图,在最终的计算书中会给出整体沉降的极值(最大值、最小值),以及各个点位的沉降,并能够非常便利地实现多工况模拟。如果场地涉及较复杂的地基处理措施,在进行沉降评估时请参照案例贴:http://www.wen.kulunsoft.com/article/675

GEO5拟静力法分析爆破工况

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 325 次浏览 • 2024-01-09 14:29 • 来自相关话题

       近期有多位工程师咨询在GEO5当中如何模拟爆破工况,如果是采用拟静力法考虑爆破振动力,可以通过GEO5地震荷载中自定义水平地震系数的方法实现,本文将简述分析过程。1. 计算原理       根据《非煤露天矿边坡工程技术规范》(GB 51016-2014)附录D.2的说明,边坡稳定计算时,考虑爆破振动力,各条快的水平爆破力按下列公式计算式中:Fi’—第i条块爆破振动力的水平向等效静力(kN);Wi—第i条块的重量;βi—第i条块爆破力系数,可取0.1~0.3;ai—第i条块爆破振动质点水平向最大加速度(m/s2);g—重力加速度(m/s2);f—振动爆破频率(Hz);Vi—第i条块重心处质点向振动速度(cm/s);Q—爆破装药量,分段延时爆破时取最大一段的装药量(kg);Ri—爆破区药量分布的几何中心至观测点的距离;K、α—与采场地质条件、岩体性质、爆破条件等有关的系数,由振动检测和测试数据获取。2. 案例分析       某砂岩矿边坡坡高55m,根据初步设计,矿山采用分段逐孔起爆,最大一段(单孔)用药量为56.3kg,按《爆破安全规程》(GB6722-2014)取振动爆破频率为20Hz。爆破区药量分布的几何中心至观测点的综合距离取值为90m。参考《爆破安全规程》13.2.4参数建议值说明,K取150,α取1.5。爆破区不同岩性的K,α取值建议根据以上参数,另外βi取0.12,计算得到       打开GEO5土坡模块,建好模型后,将0.02直接输入到地震分析当中进行计算。       以上即为GEO5当中模拟爆破工况分析的方法,文中提到的两本规范电子版可点击下载:GB 51016-2014 非煤露天矿边坡工程技术规范.pdf爆破安全规程GB6722-2014.pdf 查看全部
       近期有多位工程师咨询在GEO5当中如何模拟爆破工况,如果是采用拟静力法考虑爆破振动力,可以通过GEO5地震荷载中自定义水平地震系数的方法实现,本文将简述分析过程。1. 计算原理       根据《非煤露天矿边坡工程技术规范》(GB 51016-2014)附录D.2的说明,边坡稳定计算时,考虑爆破振动力,各条快的水平爆破力按下列公式计算式中:Fi’—第i条块爆破振动力的水平向等效静力(kN);Wi—第i条块的重量;βi—第i条块爆破力系数,可取0.1~0.3;ai—第i条块爆破振动质点水平向最大加速度(m/s2);g—重力加速度(m/s2);f—振动爆破频率(Hz);Vi—第i条块重心处质点向振动速度(cm/s);Q—爆破装药量,分段延时爆破时取最大一段的装药量(kg);Ri—爆破区药量分布的几何中心至观测点的距离;K、α—与采场地质条件、岩体性质、爆破条件等有关的系数,由振动检测和测试数据获取。2. 案例分析       某砂岩矿边坡坡高55m,根据初步设计,矿山采用分段逐孔起爆,最大一段(单孔)用药量为56.3kg,按《爆破安全规程》(GB6722-2014)取振动爆破频率为20Hz。爆破区药量分布的几何中心至观测点的综合距离取值为90m。参考《爆破安全规程》13.2.4参数建议值说明,K取150,α取1.5。爆破区不同岩性的K,α取值建议根据以上参数,另外βi取0.12,计算得到       打开GEO5土坡模块,建好模型后,将0.02直接输入到地震分析当中进行计算。       以上即为GEO5当中模拟爆破工况分析的方法,文中提到的两本规范电子版可点击下载:GB 51016-2014 非煤露天矿边坡工程技术规范.pdf爆破安全规程GB6722-2014.pdf

