有限元稳定流分析错误

库仑沈工 回答了问题 • 2 人关注 • 1 个回答 • 64 次浏览 • 2 天前 • 来自相关话题

GEO5岩土工程有限元分析稳定渗流分析后无法计算地下水位

库仑张崇波 回答了问题 • 2 人关注 • 1 个回答 • 76 次浏览 • 2020-03-17 14:39 • 来自相关话题

GEO5水位骤降边坡稳定性分析方法

库仑张崇波 发表了文章 • 0 个评论 • 51 次浏览 • 2020-03-13 16:33 • 来自相关话题

       GEO5土坡模块可以分析考虑水位骤降下的边坡稳定性,但在实际的使用中,有工程师反映不知道该怎么使用,也有人说输入了地下水之后边坡安全系数并没有发生改变,十分困惑,所以本文将对GEO5中分析水位骤降的方法进行详细说明。1、注意事项       无论是分析水位骤降下边坡稳定性,还是一般情况下分析有地下水位的边坡稳定性,都需要注意的是在岩土材料输入的时候选择有效应力法进行计算,只有选择了有效应力法,软件才会考虑孔隙水压力对条块的作用。如果选择了总应力法或者总应力ccu,φcu,软件都不会考虑坡内地下水位对边坡的影响,但坡外水位的有利作用软件还是会考虑。有效应力法和总应力法不同选择的区别可以查看GEO5中有效应力法、总应力法,水土分算、水土合算的说明。2、传统分析方法       传统分析水位骤降的方法是通过设置初始地下水位和水位骤降后的地下水位面来分析,最简单的做法是认为坡内的水来不及排出,那么水位骤降后坡内的水位保持不变,只改变坡外的静水面,随着水位的下降,边坡安全系数将逐渐降低。       在GEO5土坡模块中,选择【地下水】中的类型为“水位骤降”,可以直接定义边坡的初始地下水位和骤降后的地下水位:       定义完成后,和一般的边坡计算一样直接进行分析即可。下图展示的是相同的初始地下水位,不同水位骤降情况的边坡安全系数。3、结合GEO5中的初始孔压折减系数分析       传统的考虑坡内水来不及排出的方法实际上是一种偏保守的方法,因为水位骤降其实也是有一个过程的,那么坡内的水或多或少都会渗出坡外,如果是对于渗透性较好的土体,那么坡内的水位还会有明显的下降,但是针对这个问题,再去使用非稳定流分析浸润线就会显得有点麻烦。所以,GEO5通过巧妙地设置初始孔压折减系数X这样一个值,使得我们可以去考虑有水排出的情况。       当我们在【地下水】中选择的地下水类型为“水位骤降”时,需要在【岩土材料】中输入初始孔压折减系数的值:这里X的取值范围为[0,1],当土体完全透水时X=1,完全不透水时X=0,其他情况介于0和1之间,X值的作用原理可查看GEO5的帮助文档,或者直接点击GEO5土坡模块中地下水类型。       这里需要对三种情况的取值进一步说明:(1)X=1       X=1意味着土体完全透水,它的实际意义是:不考虑骤降后的水位与初始水位之间土体的孔隙水压力,所以X=1时,坡内不同的地下水位面会得到不同的结果。(2)X=0       X=0意味着土体完全不透水,它的实际意义是:认为骤降后的水位与初始水位之间土体仍然处于饱和状态,所以X=0时,坡内不同的地下水位面会得到相同的结果。(3)0 查看全部
       GEO5土坡模块可以分析考虑水位骤降下的边坡稳定性,但在实际的使用中,有工程师反映不知道该怎么使用,也有人说输入了地下水之后边坡安全系数并没有发生改变,十分困惑,所以本文将对GEO5中分析水位骤降的方法进行详细说明。1、注意事项       无论是分析水位骤降下边坡稳定性,还是一般情况下分析有地下水位的边坡稳定性,都需要注意的是在岩土材料输入的时候选择有效应力法进行计算,只有选择了有效应力法,软件才会考虑孔隙水压力对条块的作用。如果选择了总应力法或者总应力ccu,φcu,软件都不会考虑坡内地下水位对边坡的影响,但坡外水位的有利作用软件还是会考虑。有效应力法和总应力法不同选择的区别可以查看GEO5中有效应力法、总应力法,水土分算、水土合算的说明。2、传统分析方法       传统分析水位骤降的方法是通过设置初始地下水位和水位骤降后的地下水位面来分析,最简单的做法是认为坡内的水来不及排出,那么水位骤降后坡内的水位保持不变,只改变坡外的静水面,随着水位的下降,边坡安全系数将逐渐降低。       在GEO5土坡模块中,选择【地下水】中的类型为“水位骤降”,可以直接定义边坡的初始地下水位和骤降后的地下水位:       定义完成后,和一般的边坡计算一样直接进行分析即可。下图展示的是相同的初始地下水位,不同水位骤降情况的边坡安全系数。3、结合GEO5中的初始孔压折减系数分析       传统的考虑坡内水来不及排出的方法实际上是一种偏保守的方法,因为水位骤降其实也是有一个过程的,那么坡内的水或多或少都会渗出坡外,如果是对于渗透性较好的土体,那么坡内的水位还会有明显的下降,但是针对这个问题,再去使用非稳定流分析浸润线就会显得有点麻烦。所以,GEO5通过巧妙地设置初始孔压折减系数X这样一个值,使得我们可以去考虑有水排出的情况。       当我们在【地下水】中选择的地下水类型为“水位骤降”时,需要在【岩土材料】中输入初始孔压折减系数的值:这里X的取值范围为[0,1],当土体完全透水时X=1,完全不透水时X=0,其他情况介于0和1之间,X值的作用原理可查看GEO5的帮助文档,或者直接点击GEO5土坡模块中地下水类型。       这里需要对三种情况的取值进一步说明:(1)X=1       X=1意味着土体完全透水,它的实际意义是:不考虑骤降后的水位与初始水位之间土体的孔隙水压力,所以X=1时,坡内不同的地下水位面会得到不同的结果。(2)X=0       X=0意味着土体完全不透水,它的实际意义是:认为骤降后的水位与初始水位之间土体仍然处于饱和状态,所以X=0时,坡内不同的地下水位面会得到相同的结果。(3)0<X<1       0<X<1其实模拟的是真实的情况,即水位骤降后考虑部分水的排出,既不是完全透水也不是完全不透水,在相同水位条件下,边坡安全系数将位于X=0和X=1之间。       至于X如何取值,则需要根据实际岩土材料的渗透性以及水位骤降的速度和阶段综合选取。另外,通过以上分析,我们也不难发现,如果采用传统的通过控制坡内水位面不变化的方法来分析,那么X值无论设置为多少,对最终结果都没有影响。

