GEO5挡墙模块土压力计算说明

库仑刘工 发表了文章 • 0 个评论 • 2424 次浏览 • 2020-09-18 14:26 • 来自相关话题

本帖结合理正结果,对GEO5挡墙模块的土压力原理进行说明。对比包括无粘性土和粘性土两种情况,无粘性土给出两者的详细计算过程,粘性土介绍了GEO5的计算方法及与理正对比结果。一、无粘性土:(1)理正:理正挡墙的虚拟墙背是从墙踵底,连到挡墙顶部。所以计算的土重是虚拟墙背以内的区域,土压力是以红线为墙背进行计算。所以,改变墙踵高度,只会影响土重,不会影响土压力大小。Ea = 1/2γh^2Ka = 1/2*19*5.6^2*0.501= 149.26(误差来自于主动土压力计算时的取值)(2)GEO5:GEO5的虚拟墙背是从墙踵顶到挡墙顶,上面按虚拟墙背计算土压力,下面基础按实际墙背计算土压力,然后土压力求解矢量和。GEO5墙踵上的土重,就是按实际的土重进行计算:1/2*2*5*19=95.因为假想墙背不同,墙背与竖直线的夹角不同,主动土压力系数也有细微差别,水平向分力是比较接近的。当底板较薄时(如0.1m),两者的土压力是几乎一样的,当基础底板较厚时,理正的虚拟墙背假设就不再适用。0-5m:按虚拟墙背计算土压力,Ka = 0.526, 5m处土压力Pa5m = 19*5*0.526=49.97 (误差来自于主动土压力系数保留位数,软件后台不是按三位计算的)5-5.6m:按基础实际墙背计算,这时墙背与填土间的摩擦角按实际的取,不再按内摩擦角进行取值。Ka=1/3,5m处主动土压力 Pa5m下 = 19*5*1/3=31.67(主动土压力取实际1/3,故和软件计算书结果没有误差)。二、粘性土:(1)理正:理正帮助文档中讲计算出破裂角后利用力的多边形求解,不再赘述。(2)GEO5:GEO5利用公式进行计算,现在拿5m处的土压力进行说明。Kac = Kahc = 0.577Ka = 1/3Pa5m下 = 19*5*1/3 – 2*10*0.577 = 20.96理正结果是99.443,GEO5基础厚度为0.5时的结果为94.03,GEO5基础厚度调整为0.1时的土压力为101.45。结果误差主要还是虚拟墙背的假设不同(无粘性土章节已详细论证)。 查看全部
本帖结合理正结果,对GEO5挡墙模块的土压力原理进行说明。对比包括无粘性土和粘性土两种情况,无粘性土给出两者的详细计算过程,粘性土介绍了GEO5的计算方法及与理正对比结果。一、无粘性土:(1)理正:理正挡墙的虚拟墙背是从墙踵底,连到挡墙顶部。所以计算的土重是虚拟墙背以内的区域,土压力是以红线为墙背进行计算。所以,改变墙踵高度,只会影响土重,不会影响土压力大小。Ea = 1/2γh^2Ka = 1/2*19*5.6^2*0.501= 149.26(误差来自于主动土压力计算时的取值)(2)GEO5:GEO5的虚拟墙背是从墙踵顶到挡墙顶,上面按虚拟墙背计算土压力,下面基础按实际墙背计算土压力,然后土压力求解矢量和。GEO5墙踵上的土重,就是按实际的土重进行计算:1/2*2*5*19=95.因为假想墙背不同,墙背与竖直线的夹角不同,主动土压力系数也有细微差别,水平向分力是比较接近的。当底板较薄时(如0.1m),两者的土压力是几乎一样的,当基础底板较厚时,理正的虚拟墙背假设就不再适用。0-5m:按虚拟墙背计算土压力,Ka = 0.526, 5m处土压力Pa5m = 19*5*0.526=49.97 (误差来自于主动土压力系数保留位数,软件后台不是按三位计算的)5-5.6m:按基础实际墙背计算,这时墙背与填土间的摩擦角按实际的取,不再按内摩擦角进行取值。Ka=1/3,5m处主动土压力 Pa5m下 = 19*5*1/3=31.67(主动土压力取实际1/3,故和软件计算书结果没有误差)。二、粘性土:(1)理正:理正帮助文档中讲计算出破裂角后利用力的多边形求解,不再赘述。(2)GEO5:GEO5利用公式进行计算,现在拿5m处的土压力进行说明。Kac = Kahc = 0.577Ka = 1/3Pa5m下 = 19*5*1/3 – 2*10*0.577 = 20.96理正结果是99.443,GEO5基础厚度为0.5时的结果为94.03,GEO5基础厚度调整为0.1时的土压力为101.45。结果误差主要还是虚拟墙背的假设不同(无粘性土章节已详细论证)。