GEO5边坡治理阻滑键应用说明

库仑产品库仑赵 发表了文章 • 0 个评论 • 344 次浏览 • 2023-11-03 09:33 • 来自相关话题

       在浅层完整顺层滑坡中,有时可采用节约材料、造价更低的阻滑键进行治理。在这里介绍一下阻滑键的计算原理以及在GEO5中应用方法。1、阻滑键的计算原理       参见《边坡与滑坡工程治理》(第二版)郑颖人、陈祖煜、王恭先等 一书9.5.1条内容。顺滑动方向所需的阻滑键根数:          式中:        n——顺滑动方向阻滑键的根数;        E——滑坡推力,kN/m;        L——阻滑键垂直滑动方向的间距,m;       D——阻滑键的直径,m;        τ——阻滑键的抗剪强度,kPa。      将上式变换形式可得:       变换后可以比较容易地理解阻滑键的原理,即顺滑动方向上一个桩距范围内所有阻滑键的抗剪力与滑坡推力的平衡。2、阻滑键在GEO5中的设置        在GEO5中,阻滑键可以直接用多排微型桩的模型进行计算,在桩参数输入时,可以直接输入单根桩的抗剪力,即上述原理中的 πD2τ/4。       在设置完多排阻滑键后,可形成如下计算模型:        用上述模型可以评估加上阻滑键后的稳定性系数,当然也可以验算滑坡是否会从键顶或键底形成新的不稳定滑面。        完成边坡稳定性验算后,可以直接在边坡模块调用GE5O抗滑桩模块,进行抗滑键的变形和结构方面的验算。 查看全部
       在浅层完整顺层滑坡中,有时可采用节约材料、造价更低的阻滑键进行治理。在这里介绍一下阻滑键的计算原理以及在GEO5中应用方法。1、阻滑键的计算原理       参见《边坡与滑坡工程治理》(第二版)郑颖人、陈祖煜、王恭先等 一书9.5.1条内容。顺滑动方向所需的阻滑键根数:          式中:        n——顺滑动方向阻滑键的根数;        E——滑坡推力,kN/m;        L——阻滑键垂直滑动方向的间距,m;       D——阻滑键的直径,m;        τ——阻滑键的抗剪强度,kPa。      将上式变换形式可得:       变换后可以比较容易地理解阻滑键的原理,即顺滑动方向上一个桩距范围内所有阻滑键的抗剪力与滑坡推力的平衡。2、阻滑键在GEO5中的设置        在GEO5中,阻滑键可以直接用多排微型桩的模型进行计算,在桩参数输入时,可以直接输入单根桩的抗剪力,即上述原理中的 πD2τ/4。       在设置完多排阻滑键后,可形成如下计算模型:        用上述模型可以评估加上阻滑键后的稳定性系数,当然也可以验算滑坡是否会从键顶或键底形成新的不稳定滑面。        完成边坡稳定性验算后,可以直接在边坡模块调用GE5O抗滑桩模块,进行抗滑键的变形和结构方面的验算。

GEO5某灰厂稳定性评价

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 419 次浏览 • 2023-10-17 11:17 • 来自相关话题