怎么在optum G3实现这个批处理

库仑张崇波 回答了问题 • 2 人关注 • 1 个回答 • 46 次浏览 • 2020-03-10 16:21 • 来自相关话题

GEO5深基坑预留土堤盆式开挖计算介绍

库仑刘工 发表了文章 • 0 个评论 • 61 次浏览 • 2020-03-07 23:17 • 来自相关话题

概述:GEO5可以设计计算桩前预留土堤,进行盆式开挖的深基坑。有不少工程师朋友可能都试用过该功能,但是由于没有详细去了解软件对这种情况的计算原理,有时会出现一些与预期不太一样的结果。导致一些工程师朋友使用软件设计时,只是用软件做一个辅助验算,出一个计算书。针对这种情况,非常有必要对软件的计算原理做一个详细的说明。视频讲解部分:基坑盆式开挖设计计算1. 悬臂式结构土压力计算首先我们先看一下规范里面关于基坑支护结构的计算原理图。基坑外侧土压力计算采用,主动土压力(一般利用库仑土压力公式进行计算)。基坑内侧的土压力,不再使用被动土压力,而是利用竖向温克尔弹性地基梁进行迭代计算土反力。图1 悬臂式结构土反力p由弹簧刚度k和变形得到;弹簧刚度与水平反力系数m(K、c)和桩前土体埋深决定。岩土材料确定之后,m是个定值,当做常量考虑,弹簧刚度仅与埋深有关(z-h)。图2 基坑开挖示意图这里h为当前工况的基坑开挖深度,z为土层计算点到地面的距离,z-h即为桩前土体的埋深。随着开挖进行,开挖深度加深,弹簧刚度会变小,土反力调整,位移调整,结构内力调整。根据施工情况进行分步开挖分析,土反力就会随之调整,这也是规范里推荐使用增量法进行设计的原因所在。2. 土反力最大值图3 土体分步开挖主动土压力大小不变,随着开挖加深,弹簧范围和大小都在减小,弹簧为提供足够的抗力,需要有足够大的变形。但土体(弹簧)变形又不能无限增大,那么土体最大位移为多少时,土体会破坏?直接通过土体变形来判断土体是否能破坏,是很难实现的。那么我们应该怎么判断土体破坏呢?我们可以换一个思路——用土反力和极限土压力进行对比,来判断土体变形是否可控。岩土体是弹塑性的,土体变形到一定程度,就会进入塑形状态,这时候,变形继续增加,土反力却不会继续增大。土反力最大值不应大于被动土压力,大过被动土压力,土体就超出临界状态,会产生破坏。综上,由变形与弹簧刚度计算的土反力,最大值不应大于被动土压力。当土反力不大于被动土压力时,应取实际计算值;当土反力大于被动土压力时,即土体进入塑形变形区时,应对土反力进行调整。调整方法介绍如下。3. 土体塑形变形时土反力取值图4 土压力和位移(弹性)该图是深基坑分析模块分析结果图,绿色虚线代表经典土压力(极限土压力),蓝色实线代表土反力。相同条件下,作用在挡土构件上的土压力,被动土压力>静止土压力>主动土压力。同一深度下,最外侧绿线是被动土压力,最内侧绿线为主动土压力,中间绿线为静止土压力。蓝色的线为土反力,即真实土压力。真实土压力大小,应介于主动土压力与被动土压力之间。图5 土压力和位移(弹塑性)随着开挖深度加深,会导致计算土反力继续增大,土体进入塑形状态,这时按p=ky计算土压力,会导致计算土反力超过被动土压力,这不符合土体规律。软件在这个时候会有一个调整(如图红色线框标注位置)。软件比较计算土反力,与被动土压力的大小。当该单元的土反力大于被动土压力的时,会用该单元范围内的被动土压力代替土反力,进行下一次迭代,直到所有单元的土反力都不大于被动土压力为止。图中红框标注位置,被动土压力线与土压力线重合。4. 盆式开挖土压力计算图6 盆式开挖桩后土体依然使用土压力,桩前土体依然使用土弹簧计算,比较土弹簧与被动土压力的大小。难点在于预留土堤之后,土弹簧和被动土压力应该如何考虑,我们不妨先看一下桩前土体的被动土压力的变化。与水平开挖相比,如果盆式开挖范围在破裂面以外,那么不必考虑被动土压力变化;开挖范围在破裂面内时,则需要考虑被动土压力的减小。这里被动土压力计算,需要联合使用图解法和解析法,具体计算可以参考土力学教程中特殊土压力计算。预留土堤部分的土弹簧,依然按正常土体取值(土弹簧刚度与岩土材料和埋深有关)计算土反力。这时需要考虑的一个问题就是,预留土堤能否像水平土层那样提供那么大的土反力,如何判断,标准是什么。判断标准依然是土反力与被动土压力的大小。假如土反力小于被动土压力力,那么 计算土压力取土反力;假如土反力大于被动土压力,那么就将土反力调整为被动土压力。注意,这里提到的被动土压力是考虑了盆式开挖之后的被动土压力。这样就确保了预留土提部分的土反力计算是合理的。5. 盆式开挖预留土堤注意事项(1)假如预留土堤部分,计算出来大范围都进入塑性变形,即土反力与被动土压力线重合,那么需要考虑,是否开挖过大,或者预留土堤宽度过窄。(2)预留土堤部分,需验证边坡是否稳定,可以调用外部稳定性验算,用限制搜索,完成桩前边坡的验算。(3)当预留土堤宽开挖计算结果与未进行盆式开挖相比几乎没有变化时,说明预留土堤宽度已经足够大了。我们也可以通过调整预留土堤宽度,找到临界值。如果变形、塑性变形、土堤边坡稳定性都能满足要求时,我们可以认为预留土堤形状是合适的。(4)上海市基坑工程技术规范DGTJ08-61-2010对盆式开挖有一些要求,这里贴出来以供参考。 查看全部