欧标——扩展基础上拔稳定性计算原理

南京库仑张工 发表了文章 • 0 个评论 • 1711 次浏览 • 2020-08-04 16:47 • 来自相关话题

       GEO5 2020版年中更新中,新增加了基于欧标EN 50341-1-2012的扩展基础上拔稳定性计算方法,加上原有的标准剪切法、标准土重法以及基于中国规范(DL/T 5219-2014)的土重法,目前工程师们可以采用4种不同的方法计算基础上拔承载力,原有3种方法的计算理论可以参考解读GEO5扩展基础模块计算基础上拔承载力的几种方法,本文主要介绍最新添加的基于欧标的计算原理。       根据EN50341-1-2012附录M.2的规定,抗拔力的计算采用剪切法,总的抗拔力分为两部分,一部分是基础自重及基础上覆土体自重,另一部分是侧摩阻力,公式可以表达为:其中:Rt —— 基础总抗拔承载力           Rs—— 基础范围内侧摩阻力           Rb—— 上覆土体范围内侧摩阻力           Gf——  基础自重           Gb—— 上覆土体自重       计算简图如下:       该方法最关键的是需要分别计算基础范围内和上覆土体范围内的侧摩阻力,其中,基础范围内的侧摩阻力计算公式如下:其中:p —— 基础周长           t —— 基础厚度           d —— 基础埋深           γ —— 土体重度           c —— 土体黏聚力           φ —— 土体内摩擦角           Kr—— 土体静止土压力       上覆土体范围内的侧摩阻力计算公式如下:其中:Ka—— 土体主动土压力       通过以上公式可以看出,和标准剪切法相比,基于欧洲规范的剪切法,一方面将上拔作用引起的侧摩阻力分为了两部分计算,另外一方面在计算上覆土体引起的侧摩阻力时,标准剪切法采用的是土体静止土压力,而欧标剪切法采用的是主动土压力。所以一般情况下,当地层情况标准剪切法要比欧洲规范EN 50341计算得到的抗拔承载力大。        查看全部
       GEO5 2020版年中更新中,新增加了基于欧标EN 50341-1-2012的扩展基础上拔稳定性计算方法,加上原有的标准剪切法、标准土重法以及基于中国规范(DL/T 5219-2014)的土重法,目前工程师们可以采用4种不同的方法计算基础上拔承载力,原有3种方法的计算理论可以参考解读GEO5扩展基础模块计算基础上拔承载力的几种方法,本文主要介绍最新添加的基于欧标的计算原理。       根据EN50341-1-2012附录M.2的规定,抗拔力的计算采用剪切法,总的抗拔力分为两部分,一部分是基础自重及基础上覆土体自重,另一部分是侧摩阻力,公式可以表达为:其中:Rt —— 基础总抗拔承载力           Rs—— 基础范围内侧摩阻力           Rb—— 上覆土体范围内侧摩阻力           Gf——  基础自重           Gb—— 上覆土体自重       计算简图如下:       该方法最关键的是需要分别计算基础范围内和上覆土体范围内的侧摩阻力,其中,基础范围内的侧摩阻力计算公式如下:其中:p —— 基础周长           t —— 基础厚度           d —— 基础埋深           γ —— 土体重度           c —— 土体黏聚力           φ —— 土体内摩擦角           Kr—— 土体静止土压力       上覆土体范围内的侧摩阻力计算公式如下:其中:Ka—— 土体主动土压力       通过以上公式可以看出,和标准剪切法相比,基于欧洲规范的剪切法,一方面将上拔作用引起的侧摩阻力分为了两部分计算,另外一方面在计算上覆土体引起的侧摩阻力时,标准剪切法采用的是土体静止土压力,而欧标剪切法采用的是主动土压力。所以一般情况下,当地层情况标准剪切法要比欧洲规范EN 50341计算得到的抗拔承载力大。       

抗滑桩结构上的土压力分布

回答

中交水规院 发起了问题 • 1 人关注 • 0 个回答 • 1861 次浏览 • 2020-06-11 10:39 • 来自相关话题

G318国道某段路基塌滑应急抢险支护设计案例

南京库仑张工 发表了文章 • 0 个评论 • 1948 次浏览 • 2020-06-10 17:21 • 来自相关话题

项目名称:G318国道某段路基塌滑应急抢险支护设计案例使用软件:GEO5土质边坡稳定性分析、GEO5重力式挡土墙、GEO5石笼挡土墙项目背景:G318国道某段弧形路段上部因暴雨发生垮塌,致使下部道路路肩挡墙发生破坏,需重新修筑挡墙并确保路基稳定性。使用GEO5重力式挡墙和石笼挡土墙对比了三种挡墙方案:衡重式挡土墙、仰斜式重力挡土墙、格宾石笼挡土墙,利用边坡模块分析了不同方案路基边坡的整体稳定性。软件优势:GEO5挡墙模块多样,支持自定义挡墙样式,整体稳定性调用土坡模块计算方便。图1:衡重式挡墙计算结果图2:衡重式挡墙底部加微型桩验算结果图3:仰斜式挡墙验算结果图4:仰斜式挡墙整体稳定性分析图5:格宾石笼挡墙倾覆滑移验算结果图6:格宾石笼挡墙截面强度验算结果图7:格宾石笼挡墙整体稳定性分析 查看全部
项目名称:G318国道某段路基塌滑应急抢险支护设计案例使用软件:GEO5土质边坡稳定性分析、GEO5重力式挡土墙、GEO5石笼挡土墙项目背景:G318国道某段弧形路段上部因暴雨发生垮塌,致使下部道路路肩挡墙发生破坏,需重新修筑挡墙并确保路基稳定性。使用GEO5重力式挡墙和石笼挡土墙对比了三种挡墙方案:衡重式挡土墙、仰斜式重力挡土墙、格宾石笼挡土墙,利用边坡模块分析了不同方案路基边坡的整体稳定性。软件优势:GEO5挡墙模块多样,支持自定义挡墙样式,整体稳定性调用土坡模块计算方便。图1:衡重式挡墙计算结果图2:衡重式挡墙底部加微型桩验算结果图3:仰斜式挡墙验算结果图4:仰斜式挡墙整体稳定性分析图5:格宾石笼挡墙倾覆滑移验算结果图6:格宾石笼挡墙截面强度验算结果图7:格宾石笼挡墙整体稳定性分析