使用模块:GEO5土坡稳定性分析一、  项目背景       某排土场斜坡表面堆积土体较为松散,排土场边坡整体处于稳定状态,坡度较陡地段存在局部失稳的现象。局部失稳出现在现场实测剖面2处,表现为边坡顶部边缘浅层的土体滑落,土体滑落宽度约45m,高度约15m,坡向301°,坡顶边缘处的最大坡度约35°。       现场调查发现,排土场斜坡表面堆积土体较为松散,在降雨的冲刷及坡顶雨水汇集的作用下,坡面多处存在冲刷沟槽。其中,发育范围最大的一处冲刷沟槽位于排土场东坡,坡高约55m,坡度37°,坡向106°,冲刷沟槽长度约90m,最大宽度8m~10m,最大切割深度10m~12m。二、场地岩土材料①弃渣       本次勘察过程中,在弃渣层共进行了70m的重型圆锥动力触探试验。动探数据显示变异系数达到0.98,说明回填的密实度很不均匀,回填时间短,欠固结,回填时未进行碾压,主要呈松散~稍密状态,局部呈中密~密实状态。坝体、坝基经过碾压后变异系数在0.172,整体夯实后较均匀,稍密状态。      根据本次勘察及前期勘察资料,并结合该区域的建筑经验综合推荐本层土的地基承载力特征值fak=100kPa~200kPa,内聚力标准值Ck=6~10kPa,内摩擦角标准值Фk=30°~33°,渗透系数k>2.0×10-1cm/s。       碾压后的坝体承载力特征值fak可达180kPa,内摩擦角标准值Фk=33°,变形模量为16MPa。       筑坝材料为排土场土料,即煤矿剥离的石渣料(碎石料),该石渣料储量很大,足以满足本期10m高的筑灰坝要求。②粉质黏土       黄褐色、灰褐色,以可塑状态为主。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=6击。       本层取土3件,物理力学性质指标平均值如下:       天然含水量为28.1%,天然孔隙比为0.824,重度为18.8kN/m3,饱和度为92.8%,液限为34.3%,塑限为20.8%,塑性指数为13.5,液性指数为0.54;直剪试验:内摩擦角为18.9°,内聚力为19.8kPa,压缩系数a1-2为0.38MPa-1,压缩模量为5.1MPa。属可塑状态中等压缩性土。       根据该层土的物理力学性质指标,并结合已有资料及标准贯入试验击数(N=6),综合推荐本层土的地基承载力特征值fak=150kPa。③黏土       可塑~硬塑状态,分布在泥岩、泥质砂岩顶部,为基岩风化形成的残积土层。本次勘测中,在该层进行了3次标准贯入试验,经修正后的锤击数(平均值)N=11击。       根据当地建筑经验及该层土的标准贯入试验击数(N=11),综合推荐本层土的地基承载力特征值fak=220kPa。④泥岩       本层以泥岩为主,部分地段夹泥质砂岩层,勘察范围内呈全风化状态。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=22击。根据当地建筑经验及该层土的标准贯入试验击数(N=22),综合推荐本层土的地基承载力特征值fak=260KPa。       岩土材料指标如下:三、分析工况       根据《火力发电厂干式贮灰场设计规程》(DL/T 5488-2014)中的相关条文,坝体应进行沉降计算、抗滑稳定计算,抗震设防烈度为7度及以上地区的坝体应进行抗震分析,必要时考虑渗流的影响。本工程场地地震基本烈度为6度,因此不考虑地震的影响,非正常条件下仅考虑暴雨的影响。       各工况抗滑稳定安全系数应按表1的规定确定,干灰场抗滑稳定的计算按照正常运行条件、非正常运行条件以及考虑贮灰、暴雨作用划分了不同的计算工况组合。(详见表2)表1  平原干灰场挡灰堤设计标准       根据可行性研究报告,灰场总容积约为1.3×107m3。根据表2平原干灰场挡灰堤设计标准,确定灰堤的设计等级应为二级。内、外坡正常运行条件下抗滑稳定安全系数K均为1.15,非常运行条件抗滑稳定安全系数K为1.00。       本项目无需考虑渗流和调洪水位,故对坝体、排土场原始边坡、排土场+坝体进行正常运行条件和考虑暴雨的非常运行条件下的稳定性计算与分析。(见表2)表2  干灰场边坡抗滑稳定计算工况表四、稳定性分析工况1:排土场+未贮灰       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa =10754.03 kN/m滑面上抗滑力的总和 :  Fp = 26536.15  kN/m下滑力矩 : Ma = 2276413.66  kNm/m抗滑力矩 : Mp = 5617171.42  kNm/m安全系数 = 2.47 > 1.15。排土场边坡在此工况下满足稳定性要求。工况2:排土场+贮灰       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 11986.31 kN/m滑面上抗滑力的总和 :  Fp = 29521.04 kN/m下滑力矩 : Ma = 2746662.31  kNm/m抗滑力矩 : Mp = 6764746.44  kNm/m安全系数 = 2.46 > 1.15。排土场边坡在此工况下满足稳定性要求。工况3:排土场+未贮灰+暴雨       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 11472.25 kN/m滑面上抗滑力的总和 :  Fp = 23401.98 kN/m下滑力矩 : Ma = 2428445.61  kNm/m抗滑力矩 : Mp = 4953731.64  kNm/m安全系数 = 2.04 > 1.00。排土场边坡在此工况下满足稳定性要求。工况4:排土场+贮灰+暴雨       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 12806.02 kN/m滑面上抗滑力的总和 :  Fp = 26057.66 kN/m下滑力矩 : Ma = 2934499.20  kNm/m抗滑力矩 : Mp = 5971113.16  kNm/m安全系数 = 2.03 > 1.00。排土场边坡在此工况下满足稳定性要求。五、 总结        按照规范要求,灰厂稳定性涉及多工况分析,通过GEO5软件建模,不需要多工况重复建模,在一个文件中即可实现不同工况的验算,操作方便快捷,也便于计算源文件的管理。 查看全部