概述:GEO5可以设计计算桩前预留土堤,进行盆式开挖的深基坑。有不少工程师朋友可能都试用过该功能,但是由于没有详细去了解软件对这种情况的计算原理,有时会出现一些与预期不太一样的结果。导致一些工程师朋友使用软件设计时,只是用软件做一个辅助验算,出一个计算书。针对这种情况,非常有必要对软件的计算原理做一个详细的说明。视频讲解部分:基坑盆式开挖设计计算1. 悬臂式结构土压力计算首先我们先看一下规范里面关于基坑支护结构的计算原理图。基坑外侧土压力计算采用,主动土压力(一般利用库仑土压力公式进行计算)。基坑内侧的土压力,不再使用被动土压力,而是利用竖向温克尔弹性地基梁进行迭代计算土反力。图1 悬臂式结构土反力p由弹簧刚度k和变形得到;弹簧刚度与水平反力系数m(K、c)和桩前土体埋深决定。岩土材料确定之后,m是个定值,当做常量考虑,弹簧刚度仅与埋深有关(z-h)。图2 基坑开挖示意图这里h为当前工况的基坑开挖深度,z为土层计算点到地面的距离,z-h即为桩前土体的埋深。随着开挖进行,开挖深度加深,弹簧刚度会变小,土反力调整,位移调整,结构内力调整。根据施工情况进行分步开挖分析,土反力就会随之调整,这也是规范里推荐使用增量法进行设计的原因所在。2. 土反力最大值图3 土体分步开挖主动土压力大小不变,随着开挖加深,弹簧范围和大小都在减小,弹簧为提供足够的抗力,需要有足够大的变形。但土体(弹簧)变形又不能无限增大,那么土体最大位移为多少时,土体会破坏?直接通过土体变形来判断土体是否能破坏,是很难实现的。那么我们应该怎么判断土体破坏呢?我们可以换一个思路——用土反力和极限土压力进行对比,来判断土体变形是否可控。岩土体是弹塑性的,土体变形到一定程度,就会进入塑形状态,这时候,变形继续增加,土反力却不会继续增大。土反力最大值不应大于被动土压力,大过被动土压力,土体就超出临界状态,会产生破坏。综上,由变形与弹簧刚度计算的土反力,最大值不应大于被动土压力。当土反力不大于被动土压力时,应取实际计算值;当土反力大于被动土压力时,即土体进入塑形变形区时,应对土反力进行调整。调整方法介绍如下。3. 土体塑形变形时土反力取值图4 土压力和位移(弹性)该图是深基坑分析模块分析结果图,绿色虚线代表经典土压力(极限土压力),蓝色实线代表土反力。相同条件下,作用在挡土构件上的土压力,被动土压力>静止土压力>主动土压力。同一深度下,最外侧绿线是被动土压力,最内侧绿线为主动土压力,中间绿线为静止土压力。蓝色的线为土反力,即真实土压力。真实土压力大小,应介于主动土压力与被动土压力之间。图5 土压力和位移(弹塑性)随着开挖深度加深,会导致计算土反力继续增大,土体进入塑形状态,这时按p=ky计算土压力,会导致计算土反力超过被动土压力,这不符合土体规律。软件在这个时候会有一个调整(如图红色线框标注位置)。软件比较计算土反力,与被动土压力的大小。当该单元的土反力大于被动土压力的时,会用该单元范围内的被动土压力代替土反力,进行下一次迭代,直到所有单元的土反力都不大于被动土压力为止。图中红框标注位置,被动土压力线与土压力线重合。4. 盆式开挖土压力计算图6 盆式开挖桩后土体依然使用土压力,桩前土体依然使用土弹簧计算,比较土弹簧与被动土压力的大小。难点在于预留土堤之后,土弹簧和被动土压力应该如何考虑,我们不妨先看一下桩前土体的被动土压力的变化。与水平开挖相比,如果盆式开挖范围在破裂面以外,那么不必考虑被动土压力变化;开挖范围在破裂面内时,则需要考虑被动土压力的减小。这里被动土压力计算,需要联合使用图解法和解析法,具体计算可以参考土力学教程中特殊土压力计算。预留土堤部分的土弹簧,依然按正常土体取值(土弹簧刚度与岩土材料和埋深有关)计算土反力。这时需要考虑的一个问题就是,预留土堤能否像水平土层那样提供那么大的土反力,如何判断,标准是什么。判断标准依然是土反力与被动土压力的大小。假如土反力小于被动土压力力,那么 计算土压力取土反力;假如土反力大于被动土压力,那么就将土反力调整为被动土压力。注意,这里提到的被动土压力是考虑了盆式开挖之后的被动土压力。这样就确保了预留土提部分的土反力计算是合理的。5. 盆式开挖预留土堤注意事项(1)假如预留土堤部分,计算出来大范围都进入塑性变形,即土反力与被动土压力线重合,那么需要考虑,是否开挖过大,或者预留土堤宽度过窄。(2)预留土堤部分,需验证边坡是否稳定,可以调用外部稳定性验算,用限制搜索,完成桩前边坡的验算。(3)当预留土堤宽开挖计算结果与未进行盆式开挖相比几乎没有变化时,说明预留土堤宽度已经足够大了。我们也可以通过调整预留土堤宽度,找到临界值。如果变形、塑性变形、土堤边坡稳定性都能满足要求时,我们可以认为预留土堤形状是合适的。(4)上海市基坑工程技术规范DGTJ08-61-2010对盆式开挖有一些要求,这里贴出来以供参考。