GEO5+G2某道路边坡滑塌治理支护设计案例

南京库仑张工 发表了文章 • 0 个评论 • 2155 次浏览 • 2020-06-10 17:04 • 来自相关话题

项目名称:某道路边坡滑塌治理设计使用软件:GEO5土质边坡稳定性分析、Optum G2项目背景:该滑坡位于湖北境内某省道一侧,边坡高陡,受强降雨影响发生滑塌破坏。边坡地层结构简单,上部为崩坡积碎石土,下部为志留系砂质页岩夹泥质粉砂岩,一方面土岩结合部位容易形成滑动面,另外基岩风化后表部局部掉块失稳,需要综合治理。最终使用GEO5软件分析原始边坡稳定性,推荐采用锚索+锚杆的支护方式,并验算了支护后的边坡稳定性。同时利用G2对支护方案进行了数值分析模拟。软件优势:GEO5建模方便快捷,同一文件的不同工况可以分别分析原始边坡和支护后的边坡稳定性情况,使用G2可以分析原始边坡和支护后边坡的可能破坏模式。图1:不平衡推力法隐式解计算结果图2:不平衡推力法显示解计算结果图3:支护设计后正常工况计算结果图4:支护设计后暴雨工况计算结果图5:计算结果汇总及说明图6:G2分析原始边坡结果及说明图7:G2分析锚固后边坡结果及说明 查看全部
项目名称:某道路边坡滑塌治理设计使用软件:GEO5土质边坡稳定性分析、Optum G2项目背景:该滑坡位于湖北境内某省道一侧,边坡高陡,受强降雨影响发生滑塌破坏。边坡地层结构简单,上部为崩坡积碎石土,下部为志留系砂质页岩夹泥质粉砂岩,一方面土岩结合部位容易形成滑动面,另外基岩风化后表部局部掉块失稳,需要综合治理。最终使用GEO5软件分析原始边坡稳定性,推荐采用锚索+锚杆的支护方式,并验算了支护后的边坡稳定性。同时利用G2对支护方案进行了数值分析模拟。软件优势:GEO5建模方便快捷,同一文件的不同工况可以分别分析原始边坡和支护后的边坡稳定性情况,使用G2可以分析原始边坡和支护后边坡的可能破坏模式。图1:不平衡推力法隐式解计算结果图2:不平衡推力法显示解计算结果图3:支护设计后正常工况计算结果图4:支护设计后暴雨工况计算结果图5:计算结果汇总及说明图6:G2分析原始边坡结果及说明图7:G2分析锚固后边坡结果及说明