使用模块:GEO5土坡稳定性分析一、  项目背景       某排土场斜坡表面堆积土体较为松散,排土场边坡整体处于稳定状态,坡度较陡地段存在局部失稳的现象。局部失稳出现在现场实测剖面2处,表现为边坡顶部边缘浅层的土体滑落,土体滑落宽度约45m,高度约15m,坡向301°,坡顶边缘处的最大坡度约35°。       现场调查发现,排土场斜坡表面堆积土体较为松散,在降雨的冲刷及坡顶雨水汇集的作用下,坡面多处存在冲刷沟槽。其中,发育范围最大的一处冲刷沟槽位于排土场东坡,坡高约55m,坡度37°,坡向106°,冲刷沟槽长度约90m,最大宽度8m~10m,最大切割深度10m~12m。二、场地岩土材料①弃渣       本次勘察过程中,在弃渣层共进行了70m的重型圆锥动力触探试验。动探数据显示变异系数达到0.98,说明回填的密实度很不均匀,回填时间短,欠固结,回填时未进行碾压,主要呈松散~稍密状态,局部呈中密~密实状态。坝体、坝基经过碾压后变异系数在0.172,整体夯实后较均匀,稍密状态。      根据本次勘察及前期勘察资料,并结合该区域的建筑经验综合推荐本层土的地基承载力特征值fak=100kPa~200kPa,内聚力标准值Ck=6~10kPa,内摩擦角标准值Фk=30°~33°,渗透系数k>2.0×10-1cm/s。       碾压后的坝体承载力特征值fak可达180kPa,内摩擦角标准值Фk=33°,变形模量为16MPa。       筑坝材料为排土场土料,即煤矿剥离的石渣料(碎石料),该石渣料储量很大,足以满足本期10m高的筑灰坝要求。②粉质黏土       黄褐色、灰褐色,以可塑状态为主。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=6击。       本层取土3件,物理力学性质指标平均值如下:       天然含水量为28.1%,天然孔隙比为0.824,重度为18.8kN/m3,饱和度为92.8%,液限为34.3%,塑限为20.8%,塑性指数为13.5,液性指数为0.54;直剪试验:内摩擦角为18.9°,内聚力为19.8kPa,压缩系数a1-2为0.38MPa-1,压缩模量为5.1MPa。属可塑状态中等压缩性土。       根据该层土的物理力学性质指标,并结合已有资料及标准贯入试验击数(N=6),综合推荐本层土的地基承载力特征值fak=150kPa。③黏土       可塑~硬塑状态,分布在泥岩、泥质砂岩顶部,为基岩风化形成的残积土层。本次勘测中,在该层进行了3次标准贯入试验,经修正后的锤击数(平均值)N=11击。       根据当地建筑经验及该层土的标准贯入试验击数(N=11),综合推荐本层土的地基承载力特征值fak=220kPa。④泥岩       本层以泥岩为主,部分地段夹泥质砂岩层,勘察范围内呈全风化状态。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=22击。根据当地建筑经验及该层土的标准贯入试验击数(N=22),综合推荐本层土的地基承载力特征值fak=260KPa。       岩土材料指标如下:三、分析工况       根据《火力发电厂干式贮灰场设计规程》(DL/T 5488-2014)中的相关条文,坝体应进行沉降计算、抗滑稳定计算,抗震设防烈度为7度及以上地区的坝体应进行抗震分析,必要时考虑渗流的影响。本工程场地地震基本烈度为6度,因此不考虑地震的影响,非正常条件下仅考虑暴雨的影响。       各工况抗滑稳定安全系数应按表1的规定确定,干灰场抗滑稳定的计算按照正常运行条件、非正常运行条件以及考虑贮灰、暴雨作用划分了不同的计算工况组合。(详见表2)表1  平原干灰场挡灰堤设计标准       根据可行性研究报告,灰场总容积约为1.3×107m3。根据表2平原干灰场挡灰堤设计标准,确定灰堤的设计等级应为二级。内、外坡正常运行条件下抗滑稳定安全系数K均为1.15,非常运行条件抗滑稳定安全系数K为1.00。       本项目无需考虑渗流和调洪水位,故对坝体、排土场原始边坡、排土场+坝体进行正常运行条件和考虑暴雨的非常运行条件下的稳定性计算与分析。(见表2)表2  干灰场边坡抗滑稳定计算工况表四、稳定性分析工况1:排土场+未贮灰       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa =10754.03 kN/m滑面上抗滑力的总和 :  Fp = 26536.15  kN/m下滑力矩 : Ma = 2276413.66  kNm/m抗滑力矩 : Mp = 5617171.42  kNm/m安全系数 = 2.47 > 1.15。排土场边坡在此工况下满足稳定性要求。工况2:排土场+贮灰       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 11986.31 kN/m滑面上抗滑力的总和 :  Fp = 29521.04 kN/m下滑力矩 : Ma = 2746662.31  kNm/m抗滑力矩 : Mp = 6764746.44  kNm/m安全系数 = 2.46 > 1.15。排土场边坡在此工况下满足稳定性要求。工况3:排土场+未贮灰+暴雨       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 11472.25 kN/m滑面上抗滑力的总和 :  Fp = 23401.98 kN/m下滑力矩 : Ma = 2428445.61  kNm/m抗滑力矩 : Mp = 4953731.64  kNm/m安全系数 = 2.04 > 1.00。排土场边坡在此工况下满足稳定性要求。工况4:排土场+贮灰+暴雨       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 12806.02 kN/m滑面上抗滑力的总和 :  Fp = 26057.66 kN/m下滑力矩 : Ma = 2934499.20  kNm/m抗滑力矩 : Mp = 5971113.16  kNm/m安全系数 = 2.03 > 1.00。排土场边坡在此工况下满足稳定性要求。五、 总结        按照规范要求,灰厂稳定性涉及多工况分析,通过GEO5软件建模,不需要多工况重复建模,在一个文件中即可实现不同工况的验算,操作方便快捷,也便于计算源文件的管理。