抗滑桩嵌固段的最大横向压应力的几何意义?

库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 86 次浏览 • 2020-03-07 23:11 • 来自相关话题

GEO5有限元模块导出浸润面到土坡模块的方法

库仑张崇波 发表了文章 • 0 个评论 • 49 次浏览 • 2020-03-05 21:22 • 来自相关话题

       GEO5有限元渗流分析得到的浸润面可以直接导入到GEO5土坡模块中使用,这对于计算有地下水位的边坡稳定性十分方便。本文将简述操作方法及注意事项。       首先,将我们绘制的DXF文件以多段线形式导入到土坡模块中建立边坡模型,编辑好模型尺寸和材料参数后,复制模型数据。       然后,在GEO5有限元模块中粘贴数据,建立和土坡模块相同的模型(尺寸相同、坐标不偏移),并在【分析设置】中选择分析类型为“稳定流”或“非稳定流”。       输入岩土材料的渗流参数,并生成网格。然后,在工况1当中定义线渗流边界条件,不同的线渗流边界的概念可查看http://www.wen.kulunsoft.com/dochelp/960。       下一步直接进行渗流分析,得到如下图所示的浸润面,然后点击界面右侧“GEO剪贴板”中的复制计算地下水位。       这样,浸润面就已经复制到了剪贴板当中。此时回到最初建好的土坡模块当中,在【地下水】中选择地下水类型为“地下水位”,并在右侧“GEO剪贴板”中粘贴地下水位。这样,有限元渗流分析得到的浸润面就直接导入到了土坡模块当中,接下来就可以进行有地下水位面的边坡稳定性分析。       需要注意的是,我们在有限元当中生成浸润面的时候,可能会出现下面这种奇怪的浸润面形态:       出现这种情况是因为下游水头高于了地形面,而整个坡面设置的线边界条件又都是溢出边界。由于溢出边界意味着该位置的孔隙水压力为0,所以在两个边界条件交接的位置会出现自相矛盾的情况。这个时候只需要根据下游的实际水位更改对应坡面的渗流边界条件即可。       解决方法是,在坡面对应位置添加一个自由点:然后重新生成网格,并将原来下部的溢出边界改为孔隙水压力边界:最后就可以得到正常的浸润面,如下所示: 查看全部
       GEO5有限元渗流分析得到的浸润面可以直接导入到GEO5土坡模块中使用,这对于计算有地下水位的边坡稳定性十分方便。本文将简述操作方法及注意事项。       首先,将我们绘制的DXF文件以多段线形式导入到土坡模块中建立边坡模型,编辑好模型尺寸和材料参数后,复制模型数据。       然后,在GEO5有限元模块中粘贴数据,建立和土坡模块相同的模型(尺寸相同、坐标不偏移),并在【分析设置】中选择分析类型为“稳定流”或“非稳定流”。       输入岩土材料的渗流参数,并生成网格。然后,在工况1当中定义线渗流边界条件,不同的线渗流边界的概念可查看http://www.wen.kulunsoft.com/dochelp/960。       下一步直接进行渗流分析,得到如下图所示的浸润面,然后点击界面右侧“GEO剪贴板”中的复制计算地下水位。       这样,浸润面就已经复制到了剪贴板当中。此时回到最初建好的土坡模块当中,在【地下水】中选择地下水类型为“地下水位”,并在右侧“GEO剪贴板”中粘贴地下水位。这样,有限元渗流分析得到的浸润面就直接导入到了土坡模块当中,接下来就可以进行有地下水位面的边坡稳定性分析。       需要注意的是,我们在有限元当中生成浸润面的时候,可能会出现下面这种奇怪的浸润面形态:       出现这种情况是因为下游水头高于了地形面,而整个坡面设置的线边界条件又都是溢出边界。由于溢出边界意味着该位置的孔隙水压力为0,所以在两个边界条件交接的位置会出现自相矛盾的情况。这个时候只需要根据下游的实际水位更改对应坡面的渗流边界条件即可。       解决方法是,在坡面对应位置添加一个自由点:然后重新生成网格,并将原来下部的溢出边界改为孔隙水压力边界:最后就可以得到正常的浸润面,如下所示:

关于春招的问题

库仑杨工 回答了问题 • 2 人关注 • 1 个回答 • 54 次浏览 • 2020-03-05 09:37 • 来自相关话题

optumG2随机参数设置

冲出银河系 回答了问题 • 2 人关注 • 2 个回答 • 70 次浏览 • 2020-02-27 10:14 • 来自相关话题

GEO5双排抗滑桩设计时,桩验算的时候无论怎么调整尺寸参数都显示结构不稳定该怎么办

库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 98 次浏览 • 2020-02-25 15:33 • 来自相关话题

optumG2中如何在基础上加倾斜荷载

库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 87 次浏览 • 2020-02-17 17:58 • 来自相关话题

GEO5三维建模岩层产状怎么表现?若场地存在多个交互断层怎么表现呢?

库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 69 次浏览 • 2020-02-17 17:45 • 来自相关话题

“模量”大荟萃——GEO5和G2常见模量参数简介

库仑张崇波 发表了文章 • 0 个评论 • 124 次浏览 • 2020-02-13 09:43 • 来自相关话题

        在使用GEO5或G2进行计算分析的时候,我们经常会遇到要输入各种模量参数,很多用户不知道这些模量到底是什么意思,该怎么取值,所以本文做一个简单梳理,以便于各位用户更好的使用软件。        模量是指材料在受力状态下应力和应变的比值,量纲是L-1MT-2,常用单位是MPa和GPa。如果在应力和应变上加上限定条件和修饰词语,就会衍生出不同的模量,比如最常用的弹性模量E(或杨氏模量),是指材料在弹性变形阶段正应力与正应变的比值,如图1就是低碳钢拉伸过程的应力-应变曲线图,图中Oa段为弹性变形,该段的斜率值即为弹性模量。图1:低碳钢拉伸过程的应力-应变曲线图        在弹性变形阶段剪切应力与剪切应变的比值,则称为切变模量G(或剪切模量)。此外,还有一种体积模量K,指的是材料在弹性变形范围内,平均应力(某一点三个主应力的平均值)和体积应变的比值,与弹性模量的关系可表示为,其中μ为泊松比。        以上三个概念在弹性力学或线弹性材料当中应用比较广泛。除了弹性模量,切变模量和体积模量这两个模量在岩土分析当中则用的比较少。        实际上,我们在用软件分析岩土问题的时候,遇到最多的是弹性模量E、压缩模量Es和变形模量E0。弹性模量的概念在上文中已给出,而对于压缩模量和变形模量,笔者在查阅资料之前,认为二者的区别主要在于压缩模量是室内试验得到的结果,变形模量是野外原位测试的结果。然而这种认识是不准确的,实际上二者最大的区别在于试验条件是否完全侧限(即不允许侧向变形)。压缩模量是指土在完全侧限条件下,竖向正应力与相应的变形稳定情况下正应变的比值,一般通过室内固结试验测得。变形模量则是指土体在侧向自由膨胀条件下,正应力与相应正应变的比值,既可通过现场原位试验(比如平板载荷试验、扁铲侧胀试验、旁压试验等)测得,也可以通过室内三轴压缩试验获得。               与弹性模量不同,测量压缩模量和变形模量的应力-应变曲线是非线性的。如图2所示,在侧限压缩条件下,压缩模量随竖向应力的增加而增加;在常规三轴条件下,变形模量随偏差应力的增加而减小。由此可见压缩模量和变形模量都具有分段性,不同压力范围有不同的取值。因此也就衍生出不同取值方法下的模量参数,如图3展示的就是变形模量的不同取值,包括了切线模量和割线模量。      图2:两种室内试验的应力-应变关系曲线                       图3:变形模量的不同模量类型               典型的切线模量是初始切线模量(或叫初始弹性模量),是土体应力-应变曲线初始段切线斜率最大的部分,可以用来表征土体弹性变形阶段的模量。典型的割线模量是E50,对应土体峰值应力(破坏时的应力)一半时的应力与相应应变的比值,如图4。        从图4和图5可知,土体在荷载的作用下产生变形,在外荷载卸除后,土的应力-应变关系并没有回到原点,变形中有一部分是可以恢复的,而另一部分是不可恢复的,这个过程说明了土体材料典型的弹塑性。土体回弹和再加载过程一般可以用一个模量表示,即回弹模量Eur,假设能够回弹的变形都是弹性变形,那么回弹模量近似等于初始弹性模量,根据经验,土体初始弹性模量约为变形模量的3~5倍,所以当没有试验资料时,回弹模量一般按变形模量的3~5倍取值。这个经验十分有用,比如在使用GEO5有限元分析模块定义修正线弹性模型、Mohr-Coulomb弹塑性模型或者D-P模型时,以及使用G2定义HMC(硬化摩尔库仑)材料时,都需要输入材料的回弹模量。图4:割线模量E50图5:土的加载-卸载应力应变曲线        在假定相同起始状态的条件下,三轴压缩的变形模量E0和侧限压缩试验中的压缩模量Es可以通过广义胡克定律推导出二者的关系,公式如下:其中μ为泊松比。上式是基于线弹性假定的理论关系式,但土体并不是理想弹性体,所以按上述公式换算在大部分土体中都不太符合。在GEO5的帮助文档中也提到:实践经验表明由变形模量推导而来的压缩模量和由现场实测荷载沉降曲线得到的压缩模量往往会出现很大的不同,甚至处于不同的数量级。一般来说结构性较弱的软土比较符合这个公式。        此外,当使用G2分析,选择Tresca材料时,需要输入不排水变形模量Eu,该值可通过室内不排水三轴压缩试验或野外原位测试试验获得。另外,GEO5有限元分析模块进行应力应变分析时,允许用户定义随深度增加的材料刚度,即土体不同深度处具有不同的模量,如图6所示,可以输入弹性模量随深度的变化率,相关理论可参考http://www.wen.kulunsoft.com/question/865。图6:GEO5有限元模块岩土材料参数中定义随深度变化的弹性模量        综上所述,那么应该何时采用何种模量呢。本文建议,在一维沉降分析时,比如利用分层总和法计算沉降或者固结分析时,建议土体采用压缩模量进行分析;而在进行三维变形分析,比如边坡稳定性分析和基坑开挖分析时,土体则可以采用变形模量;而岩体和混凝土结构一般采用弹性模量进行分析。土体的初始弹性模量主要用于计算瞬时沉降。        以上介绍的各种模量都应当通过可靠的实验来测得,如果没有试验资料,可参考地区经验取值或参考GEO5帮助文档给出的建议值。 查看全部