GEO5中第二破裂角及土压力计算说明

库仑刘工 发表了文章 • 0 个评论 • 10154 次浏览 • 2020-05-09 17:42 • 来自相关话题

GEO5第二破裂角及土压力计算说明1. 库仑土压力公式介绍破裂角概念来自于库仑土压力计算公式,这里需要对库仑土压力公式计算做一个简单介绍。                                              图1 库仑土压力理论基本假设:(1)平面滑动面假设。当墙移动,使墙后填土达到破坏时,填土两个平面同时滑动。一个是沿墙背AB,一个是沿土体内某一滑动面BC,BC与水平面成θ角。这个角就是破裂角,BC面也称第一破裂面。(2)刚体滑动假设。(3)楔体ABC整体处于极限平衡状态。在AB和BC滑动面上,抗剪强度已充分发挥,即滑动面上的剪应力τ均已达抗剪强度τf。(部分文献还验算第二破裂面上的下滑力,抗滑力,这个意思是一样)受力分析:假设滑动土楔自重为W,下滑时受到墙面给予的支撑力E(其反力就是土压力),和滑动面外土体支撑力R,则(1)根据楔体整体处于极限平衡状态的条件,可得知E、R的方向。反力R的方向与BC面的法线成夹角φ(土的内摩擦角);反力E的方向则应与墙背AB面的法线成夹角σ。只是当土体处于主动状态时,为阻止楔体下滑,R、E在法线的下方;被动状态时,为阻止楔体被挤而向上滑动,R、E在法线的上方。(2)根据楔体应满足静力平衡力三角形闭合的条件,可知E、R的大小。(3)求极值,找出真正滑动面,从而得出作用在墙背上的总主动土压力Ea和被动土压力Ep。图2 库仑主动土压力计算图利用正弦定理:2. 坦墙土压力计算图3 坦墙与第二滑动面 2.1. 坦墙概念当σ 查看全部
GEO5第二破裂角及土压力计算说明1. 库仑土压力公式介绍破裂角概念来自于库仑土压力计算公式,这里需要对库仑土压力公式计算做一个简单介绍。                                              图1 库仑土压力理论基本假设:(1)平面滑动面假设。当墙移动,使墙后填土达到破坏时,填土两个平面同时滑动。一个是沿墙背AB,一个是沿土体内某一滑动面BC,BC与水平面成θ角。这个角就是破裂角,BC面也称第一破裂面。(2)刚体滑动假设。(3)楔体ABC整体处于极限平衡状态。在AB和BC滑动面上,抗剪强度已充分发挥,即滑动面上的剪应力τ均已达抗剪强度τf。(部分文献还验算第二破裂面上的下滑力,抗滑力,这个意思是一样)受力分析:假设滑动土楔自重为W,下滑时受到墙面给予的支撑力E(其反力就是土压力),和滑动面外土体支撑力R,则(1)根据楔体整体处于极限平衡状态的条件,可得知E、R的方向。反力R的方向与BC面的法线成夹角φ(土的内摩擦角);反力E的方向则应与墙背AB面的法线成夹角σ。只是当土体处于主动状态时,为阻止楔体下滑,R、E在法线的下方;被动状态时,为阻止楔体被挤而向上滑动,R、E在法线的上方。(2)根据楔体应满足静力平衡力三角形闭合的条件,可知E、R的大小。(3)求极值,找出真正滑动面,从而得出作用在墙背上的总主动土压力Ea和被动土压力Ep。图2 库仑主动土压力计算图利用正弦定理:2. 坦墙土压力计算图3 坦墙与第二滑动面 2.1. 坦墙概念当σ<<φ时,滑面依然可以沿墙背滑动。但当σ≈φ时,就可能出现两种情况。一是墙背较陡,公式依然成立。二是墙背较缓,墙后土体破坏时可能不再沿墙背AB滑动,而是沿图3的BC和BD面滑动,两个面均发生在土中。这种情况,BCD仍处于极限平衡状态,而ABC未达极限平衡,它将贴附于墙背AB上与墙一起移动,故而可以视为墙体的一部分。显然,对于坦墙,库仑公式不能用来直接求出作用在墙背AB面上的土压力,但却可用其求出作用于第二滑动面BC上的土压力Ea’。要注意的是,由于滑动面BC也存在于土中,是土与土之间的摩擦,Ea’与BC面法线的夹角不是σ而应是φ。这样,最终作用于墙背AB面上的主动土压力Ea就是Ea’与三角形土体ABC重力的合力。第二破裂面出现的条件是墙背倾角α大于临界倾斜角αcr。