GEO5东北某中学实验楼挡土墙设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 440 次浏览 • 2023-10-17 11:07 • 来自相关话题

使用模块:GEO5悬臂式挡土墙设计一、项目背景       本加固设计服务范围为东北某中学实验楼北侧西段挡土墙,挡墙上部建有换热站,换热站为单层砖混结构,梭形钢屋架,槽板屋盖,现为使用状态;挡土墙南侧距离学校实验楼2.7m左右。挡土墙总长度约25.0m。既有挡土墙为毛石挡土墙,挡土墙表面勾缝已基本脱落,毛石间砂浆已基本无粘结强度,砂土从石缝间流出,局部有块石脱落现象,挡墙中部外鼓约200mm,该段挡土墙处于极限平衡状态。       毛石挡土墙一般采用锚杆格构式加固、增加墙体厚度加固、墙后注浆加固等方式,虽然每种方案均具有一定的优势,但也有自身的缺陷。本工程因为对噪声的控制严格、且墙底施工空间狭小、墙顶无施工空间,故,上述加固方案均难以实施。       为保证学校学生的正常学习生活,宜选用施工噪声较小的加固方案,且要兼顾施工作业面狭小的因素,故采用墙前扶壁式挡土墙对既有毛石挡土墙进行加固。二、场地环境条件      为了解挡土墙场地地质条件,现场布设了3个钻孔,1#、2#勘察孔布置于挡土墙底,3#勘察孔布置于墙顶以外3.5m处。其中1#孔:0~0.90m为杂填土,0.9~1.70m为中风化砂岩砂岩。2#孔:0~2.60m为杂填土,2.60~3.50m为碎石土,3.50~3.80m为中风化砂岩。3#孔:0~3.10m为杂填土,3.10~3.80m为硬可塑粉质黏土,3.80~4.70m为全风化砂岩,4.70m~5.50m为强风化砂岩,5.50~5.90m为中风化砂岩。       本区属季节性冻胀区,标准冻结深度为1.20m,最大冻深1.49m。标准冻结深度范围内①杂填土应按具有冻胀性考虑,冻胀类别属弱冻胀,冻胀等级为II级;②粉质粘土,冻胀类别属强冻胀性,冻胀等级为III级。       场地基本烈度7度,抗震设防烈度为7度。设计基本地震加速度值0.10g,特征周期为0.35s。设计地震分组为第一组,建筑场地类别为Ⅱ类。三、设计方案       采用墙前扶壁式挡土墙设计,对既有毛石挡土墙中的砂浆层风化严重,扶壁式挡土墙施工前应将毛石挡土墙中破碎砂浆层剔除后并采用高压水枪冲洗,然后用M15砂浆对缝隙填充密实;待砂浆达到设计强度的75%后,方可进行新增扶壁式挡土墙的施工。挡土墙加固立面展开图挡土墙加固剖面图                1-1剖面挡土墙立板及底板配筋图             2-2 剖面挡土墙立板及底板配筋图3-3 剖面挡土墙立板及扶壁配筋图四、设计成果分析验算       采用南京库仑GEO5岩土设计分析软件,对墙前扶壁式挡墙进行计算,挡墙倾覆滑移稳定性,承载能力,截面强度验算及整体稳定性均满足要求。墙前扶壁悬臂式挡墙模型地基承载能力验算结果截面强度验算结果外部稳定性验算结果五、施工效果       病害挡土墙加固前及加固后的现场照片。      六、总结       现行的岩土设计软件,多数无法进行墙前扶壁式挡土墙的设计计算,但是南京库仑GEO5的悬臂式挡土墙设计模块有这个模型,而且操作简单,试算结果和预估结果大致吻合。       项目竣工后,经历了下半年的雨季及冬季的考验,挡土墙未发生变形,保证了墙顶锅炉房、墙底实验楼的安全,确保了供暖公司的正常运营和学校的学习生活,达到了良好的加固效果,证明了本墙前扶壁式加固毛石挡土墙方案选型的正确,为挡土墙加固提供了实践经验,同时也验证了GEO5软件的准确性和可靠性。 查看全部
使用模块:GEO5悬臂式挡土墙设计一、项目背景       本加固设计服务范围为东北某中学实验楼北侧西段挡土墙,挡墙上部建有换热站,换热站为单层砖混结构,梭形钢屋架,槽板屋盖,现为使用状态;挡土墙南侧距离学校实验楼2.7m左右。挡土墙总长度约25.0m。既有挡土墙为毛石挡土墙,挡土墙表面勾缝已基本脱落,毛石间砂浆已基本无粘结强度,砂土从石缝间流出,局部有块石脱落现象,挡墙中部外鼓约200mm,该段挡土墙处于极限平衡状态。       毛石挡土墙一般采用锚杆格构式加固、增加墙体厚度加固、墙后注浆加固等方式,虽然每种方案均具有一定的优势,但也有自身的缺陷。本工程因为对噪声的控制严格、且墙底施工空间狭小、墙顶无施工空间,故,上述加固方案均难以实施。       为保证学校学生的正常学习生活,宜选用施工噪声较小的加固方案,且要兼顾施工作业面狭小的因素,故采用墙前扶壁式挡土墙对既有毛石挡土墙进行加固。二、场地环境条件      为了解挡土墙场地地质条件,现场布设了3个钻孔,1#、2#勘察孔布置于挡土墙底,3#勘察孔布置于墙顶以外3.5m处。其中1#孔:0~0.90m为杂填土,0.9~1.70m为中风化砂岩砂岩。2#孔:0~2.60m为杂填土,2.60~3.50m为碎石土,3.50~3.80m为中风化砂岩。3#孔:0~3.10m为杂填土,3.10~3.80m为硬可塑粉质黏土,3.80~4.70m为全风化砂岩,4.70m~5.50m为强风化砂岩,5.50~5.90m为中风化砂岩。       本区属季节性冻胀区,标准冻结深度为1.20m,最大冻深1.49m。标准冻结深度范围内①杂填土应按具有冻胀性考虑,冻胀类别属弱冻胀,冻胀等级为II级;②粉质粘土,冻胀类别属强冻胀性,冻胀等级为III级。       场地基本烈度7度,抗震设防烈度为7度。设计基本地震加速度值0.10g,特征周期为0.35s。设计地震分组为第一组,建筑场地类别为Ⅱ类。三、设计方案       采用墙前扶壁式挡土墙设计,对既有毛石挡土墙中的砂浆层风化严重,扶壁式挡土墙施工前应将毛石挡土墙中破碎砂浆层剔除后并采用高压水枪冲洗,然后用M15砂浆对缝隙填充密实;待砂浆达到设计强度的75%后,方可进行新增扶壁式挡土墙的施工。挡土墙加固立面展开图挡土墙加固剖面图                1-1剖面挡土墙立板及底板配筋图             2-2 剖面挡土墙立板及底板配筋图3-3 剖面挡土墙立板及扶壁配筋图四、设计成果分析验算       采用南京库仑GEO5岩土设计分析软件,对墙前扶壁式挡墙进行计算,挡墙倾覆滑移稳定性,承载能力,截面强度验算及整体稳定性均满足要求。墙前扶壁悬臂式挡墙模型地基承载能力验算结果截面强度验算结果外部稳定性验算结果五、施工效果       病害挡土墙加固前及加固后的现场照片。      六、总结       现行的岩土设计软件,多数无法进行墙前扶壁式挡土墙的设计计算,但是南京库仑GEO5的悬臂式挡土墙设计模块有这个模型,而且操作简单,试算结果和预估结果大致吻合。       项目竣工后,经历了下半年的雨季及冬季的考验,挡土墙未发生变形,保证了墙顶锅炉房、墙底实验楼的安全,确保了供暖公司的正常运营和学校的学习生活,达到了良好的加固效果,证明了本墙前扶壁式加固毛石挡土墙方案选型的正确,为挡土墙加固提供了实践经验,同时也验证了GEO5软件的准确性和可靠性。