        在使用GEO5或G2进行计算分析的时候,我们经常会遇到要输入各种模量参数,很多用户不知道这些模量到底是什么意思,该怎么取值,所以本文做一个简单梳理,以便于各位用户更好的使用软件。        模量是指材料在受力状态下应力和应变的比值,量纲是L-1MT-2,常用单位是MPa和GPa。如果在应力和应变上加上限定条件和修饰词语,就会衍生出不同的模量,比如最常用的弹性模量E(或杨氏模量),是指材料在弹性变形阶段正应力与正应变的比值,如图1就是低碳钢拉伸过程的应力-应变曲线图,图中Oa段为弹性变形,该段的斜率值即为弹性模量。图1:低碳钢拉伸过程的应力-应变曲线图        在弹性变形阶段剪切应力与剪切应变的比值,则称为切变模量G(或剪切模量)。此外,还有一种体积模量K,指的是材料在弹性变形范围内,平均应力(某一点三个主应力的平均值)和体积应变的比值,与弹性模量的关系可表示为,其中μ为泊松比。        以上三个概念在弹性力学或线弹性材料当中应用比较广泛。除了弹性模量,切变模量和体积模量这两个模量在岩土分析当中则用的比较少。        实际上,我们在用软件分析岩土问题的时候,遇到最多的是弹性模量E、压缩模量Es和变形模量E0。弹性模量的概念在上文中已给出,而对于压缩模量和变形模量,笔者在查阅资料之前,认为二者的区别主要在于压缩模量是室内试验得到的结果,变形模量是野外原位测试的结果。然而这种认识是不准确的,实际上二者最大的区别在于试验条件是否完全侧限(即不允许侧向变形)。压缩模量是指土在完全侧限条件下,竖向正应力与相应的变形稳定情况下正应变的比值,一般通过室内固结试验测得。变形模量则是指土体在侧向自由膨胀条件下,正应力与相应正应变的比值,既可通过现场原位试验(比如平板载荷试验、扁铲侧胀试验、旁压试验等)测得,也可以通过室内三轴压缩试验获得。               与弹性模量不同,测量压缩模量和变形模量的应力-应变曲线是非线性的。如图2所示,在侧限压缩条件下,压缩模量随竖向应力的增加而增加;在常规三轴条件下,变形模量随偏差应力的增加而减小。由此可见压缩模量和变形模量都具有分段性,不同压力范围有不同的取值。因此也就衍生出不同取值方法下的模量参数,如图3展示的就是变形模量的不同取值,包括了切线模量和割线模量。      图2:两种室内试验的应力-应变关系曲线                       图3:变形模量的不同模量类型               典型的切线模量是初始切线模量(或叫初始弹性模量),是土体应力-应变曲线初始段切线斜率最大的部分,可以用来表征土体弹性变形阶段的模量。典型的割线模量是E50,对应土体峰值应力(破坏时的应力)一半时的应力与相应应变的比值,如图4。        从图4和图5可知,土体在荷载的作用下产生变形,在外荷载卸除后,土的应力-应变关系并没有回到原点,变形中有一部分是可以恢复的,而另一部分是不可恢复的,这个过程说明了土体材料典型的弹塑性。土体回弹和再加载过程一般可以用一个模量表示,即回弹模量Eur,假设能够回弹的变形都是弹性变形,那么回弹模量近似等于初始弹性模量,根据经验,土体初始弹性模量约为变形模量的3~5倍,所以当没有试验资料时,回弹模量一般按变形模量的3~5倍取值。这个经验十分有用,比如在使用GEO5有限元分析模块定义修正线弹性模型、Mohr-Coulomb弹塑性模型或者D-P模型时,以及使用G2定义HMC(硬化摩尔库仑)材料时,都需要输入材料的回弹模量。图4:割线模量E50图5:土的加载-卸载应力应变曲线        在假定相同起始状态的条件下,三轴压缩的变形模量E0和侧限压缩试验中的压缩模量Es可以通过广义胡克定律推导出二者的关系,公式如下:其中μ为泊松比。上式是基于线弹性假定的理论关系式,但土体并不是理想弹性体,所以按上述公式换算在大部分土体中都不太符合。在GEO5的帮助文档中也提到:实践经验表明由变形模量推导而来的压缩模量和由现场实测荷载沉降曲线得到的压缩模量往往会出现很大的不同,甚至处于不同的数量级。一般来说结构性较弱的软土比较符合这个公式。        此外,当使用G2分析,选择Tresca材料时,需要输入不排水变形模量Eu,该值可通过室内不排水三轴压缩试验或野外原位测试试验获得。另外,GEO5有限元分析模块进行应力应变分析时,允许用户定义随深度增加的材料刚度,即土体不同深度处具有不同的模量,如图6所示,可以输入弹性模量随深度的变化率,相关理论可参考http://www.wen.kulunsoft.com/question/865。图6:GEO5有限元模块岩土材料参数中定义随深度变化的弹性模量        综上所述,那么应该何时采用何种模量呢。本文建议,在一维沉降分析时,比如利用分层总和法计算沉降或者固结分析时,建议土体采用压缩模量进行分析;而在进行三维变形分析,比如边坡稳定性分析和基坑开挖分析时,土体则可以采用变形模量;而岩体和混凝土结构一般采用弹性模量进行分析。土体的初始弹性模量主要用于计算瞬时沉降。        以上介绍的各种模量都应当通过可靠的实验来测得,如果没有试验资料,可参考地区经验取值或参考GEO5帮助文档给出的建议值。