研究表明,αcr=f(σ,φ,β)。可以证明,当σ=φ时,αcr可以用下式表示:若填土面水平,β=0,则以上推论是来自于库仑土压力理论。2.2. 坦墙土压力计算方法对于填土面为平面的坦墙,朗肯与库仑两种土压力理论均可应用。下面对β=0,σ=φ为例,进行说明。图4 坦墙的土压力计算(1)    按库仑理论计算:墙后滑动土楔将以过墙锺C点的竖直面CD面为对称面下滑,两个滑动面BC和B’C与CD夹角都应是45°-φ/2,从而两个滑动面位置均已知,根据库仑理论可以求出作用在BC面上的土压力大小和方向,再与△ABC的重力W(竖向)进行向量求和即为作用在AC上的土压力。图5 主动朗肯状态的变形条件已满足(2)按朗肯理论计算由于滑动楔体BCB’以垂直面CD为对称面,故CD面可以视为无剪应力的光面,符合朗肯的竖直光滑墙背条件。当填土面水平的时候,可按朗肯公式求作用在CD面上的朗肯主动土压力。最后与三角形ABC的土压力求矢量和。2.3. GEO5中的计算理论根据几何关系,可以用va表示第二破裂角和Vas,然后求解出来第二破裂面。在DIN 4085中可以找到类似公式的推导过程。3. 计算异同3.1. GEO5与公式相同之处GEO5中没法直接读取破裂角的大小,故用标注功能,标注破裂角的投影宽,和实际长度,求解正弦值。与李广信土压力学中的公式进行对比。(1)墙踵足够长,第二破裂面交于坡面图6 GEO5中第二破裂面示意图表1 土力学中的公式与GEO5算的结果对比两者的结果在精度允许范围内是一样的。说明:(1)继续加长墙踵宽度,破裂面依然交在坡面,第二破裂角不变。(2)当坡角β=φ时,公式破裂角是0,即破裂角垂直于墙锺。而此时,GEO5的破裂面也是垂直于墙锺。两者理论是等效的。(3)当改变GEO5中的岩土材料的粘聚力,第二破裂角不变。GEO5中的假设也是无粘性土假设,不会换算综合内摩擦角,只是用输入的内摩擦角按无粘性土计算。(4)改变岩土材料中的σ,第二破裂面依然不变。这与土力学中假定σ=φ是一致的。从GEO5中的计算书中可以看到无论σ输入多少,这个值依然和φ相等。这个假设和土力学中的假设一样。3.2. GEO5与土力学公式不同之处3.2.1. 假想墙背的起点不同图7 L型挡墙计算土力学书里的公式是从墙锺B点引直线BE交墙顶于D,BD为假想墙背。判断夹角是否大于临界角。这里是简化的,BE段是简化过的。GEO5是从E点开始引直线,这点有所不同。土力学书中是为了简化计算,多用于注岩考试时计算;在公路设计手册路基第二版和铁路工程设计手册中的假想墙背与GEO5中一致。图8 GEO5中土压力计算原理GEO5中从E处将土压力计算分为两块。①处用第二破裂角的假想墙背,②处用真实墙背。这时,墙背就是挡墙墙踵,岩土材料与结构的摩擦角也用输入的值进行计算。当墙踵较厚的情况下,与土力学中计算的结果会有不同。3.2.2. 假想墙背的终点不同土力学公式假设终点是在墙顶,不会出现第二破裂面交到墙背上。GEO5没有这个限制。对于没有墙踵的挡墙,两者是一致的。对于有墙踵的情况,两者计算方式不同。图9 第二破裂面交于墙背①   、③区域使用真实墙背进行计算,②处使用虚拟墙背进行计算。图10 土力学中的破裂角说明红线是假想墙背,黄线是公式计算的第二破裂面的平移。很明显,这种情况假想墙背夹角不大于临界夹角,不会出现第二破裂面。不考虑第二破裂面的影响。实际情况中是可以出现这种第二破裂面的,G2分析中可以证明有这种破坏。图11 G2分析挡墙时出现的局部第二破裂面4. 结论:(1)两者第二破裂角的计算完全一致。(2)墙踵处土压力计算不同,土力学书中的假设适用于墙踵较薄的情况,对于墙踵较厚的情况,其假设是不合适的。GEO5在处理墙踵时,与公路和铁路路基手册中一致,较为合理。(3)第二破裂面交到墙背上时的计算不同。土力学书中不考虑这种情况,用数值分析软件可以很容易发现这种情况的存在。GEO5的计算更符合实际情况,也更细致。使用的理论的假设、公式前提都一样。不同的是GEO5对公式进行了延伸,能计算更复杂的情况。

库仑地基固结沉降分析解决方案(GEO5&G2)