GEO5某水库库岸边坡支护设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 472 次浏览 • 2023-10-17 10:58 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、GEO5抗滑桩设计一、  项目背景       拟建项目为道路边坡支护工程。道路北侧为拟建水库,规划水库岸坡距离道路路肩最近约8.38m,岸坡建成后标高为108.5m,坡比为1:4;为施工水库,K0+740~K1+007 段已进行放坡开挖;该段道路路肩标高为117.7~118.6m。       支护范围:K0+660~K1+007临湖侧(道路北侧)       边坡高度:10~12m       地质条件:将勘探深度范围内的地层划分为5个工程地质层,自上而下分别为:①素填土(Q4ml),平均厚度为2.48m;②粉质粘土(Q4al+pl)可塑,局部分布,平均厚度为5.01m;③粉质粘土(Q4al+pl)场地均有分布,平均厚度为6.59m;④强风化泥质砂岩(K2z)岩体破碎,属极软岩,岩体基本质量等级为Ⅴ级,平均厚度为3.89m;⑤中风化泥质砂岩(K2z),岩体较完整,属极软岩,岩体基本质量等级为Ⅴ级       特殊要求:道路边坡支护结构不侵占库岸边线       安全等级:一级二、设计方案       综合考虑地质、环境、边坡高度等诸方面因素,本着“安全可靠,经济合理,技术可行,方便施工”的原则,临湖侧边坡采用桩板墙方案:桩顶4m进行1:1放坡,坡体采用加筋格栅加固,坡面进行生态绿化;抗滑桩桩径1.4m,间距3m,桩长18m,进入中风化泥质砂岩层。边坡支护平面图边坡支护典型剖面图三、设计成果分析       采用GEO5边坡稳定性验算 (毕肖普法(Bishop))结果显示:安全系数 = 1.48 > 1.35 边坡稳定性满足要求。       抗滑桩验算结果显示:最大位移53.2mm;岩石地基横向承载力满足要求;弯矩最大值=1221.20kNm/m, 剪力最大值= 262.71kN/m,主筋为32根直径28mm,剪力筋为直径10mm,间距200mm。四、总结       该项目为库岸边坡治理设计,分析过程考虑库水位、坡顶超载的影响,支护设计采用抗滑桩+加筋土的联合支挡形式。通过GEO5软件能快速实现建模计算,方便工程师对设计方案进行评估和验证。 查看全部
使用模块:GEO5土质边坡稳定性分析、GEO5抗滑桩设计一、  项目背景       拟建项目为道路边坡支护工程。道路北侧为拟建水库,规划水库岸坡距离道路路肩最近约8.38m,岸坡建成后标高为108.5m,坡比为1:4;为施工水库,K0+740~K1+007 段已进行放坡开挖;该段道路路肩标高为117.7~118.6m。       支护范围:K0+660~K1+007临湖侧(道路北侧)       边坡高度:10~12m       地质条件:将勘探深度范围内的地层划分为5个工程地质层,自上而下分别为:①素填土(Q4ml),平均厚度为2.48m;②粉质粘土(Q4al+pl)可塑,局部分布,平均厚度为5.01m;③粉质粘土(Q4al+pl)场地均有分布,平均厚度为6.59m;④强风化泥质砂岩(K2z)岩体破碎,属极软岩,岩体基本质量等级为Ⅴ级,平均厚度为3.89m;⑤中风化泥质砂岩(K2z),岩体较完整,属极软岩,岩体基本质量等级为Ⅴ级       特殊要求:道路边坡支护结构不侵占库岸边线       安全等级:一级二、设计方案       综合考虑地质、环境、边坡高度等诸方面因素,本着“安全可靠,经济合理,技术可行,方便施工”的原则,临湖侧边坡采用桩板墙方案:桩顶4m进行1:1放坡,坡体采用加筋格栅加固,坡面进行生态绿化;抗滑桩桩径1.4m,间距3m,桩长18m,进入中风化泥质砂岩层。边坡支护平面图边坡支护典型剖面图三、设计成果分析       采用GEO5边坡稳定性验算 (毕肖普法(Bishop))结果显示:安全系数 = 1.48 > 1.35 边坡稳定性满足要求。       抗滑桩验算结果显示:最大位移53.2mm;岩石地基横向承载力满足要求;弯矩最大值=1221.20kNm/m, 剪力最大值= 262.71kN/m,主筋为32根直径28mm,剪力筋为直径10mm,间距200mm。四、总结       该项目为库岸边坡治理设计,分析过程考虑库水位、坡顶超载的影响,支护设计采用抗滑桩+加筋土的联合支挡形式。通过GEO5软件能快速实现建模计算,方便工程师对设计方案进行评估和验证。