使用GCAD从CAD剖面图提取虚拟钻孔建立三维地质模型

库仑孔工 发表了文章 • 0 个评论 • 131 次浏览 • 2020-02-09 15:40 • 来自相关话题

 一、GCAD简介    GCAD是南京库仑自主研发的二维\三维图形软件,可同时作为二维绘图软件和三维建模软件使用。在二维方面,软件功能和操作与AutoCAD一致,可用来绘制施工图,还可对接GEO5软件生成挡土墙、抗滑桩、基坑支护桩的配筋图。在三维方面,软件具有强大的建模功能如拉伸、放样、融合、布尔运算等,能够满足用户多场景三维建模的使用需求。    在岩土工程领域,GCAD有针对性地开发了一些功能,极大地提高了用户的工作效率,例如:① 将二维CAD剖面图定位在三维空间中并提取任意精度的虚拟钻孔交付EVS进行三维地质建模;② 将记录EVS模型数据的eff文件导入GCAD,用户可在GCAD中对三维地质模型进行剖面切割、地层属性添加与查询、任意位置提取虚拟钻孔等操作;③ 根据中心线及断面形状进行地下管线、管廊、巷道、隧道等模型的建立;④ 进行场地平整及填挖方量计算。     在BIM应用方面,软件可对接dwg、fbx、tif等格式的文件,方便用户进行模型的综合展示与应用。 二、GCAD提取虚拟钻孔案例    某项目只提供了沿隧道走向的剖面图,需要建立三维地质模型,为此借助南京库仑自主研发的二维/三维CAD软件GCAD,首先将剖面图根据隧道走向线定位到真实的三维空间,然后从三维剖面图中提取虚拟钻孔,最后将虚拟钻孔直接导出为PGF文件交付EVS进行三维地质建模。在提取虚拟钻孔时可自由控制虚拟钻孔的间距。    首先根据线路走向线将CAD剖面图定位到具有真实坐标的三维空间中,如下图所示。    然后利用GCAD提取虚拟钻孔的功能,选取合适的虚拟钻孔间距,从剖面图中提取若干虚拟钻孔,如下图所示。    使用GCAD可将所提取的虚拟钻孔直接转换为EVS建模所需的PGF文件,利用该PGF文件即可建立三维地质模型,下图为钻孔导入EVS中的效果。    最后使用EVS建立三维地质模型,如下图所示。    除此之外,GCAD还支持多个CAD剖面图分别提取虚拟钻孔再合并为一个文件的功能,如下图所示,将8条剖面的虚拟钻孔合并为一个文件,并统一导出一个PGF文件用于三维地质建模。    如您对以上内容感兴趣,可移步腾讯课堂观看完整讲解视频,链接如下:(https://ke.qq.com/course/463953?taid=4030053713646673&tuin=d3266bd3) 查看全部
 一、GCAD简介    GCAD是南京库仑自主研发的二维\三维图形软件,可同时作为二维绘图软件和三维建模软件使用。在二维方面,软件功能和操作与AutoCAD一致,可用来绘制施工图,还可对接GEO5软件生成挡土墙、抗滑桩、基坑支护桩的配筋图。在三维方面,软件具有强大的建模功能如拉伸、放样、融合、布尔运算等,能够满足用户多场景三维建模的使用需求。    在岩土工程领域,GCAD有针对性地开发了一些功能,极大地提高了用户的工作效率,例如:① 将二维CAD剖面图定位在三维空间中并提取任意精度的虚拟钻孔交付EVS进行三维地质建模;② 将记录EVS模型数据的eff文件导入GCAD,用户可在GCAD中对三维地质模型进行剖面切割、地层属性添加与查询、任意位置提取虚拟钻孔等操作;③ 根据中心线及断面形状进行地下管线、管廊、巷道、隧道等模型的建立;④ 进行场地平整及填挖方量计算。     在BIM应用方面,软件可对接dwg、fbx、tif等格式的文件,方便用户进行模型的综合展示与应用。 二、GCAD提取虚拟钻孔案例    某项目只提供了沿隧道走向的剖面图,需要建立三维地质模型,为此借助南京库仑自主研发的二维/三维CAD软件GCAD,首先将剖面图根据隧道走向线定位到真实的三维空间,然后从三维剖面图中提取虚拟钻孔,最后将虚拟钻孔直接导出为PGF文件交付EVS进行三维地质建模。在提取虚拟钻孔时可自由控制虚拟钻孔的间距。    首先根据线路走向线将CAD剖面图定位到具有真实坐标的三维空间中,如下图所示。    然后利用GCAD提取虚拟钻孔的功能,选取合适的虚拟钻孔间距,从剖面图中提取若干虚拟钻孔,如下图所示。    使用GCAD可将所提取的虚拟钻孔直接转换为EVS建模所需的PGF文件,利用该PGF文件即可建立三维地质模型,下图为钻孔导入EVS中的效果。    最后使用EVS建立三维地质模型,如下图所示。    除此之外,GCAD还支持多个CAD剖面图分别提取虚拟钻孔再合并为一个文件的功能,如下图所示,将8条剖面的虚拟钻孔合并为一个文件,并统一导出一个PGF文件用于三维地质建模。    如您对以上内容感兴趣,可移步腾讯课堂观看完整讲解视频,链接如下:(https://ke.qq.com/course/46395 ... 66bd3