南京库仑张工 发表了文章 • 0 个评论 • 2318 次浏览 • 2020-04-20 23:33 • 来自相关话题

       针对地基固结沉降分析这类问题,在库仑的各产品中,主要有两款软件可以采用,分别是GEO5和Optum G2, 而GEO5中还包含了两个模块,地基固结沉降分析模块及有限元固结分析模块都可以进行分析,所以库仑给各位工程师提供了三种解决方案,不同模块功能略有差异,本文将对三个模块的使用做一简单介绍。1、GEO5地基固结沉降分析模块       GEO5地基固结沉降分析模块基于太沙基的一维固结理论,支持导入DXF文件快速建模,可以得到变形计算深度、地基总沉降、任意加载时间下的固结度和沉降值等结果。如果是分析简单的问题,一维的问题,只关注沉降和固结度的话,推荐使用此模块。      该模块总沉降的计算都是基于分层总和法,具体到参数的选取又包含了7种分析方法,其中压缩模量法和压缩指数法(e-logp曲线)在国内比较常用,至于另外一种国内常用的e-p曲线方法我们也在开发中。另外荷兰规范NEN(Buismann, Ladd)法是这几种方法中唯一可以同时考虑主固结沉降和次固结沉降的方法,而且还能计算超固结土。不同方法的详细介绍参考解读GEO5中计算地基固结沉降的方法。       地基固结沉降分析模块计算变形计算深度时考虑两方面的因素,一是确定变形计算深度的方法,比如国内常用应力比法,国外用结构强度理论。另外用户还可以输入不可压缩地基的深度,如果用户输入了不可压缩地基,那么软件会将两方面因素确定的较小值作为最终的变形计算深度。       需要说明的是,软件第一个工况始终计算的是初始应力,所以要实现固结分析,需要在第二个及之后的工况中通过填方或者施加超载,才能形成附加应力。       在地基固结沉降分析模块中可以得到任意时间下的沉降值:可以得到不同工况的孔隙水压力分布:还可以得到地表处固结度随时间的变化曲线:       需要注意的是,开始分析之前,在最后一个工况中需要勾选复选框后,软件才能进行固结分析计算。在第一个工况之后的工况中软件可以考虑地下水位变化、填方及荷载的变化对固结和沉降的影响。2、GEO5有限元地基固结分析模块       GEO5有限元模块可以进行固结分析,所采用的理论是Biot固结理论,该理论考虑了应力应变和渗流的耦合,所以可以分析一些太沙基一维固结理论无法分析的问题,比如加筋土地基的固结问题。另外有限元是二维分析,可以得到更多的应力应变和孔隙水压力的计算结果,所以如果是分析较复杂的问题,涉及二维的问题,建议使用该模块。       与一维固结分析不同,GEO5有限元固结分析可以得到回填土自身的沉降变形:还可以得到地基水平方向的位移:       与地基固结沉降分析模块不同,在有限元中,不需要指定确定变形计算深度的分析方法,也不需要指定最后一个工况计算总沉降,整个过程,只需要输入工况持续的时间,即可计算任意时刻的变形。此外,GEO5有限元可以采用接触面来模拟排水板,模拟过程可参考GEO5如何模拟有排水板的固结分析:       使用有限元分析,理论更加严格,也可以得到更多的结果,但是分析过程相较于地基固结沉降分析会更加耗时。3、Optum G2固结分析       Optum G2 是库仑的另一款数值分析软件,可以直接进行固结分析,所依据的理论也是Boit固结理论,而且软件也支持DXF文件导入建模。最重要的是,除了基本的固结分析,G2还能计算固结对地基承载力的影响以及填方边坡稳定性等。所以如果是分析复杂问题,还需要对固结地基进行下一步分析的话,推荐使用G2。       G2的固结分析可以实现任意时间土体固结度的计算,此时需要将分析目标设置为固结时间:也能计算达到任意固结度所需要的时间,此时将分析目标设置为某一固结度:        在进行了固结分析之后,可以直接使用G2的极限分析方法,分析不同固结情况下的地基承载力:以及分析不同阶段填方边坡稳定性:也可以在G2中添加排水板:       综上,针对具体的工程问题,用户可以根据实际情况选取合适的模块进行分析。       关于GEO5的地基固结沉降分析模块及有限元固结分析的详细介绍,可以点击此处查看视频教程。关于G2的固结分析及应用,可以点击此处查看视频教程。 查看全部
       针对地基固结沉降分析这类问题,在库仑的各产品中,主要有两款软件可以采用,分别是GEO5和Optum G2, 而GEO5中还包含了两个模块,地基固结沉降分析模块及有限元固结分析模块都可以进行分析,所以库仑给各位工程师提供了三种解决方案,不同模块功能略有差异,本文将对三个模块的使用做一简单介绍。1、GEO5地基固结沉降分析模块       GEO5地基固结沉降分析模块基于太沙基的一维固结理论,支持导入DXF文件快速建模,可以得到变形计算深度、地基总沉降、任意加载时间下的固结度和沉降值等结果。如果是分析简单的问题,一维的问题,只关注沉降和固结度的话,推荐使用此模块。      该模块总沉降的计算都是基于分层总和法,具体到参数的选取又包含了7种分析方法,其中压缩模量法和压缩指数法(e-logp曲线)在国内比较常用,至于另外一种国内常用的e-p曲线方法我们也在开发中。另外荷兰规范NEN(Buismann, Ladd)法是这几种方法中唯一可以同时考虑主固结沉降和次固结沉降的方法,而且还能计算超固结土。不同方法的详细介绍参考解读GEO5中计算地基固结沉降的方法。       地基固结沉降分析模块计算变形计算深度时考虑两方面的因素,一是确定变形计算深度的方法,比如国内常用应力比法,国外用结构强度理论。另外用户还可以输入不可压缩地基的深度,如果用户输入了不可压缩地基,那么软件会将两方面因素确定的较小值作为最终的变形计算深度。       需要说明的是,软件第一个工况始终计算的是初始应力,所以要实现固结分析,需要在第二个及之后的工况中通过填方或者施加超载,才能形成附加应力。       在地基固结沉降分析模块中可以得到任意时间下的沉降值:可以得到不同工况的孔隙水压力分布:还可以得到地表处固结度随时间的变化曲线:       需要注意的是,开始分析之前,在最后一个工况中需要勾选复选框后,软件才能进行固结分析计算。在第一个工况之后的工况中软件可以考虑地下水位变化、填方及荷载的变化对固结和沉降的影响。2、GEO5有限元地基固结分析模块       GEO5有限元模块可以进行固结分析,所采用的理论是Biot固结理论,该理论考虑了应力应变和渗流的耦合,所以可以分析一些太沙基一维固结理论无法分析的问题,比如加筋土地基的固结问题。另外有限元是二维分析,可以得到更多的应力应变和孔隙水压力的计算结果,所以如果是分析较复杂的问题,涉及二维的问题,建议使用该模块。       与一维固结分析不同,GEO5有限元固结分析可以得到回填土自身的沉降变形:还可以得到地基水平方向的位移:       与地基固结沉降分析模块不同,在有限元中,不需要指定确定变形计算深度的分析方法,也不需要指定最后一个工况计算总沉降,整个过程,只需要输入工况持续的时间,即可计算任意时刻的变形。此外,GEO5有限元可以采用接触面来模拟排水板,模拟过程可参考GEO5如何模拟有排水板的固结分析:       使用有限元分析,理论更加严格,也可以得到更多的结果,但是分析过程相较于地基固结沉降分析会更加耗时。3、Optum G2固结分析       Optum G2 是库仑的另一款数值分析软件,可以直接进行固结分析,所依据的理论也是Boit固结理论,而且软件也支持DXF文件导入建模。最重要的是,除了基本的固结分析,G2还能计算固结对地基承载力的影响以及填方边坡稳定性等。所以如果是分析复杂问题,还需要对固结地基进行下一步分析的话,推荐使用G2。       G2的固结分析可以实现任意时间土体固结度的计算,此时需要将分析目标设置为固结时间:也能计算达到任意固结度所需要的时间,此时将分析目标设置为某一固结度:        在进行了固结分析之后,可以直接使用G2的极限分析方法,分析不同固结情况下的地基承载力:以及分析不同阶段填方边坡稳定性:也可以在G2中添加排水板:       综上,针对具体的工程问题,用户可以根据实际情况选取合适的模块进行分析。       关于GEO5的地基固结沉降分析模块及有限元固结分析的详细介绍,可以点击此处查看视频教程。关于G2的固结分析及应用,可以点击此处查看视频教程。