GEO5西南某房建工程高填方加筋土治理设计

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 462 次浏览 • 2023-10-17 10:07 • 来自相关话题

使用模块:GEO5加筋土式挡土墙、土质边坡稳定性分析一、  项目背景       项目位于西南某地级市,由重庆永固设计并提供现场服务。拟建建筑结构类型为框支剪力墙结构,属民用建筑。场地原始地面为第四系均匀的中软土、软弱土,属Ⅱ类建筑场地,建筑抗震设防烈度为6度,设计地震分组为第一组,为建筑抗震一般地段。根据《建筑边坡工程技术规范》(GB50330-2013)相关规定,边坡工程安全性等级为一级。       拟建挡墙位于一期和二期建筑合围形成的中庭坡地上,一、二期正负零高差近25米,长约120m。挡墙须结合园林景观、水景和步道建设,形成多平台且通过人行步道相互联通的具有层次感的支护结构。经业主多方对比,最终选择桩基+4阶加筋土挡墙的解决方案。场地周边情况2-2剖面工程地质剖面图二、加筋土挡墙立面和剖面设计1、挡土墙立面设计方案。       因挡墙底部临近一期地下室建筑,为保证安全先采用抗滑桩支护,后采用整体墙面加筋土挡墙进行支挡,挡墙分为4阶,台阶高程分别为:423.80、427.60、433.60,墙顶设计高程439.60,台阶宽度3-10米不等,墙面垂直。台阶间设置人行步道相通,423.8高程台阶设置搭板与一期车库顶相连。挡墙西北端与抗滑桩相接、东南端与现状山体相接。2、加筋土挡墙剖面设计方案。       此次涉及挡墙结合本项目地形及相关构造要求,拟设计为第1阶挡墙高4.0米,第2阶挡墙高3.8米,第3阶挡墙高6.0米,第4阶挡墙高6.0米,每阶挡墙的加筋材料长度采用等长断面设计,加筋材料层间距0.4米,每阶底部设置水平碎石排水层。三、加筋土挡墙计算       设计采用南京库仑岩土GEO5软件计算。项目设计合理使用年限为50年,场地地震按烈度6度,不考虑地震荷载作用。一级边坡设计一般工况下稳定安全系数Fs≥1.35。墙顶荷载考虑35KPa,加筋结构回填区填料参数Φd=35.0°,C=0 kPa,γ=18 KN/m3;加筋区后填土参数 Φ=25.0°,C=0 kPa,γ=18 KN/m3,挡墙基础置于中风化基岩和桩基之上。加筋土挡墙抗倾覆、滑移、加筋材料抗拉抗拔及整体稳定计算结果如下:      四、加筋土挡墙的构造要求       1、加筋材料。加筋材料采用整体钢塑土工格栅,整体钢塑土工格栅采用整体成型工艺,钢塑复合材质,肋带的主要受力元件为条带内的高强冷拔钢丝,蠕变极小;经抗老化处理的聚乙烯保护层,具有耐酸、碱、盐腐蚀的化学特性,破断伸长率小,强度高;条带交叉交点结点分离力要求大于500N。设计力学及物理尺寸指标必须满足交通行业标准《公路工程土工合成材料 土工格栅 第1部分:钢塑格栅》(JT/T925.1-2014)的要求。本项目采用材料规格及技术指标如下:       2、加筋结构回填区填料。要求采用现场开挖的碎石类土回填,综合内摩擦角不小于35度,与加筋材料接触部分的填料不允许有尖锐的棱角以避免损伤加筋材料。填料分层碾压,加筋体区域内及加筋体以外压实度均要求不小于93%。       3、加筋土挡墙墙面。墙面采用整体钢塑土工格栅反包袋碎石装体,回填同时预埋锚杆钢筋,后浇钢筋混凝土防护。碎石袋装体在永久墙面形成后作为墙面反滤层使用。       4、加筋土挡墙基础和压顶要求采用现浇C30钢筋混凝土。       5、加筋土挡墙在墙面、墙面后方、台阶处及加筋体后方须采取防水、排水措施,防止挡墙积水。五、现场施工场景和效果六、总结       针对高填方支挡项目,重庆永固已为全国大部分省市房地产、水利、公路、市政、铁路、矿山等工程建设提供了产品及工程服务,积累了大量工程实践经验。       加筋土技术作为一种新的技术,近年来也有了长足的进步,成为高填方支挡结构的最佳解决方案。GEO5不仅能计算单阶直立的加筋土挡墙,还能计算分阶带面坡的加筋土挡墙和陡坡,给设计人员的工作带来了极大的方便。 查看全部