optum绘制曲线问题

库仑张崇波 回答了问题 • 2 人关注 • 1 个回答 • 95 次浏览 • 2020-02-04 14:46 • 来自相关话题

求解器状态不可行是什么原因,怎么解决?

回答

t13983007248 发起了问题 • 2 人关注 • 0 个回答 • 225 次浏览 • 2020-01-06 09:46 • 来自相关话题

设置材料为线弹性体,是否会发生屈曲?

库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 176 次浏览 • 2019-12-30 08:49 • 来自相关话题

为什么我在边坡坡脚设置了抗滑桩,搜索边坡稳定系数时候潜在滑动面还会从桩中间位置滑出、

李宏伟 回答了问题 • 4 人关注 • 5 个回答 • 374 次浏览 • 2019-12-26 10:20 • 来自相关话题

抗滑桩模块,桩身嵌岩,由等效内摩擦角换算地基横向承载力特征值

库仑刘工 发表了文章 • 0 个评论 • 193 次浏览 • 2019-12-26 10:15 • 来自相关话题

在抗滑桩模块,当选择桩身嵌岩时,需输入岩石的天然单轴极限抗压强度标准值,来计算岩石地基横向容许承载力。计算公式如下:具体参数说明可以查看:桩身嵌岩水平方向换算系数K及折减系数v说明假若,没有岩石天然单轴极限抗压强度参数,也可以根据建筑边坡工程技术规范GB50330-2013中板桩式挡土墙章节的换算公式,利用等效内摩擦角进行换算。规范内容摘录如下:嵌入土层或风化层土、砂砾状岩层时,滑动面以下或桩嵌入稳定岩土层内深度为h2/3和h2(滑动面以下或嵌入稳定岩土层内桩长)处的横向压应力不应大于地基横向承载力特征值。悬臂抗滑桩(图13.2.8)地基横向承载力特征值可按下列公式计算:1)当设桩处沿滑动方向地面坡度小于8°时地基y点的横向承载力特征值可按下式计算:图13.2.8悬臂抗滑桩土质地基横向承载力特征值计算简图1一桩顶地面;2一滑面;3一抗滑桩;4一滑动方向;5一被动土压力分布图;6一主动土压力分布图2)当设桩处沿滑动方向地面坡度i≥8°且i≤φ0时,地基y点的横向承载力特征值可按下式计算:软件里面需要输入岩石单轴抗压极限强度,需要把横向承载力特征值换算成标准值。frk = fH/kv 查看全部
在抗滑桩模块,当选择桩身嵌岩时,需输入岩石的天然单轴极限抗压强度标准值,来计算岩石地基横向容许承载力。计算公式如下:具体参数说明可以查看:桩身嵌岩水平方向换算系数K及折减系数v说明假若,没有岩石天然单轴极限抗压强度参数,也可以根据建筑边坡工程技术规范GB50330-2013中板桩式挡土墙章节的换算公式,利用等效内摩擦角进行换算。规范内容摘录如下:嵌入土层或风化层土、砂砾状岩层时,滑动面以下或桩嵌入稳定岩土层内深度为h2/3和h2(滑动面以下或嵌入稳定岩土层内桩长)处的横向压应力不应大于地基横向承载力特征值。悬臂抗滑桩(图13.2.8)地基横向承载力特征值可按下列公式计算:1)当设桩处沿滑动方向地面坡度小于8°时地基y点的横向承载力特征值可按下式计算:图13.2.8悬臂抗滑桩土质地基横向承载力特征值计算简图1一桩顶地面;2一滑面;3一抗滑桩;4一滑动方向;5一被动土压力分布图;6一主动土压力分布图2)当设桩处沿滑动方向地面坡度i≥8°且i≤φ0时,地基y点的横向承载力特征值可按下式计算:软件里面需要输入岩石单轴抗压极限强度,需要把横向承载力特征值换算成标准值。frk = fH/kv

optumg2里的长度单位是m吗

库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 180 次浏览 • 2019-12-25 09:28 • 来自相关话题