关于土钉墙混凝土面层板计算、构造及施工的规范要求

库仑沈工 发表了文章 • 0 个评论 • 2015 次浏览 • 2020-04-10 10:32 • 来自相关话题

《基坑土钉支护技术规程》CECS 96:97计算要求如下:《复合土钉墙基坑支护技术规范》GB50739—2011土钉墙面层构造及施工要求:《建筑基坑支护技术规程》JGJ120-2012土钉墙面层构造及施工要求:
《基坑土钉支护技术规程》CECS 96:97计算要求如下:《复合土钉墙基坑支护技术规范》GB50739—2011土钉墙面层构造及施工要求:《建筑基坑支护技术规程》JGJ120-2012土钉墙面层构造及施工要求:

GEO5土坡模块导入渗流场的方法

南京库仑张工 发表了文章 • 0 个评论 • 2250 次浏览 • 2020-03-30 22:34 • 来自相关话题

       在GEO5有限元模块导出浸润面到土坡模块的方法这篇文章当中,介绍了如何将GEO5有限元分析得到的浸润面导入到土坡模块中,然后计算有地下水位的边坡稳定性。然而,有时在做更细致分析的时候,有的工程师希望软件能考虑渗流作用(渗流力)对边坡稳定性的影响,那么如何将渗流场导入到边坡当中进行分析呢,本篇文章将介绍GEO5土坡模块导入渗流场的过程和方法。1、使用GEO5有限元分析得到边坡的渗流场       这里以稳定流为例介绍。首先在有限元分析模块当中建立模型,输入材料参数及渗流边界条件之后,分析得到模型的稳定流渗流场,此时可以在计算书中查看每个网格和栅格点的孔隙水压力值,下图即是显示栅格点数值的稳定渗流场:       根据具体的模型尺寸,选择构建渗流场的数据点。当模型较大,网格也偏大时,可以选则网格节点数据;当模型较小,网格偏密时,可以选择栅格点数据。这样后面插值处理的数据量不会太大。       导出的数据只需要三列:节点X坐标,节点Y(或Z)坐标,节点孔隙水压力。2、使用GEO5三维地质建模模块插值       渗流场数据可以看作是带高程属性的地形点,那么就可以通过GEO5三维地质建模模块来插值生成等值线图。新建一个空白文档,按照导入地形点的方式导入步骤1中保存的渗流场数据:       导入成功后,软件会自动插值生成等值线。此时,在图形显示窗口中,勾选上“主等高线”和“次等高线”,就能查看软件插值出来的效果。可以通过设置“等值线间距”的大小,调整等值线的疏密程度,软件默认等值线间距为0.5m。接下来,导出调整好间距之后的等值线。点击【文件】→【导出】→【DXF格式】,在弹出的数据框中,只勾选“地形等高线”,然后导出。3、插值后的多段线的处理       打开导出的DXF文件,还需要对该文件做3方面的处理:       (1)删除不需要的线条,包括等值线数值为0的线条;       (2)导出的每条等值线都是由小的线段组成的,需要将这些小线段进行合并;       (3)选择需要导入到土坡的等值线,并将所有线条的高程坐标归0。4、土坡模块导入孔隙水压力等值线       在GEO5土坡模块中新建一个文件,导入处理过的等值线。点击【文件】→【导入】→【将DXF文件以多段线导入】,对于无法直接导入的多段线可以以模板方式导入后手动描一下。       复制步骤1中的模型数据,再新建一个土坡文件使得模型尺寸和材料参数和有限元中的相同,点击【地下水】,选择地下水类型为孔隙水压力,并将有限元生成的浸润面复制到土坡模块中。然后通过GEO剪贴板复制前一个文件中导入的多段线,然后对每条多段线的孔隙水压力进行赋值:       赋值后,即可在土坡模块中计算考虑渗流场的边坡稳定性。       如果想了解更多的操作细节,点击此处,可查看视频教程。 查看全部
       在GEO5有限元模块导出浸润面到土坡模块的方法这篇文章当中,介绍了如何将GEO5有限元分析得到的浸润面导入到土坡模块中,然后计算有地下水位的边坡稳定性。然而,有时在做更细致分析的时候,有的工程师希望软件能考虑渗流作用(渗流力)对边坡稳定性的影响,那么如何将渗流场导入到边坡当中进行分析呢,本篇文章将介绍GEO5土坡模块导入渗流场的过程和方法。1、使用GEO5有限元分析得到边坡的渗流场       这里以稳定流为例介绍。首先在有限元分析模块当中建立模型,输入材料参数及渗流边界条件之后,分析得到模型的稳定流渗流场,此时可以在计算书中查看每个网格和栅格点的孔隙水压力值,下图即是显示栅格点数值的稳定渗流场:       根据具体的模型尺寸,选择构建渗流场的数据点。当模型较大,网格也偏大时,可以选则网格节点数据;当模型较小,网格偏密时,可以选择栅格点数据。这样后面插值处理的数据量不会太大。       导出的数据只需要三列:节点X坐标,节点Y(或Z)坐标,节点孔隙水压力。2、使用GEO5三维地质建模模块插值       渗流场数据可以看作是带高程属性的地形点,那么就可以通过GEO5三维地质建模模块来插值生成等值线图。新建一个空白文档,按照导入地形点的方式导入步骤1中保存的渗流场数据:       导入成功后,软件会自动插值生成等值线。此时,在图形显示窗口中,勾选上“主等高线”和“次等高线”,就能查看软件插值出来的效果。可以通过设置“等值线间距”的大小,调整等值线的疏密程度,软件默认等值线间距为0.5m。接下来,导出调整好间距之后的等值线。点击【文件】→【导出】→【DXF格式】,在弹出的数据框中,只勾选“地形等高线”,然后导出。3、插值后的多段线的处理       打开导出的DXF文件,还需要对该文件做3方面的处理:       (1)删除不需要的线条,包括等值线数值为0的线条;       (2)导出的每条等值线都是由小的线段组成的,需要将这些小线段进行合并;       (3)选择需要导入到土坡的等值线,并将所有线条的高程坐标归0。4、土坡模块导入孔隙水压力等值线       在GEO5土坡模块中新建一个文件,导入处理过的等值线。点击【文件】→【导入】→【将DXF文件以多段线导入】,对于无法直接导入的多段线可以以模板方式导入后手动描一下。       复制步骤1中的模型数据,再新建一个土坡文件使得模型尺寸和材料参数和有限元中的相同,点击【地下水】,选择地下水类型为孔隙水压力,并将有限元生成的浸润面复制到土坡模块中。然后通过GEO剪贴板复制前一个文件中导入的多段线,然后对每条多段线的孔隙水压力进行赋值:       赋值后,即可在土坡模块中计算考虑渗流场的边坡稳定性。       如果想了解更多的操作细节,点击此处,可查看视频教程。