使用模块:GEO5加筋土式挡土墙、土质边坡稳定性分析一、  项目背景       项目位于西南某地级市,由重庆永固设计并提供现场服务。拟建建筑结构类型为框支剪力墙结构,属民用建筑。场地原始地面为第四系均匀的中软土、软弱土,属Ⅱ类建筑场地,建筑抗震设防烈度为6度,设计地震分组为第一组,为建筑抗震一般地段。根据《建筑边坡工程技术规范》(GB50330-2013)相关规定,边坡工程安全性等级为一级。       拟建挡墙位于一期和二期建筑合围形成的中庭坡地上,一、二期正负零高差近25米,长约120m。挡墙须结合园林景观、水景和步道建设,形成多平台且通过人行步道相互联通的具有层次感的支护结构。经业主多方对比,最终选择桩基+4阶加筋土挡墙的解决方案。场地周边情况2-2剖面工程地质剖面图二、加筋土挡墙立面和剖面设计1、挡土墙立面设计方案。       因挡墙底部临近一期地下室建筑,为保证安全先采用抗滑桩支护,后采用整体墙面加筋土挡墙进行支挡,挡墙分为4阶,台阶高程分别为:423.80、427.60、433.60,墙顶设计高程439.60,台阶宽度3-10米不等,墙面垂直。台阶间设置人行步道相通,423.8高程台阶设置搭板与一期车库顶相连。挡墙西北端与抗滑桩相接、东南端与现状山体相接。2、加筋土挡墙剖面设计方案。       此次涉及挡墙结合本项目地形及相关构造要求,拟设计为第1阶挡墙高4.0米,第2阶挡墙高3.8米,第3阶挡墙高6.0米,第4阶挡墙高6.0米,每阶挡墙的加筋材料长度采用等长断面设计,加筋材料层间距0.4米,每阶底部设置水平碎石排水层。三、加筋土挡墙计算       设计采用南京库仑岩土GEO5软件计算。项目设计合理使用年限为50年,场地地震按烈度6度,不考虑地震荷载作用。一级边坡设计一般工况下稳定安全系数Fs≥1.35。墙顶荷载考虑35KPa,加筋结构回填区填料参数Φd=35.0°,C=0 kPa,γ=18 KN/m3;加筋区后填土参数 Φ=25.0°,C=0 kPa,γ=18 KN/m3,挡墙基础置于中风化基岩和桩基之上。加筋土挡墙抗倾覆、滑移、加筋材料抗拉抗拔及整体稳定计算结果如下:      四、加筋土挡墙的构造要求       1、加筋材料。加筋材料采用整体钢塑土工格栅,整体钢塑土工格栅采用整体成型工艺,钢塑复合材质,肋带的主要受力元件为条带内的高强冷拔钢丝,蠕变极小;经抗老化处理的聚乙烯保护层,具有耐酸、碱、盐腐蚀的化学特性,破断伸长率小,强度高;条带交叉交点结点分离力要求大于500N。设计力学及物理尺寸指标必须满足交通行业标准《公路工程土工合成材料 土工格栅 第1部分:钢塑格栅》(JT/T925.1-2014)的要求。本项目采用材料规格及技术指标如下:       2、加筋结构回填区填料。要求采用现场开挖的碎石类土回填,综合内摩擦角不小于35度,与加筋材料接触部分的填料不允许有尖锐的棱角以避免损伤加筋材料。填料分层碾压,加筋体区域内及加筋体以外压实度均要求不小于93%。       3、加筋土挡墙墙面。墙面采用整体钢塑土工格栅反包袋碎石装体,回填同时预埋锚杆钢筋,后浇钢筋混凝土防护。碎石袋装体在永久墙面形成后作为墙面反滤层使用。       4、加筋土挡墙基础和压顶要求采用现浇C30钢筋混凝土。       5、加筋土挡墙在墙面、墙面后方、台阶处及加筋体后方须采取防水、排水措施,防止挡墙积水。五、现场施工场景和效果六、总结       针对高填方支挡项目,重庆永固已为全国大部分省市房地产、水利、公路、市政、铁路、矿山等工程建设提供了产品及工程服务,积累了大量工程实践经验。       加筋土技术作为一种新的技术,近年来也有了长足的进步,成为高填方支挡结构的最佳解决方案。GEO5不仅能计算单阶直立的加筋土挡墙,还能计算分阶带面坡的加筋土挡墙和陡坡,给设计人员的工作带来了极大的方便。