GEO5水位骤降边坡稳定性分析方法

南京库仑张工 发表了文章 • 0 个评论 • 4993 次浏览 • 2020-03-13 16:33 • 来自相关话题

       GEO5土坡模块可以分析考虑水位骤降下的边坡稳定性,但在实际的使用中,有工程师反映不知道该怎么使用,也有人说输入了地下水之后边坡安全系数并没有发生改变,十分困惑,所以本文将对GEO5中分析水位骤降的方法进行详细说明。1、注意事项       无论是分析水位骤降下边坡稳定性,还是一般情况下分析有地下水位的边坡稳定性,都需要注意的是在岩土材料输入的时候选择有效应力法进行计算,只有选择了有效应力法,软件才会考虑孔隙水压力对条块的作用。如果选择了总应力法或者总应力ccu,φcu,软件都不会考虑坡内地下水位对边坡的影响,但坡外水位的有利作用软件还是会考虑。有效应力法和总应力法不同选择的区别可以查看GEO5中有效应力法、总应力法,水土分算、水土合算的说明。2、传统分析方法       传统分析水位骤降的方法是通过设置初始地下水位和水位骤降后的地下水位面来分析,最简单的做法是认为坡内的水来不及排出,那么水位骤降后坡内的水位保持不变,只改变坡外的静水面,随着水位的下降,边坡安全系数将逐渐降低。       在GEO5土坡模块中,选择【地下水】中的类型为“水位骤降”,可以直接定义边坡的初始地下水位和骤降后的地下水位:       定义完成后,和一般的边坡计算一样直接进行分析即可。下图展示的是相同的初始地下水位,不同水位骤降情况的边坡安全系数。3、结合GEO5中的初始孔压折减系数分析       传统的考虑坡内水来不及排出的方法实际上是一种偏保守的方法,因为水位骤降其实也是有一个过程的,那么坡内的水或多或少都会渗出坡外,如果是对于渗透性较好的土体,那么坡内的水位还会有明显的下降,但是针对这个问题,再去使用非稳定流分析浸润线就会显得有点麻烦。所以,GEO5通过巧妙地设置初始孔压折减系数X这样一个值,使得我们可以去考虑有水排出的情况。       当我们在【地下水】中选择的地下水类型为“水位骤降”时,需要在【岩土材料】中输入初始孔压折减系数的值:这里X的取值范围为[0,1],当土体完全透水时X=1,完全不透水时X=0,其他情况介于0和1之间,X值的作用原理可查看GEO5的帮助文档,或者直接点击GEO5土坡模块中地下水类型。       这里需要对三种情况的取值进一步说明:(1)X=1       X=1意味着土体完全透水,它的实际意义是:不考虑骤降后的水位与初始水位之间土体的孔隙水压力,所以X=1时,坡内不同的地下水位面会得到不同的结果。(2)X=0       X=0意味着土体完全不透水,它的实际意义是:认为骤降后的水位与初始水位之间土体仍然处于饱和状态,所以X=0时,坡内不同的地下水位面会得到相同的结果。(3)0 查看全部
       GEO5土坡模块可以分析考虑水位骤降下的边坡稳定性,但在实际的使用中,有工程师反映不知道该怎么使用,也有人说输入了地下水之后边坡安全系数并没有发生改变,十分困惑,所以本文将对GEO5中分析水位骤降的方法进行详细说明。1、注意事项       无论是分析水位骤降下边坡稳定性,还是一般情况下分析有地下水位的边坡稳定性,都需要注意的是在岩土材料输入的时候选择有效应力法进行计算,只有选择了有效应力法,软件才会考虑孔隙水压力对条块的作用。如果选择了总应力法或者总应力ccu,φcu,软件都不会考虑坡内地下水位对边坡的影响,但坡外水位的有利作用软件还是会考虑。有效应力法和总应力法不同选择的区别可以查看GEO5中有效应力法、总应力法,水土分算、水土合算的说明。2、传统分析方法       传统分析水位骤降的方法是通过设置初始地下水位和水位骤降后的地下水位面来分析,最简单的做法是认为坡内的水来不及排出,那么水位骤降后坡内的水位保持不变,只改变坡外的静水面,随着水位的下降,边坡安全系数将逐渐降低。       在GEO5土坡模块中,选择【地下水】中的类型为“水位骤降”,可以直接定义边坡的初始地下水位和骤降后的地下水位:       定义完成后,和一般的边坡计算一样直接进行分析即可。下图展示的是相同的初始地下水位,不同水位骤降情况的边坡安全系数。3、结合GEO5中的初始孔压折减系数分析       传统的考虑坡内水来不及排出的方法实际上是一种偏保守的方法,因为水位骤降其实也是有一个过程的,那么坡内的水或多或少都会渗出坡外,如果是对于渗透性较好的土体,那么坡内的水位还会有明显的下降,但是针对这个问题,再去使用非稳定流分析浸润线就会显得有点麻烦。所以,GEO5通过巧妙地设置初始孔压折减系数X这样一个值,使得我们可以去考虑有水排出的情况。       当我们在【地下水】中选择的地下水类型为“水位骤降”时,需要在【岩土材料】中输入初始孔压折减系数的值:这里X的取值范围为[0,1],当土体完全透水时X=1,完全不透水时X=0,其他情况介于0和1之间,X值的作用原理可查看GEO5的帮助文档,或者直接点击GEO5土坡模块中地下水类型。       这里需要对三种情况的取值进一步说明:(1)X=1       X=1意味着土体完全透水,它的实际意义是:不考虑骤降后的水位与初始水位之间土体的孔隙水压力,所以X=1时,坡内不同的地下水位面会得到不同的结果。(2)X=0       X=0意味着土体完全不透水,它的实际意义是:认为骤降后的水位与初始水位之间土体仍然处于饱和状态,所以X=0时,坡内不同的地下水位面会得到相同的结果。(3)0<X<1       0<X<1其实模拟的是真实的情况,即水位骤降后考虑部分水的排出,既不是完全透水也不是完全不透水,在相同水位条件下,边坡安全系数将位于X=0和X=1之间。       至于X如何取值,则需要根据实际岩土材料的渗透性以及水位骤降的速度和阶段综合选取。另外,通过以上分析,我们也不难发现,如果采用传统的通过控制坡内水位面不变化的方法来分析,那么X值无论设置为多少,对最终结果都没有影响。

GEO5深基坑预留土堤盆式开挖计算介绍

库仑刘工 发表了文章 • 0 个评论 • 2653 次浏览 • 2020-03-07 23:17 • 来自相关话题

概述:GEO5可以设计计算桩前预留土堤,进行盆式开挖的深基坑。有不少工程师朋友可能都试用过该功能,但是由于没有详细去了解软件对这种情况的计算原理,有时会出现一些与预期不太一样的结果。导致一些工程师朋友使用软件设计时,只是用软件做一个辅助验算,出一个计算书。针对这种情况,非常有必要对软件的计算原理做一个详细的说明。视频讲解部分:基坑盆式开挖设计计算1. 悬臂式结构土压力计算首先我们先看一下规范里面关于基坑支护结构的计算原理图。基坑外侧土压力计算采用,主动土压力(一般利用库仑土压力公式进行计算)。基坑内侧的土压力,不再使用被动土压力,而是利用竖向温克尔弹性地基梁进行迭代计算土反力。图1 悬臂式结构土反力p由弹簧刚度k和变形得到;弹簧刚度与水平反力系数m(K、c)和桩前土体埋深决定。岩土材料确定之后,m是个定值,当做常量考虑,弹簧刚度仅与埋深有关(z-h)。图2 基坑开挖示意图这里h为当前工况的基坑开挖深度,z为土层计算点到地面的距离,z-h即为桩前土体的埋深。随着开挖进行,开挖深度加深,弹簧刚度会变小,土反力调整,位移调整,结构内力调整。根据施工情况进行分步开挖分析,土反力就会随之调整,这也是规范里推荐使用增量法进行设计的原因所在。2. 土反力最大值图3 土体分步开挖主动土压力大小不变,随着开挖加深,弹簧范围和大小都在减小,弹簧为提供足够的抗力,需要有足够大的变形。但土体(弹簧)变形又不能无限增大,那么土体最大位移为多少时,土体会破坏?直接通过土体变形来判断土体是否能破坏,是很难实现的。那么我们应该怎么判断土体破坏呢?我们可以换一个思路——用土反力和极限土压力进行对比,来判断土体变形是否可控。岩土体是弹塑性的,土体变形到一定程度,就会进入塑形状态,这时候,变形继续增加,土反力却不会继续增大。土反力最大值不应大于被动土压力,大过被动土压力,土体就超出临界状态,会产生破坏。综上,由变形与弹簧刚度计算的土反力,最大值不应大于被动土压力。当土反力不大于被动土压力时,应取实际计算值;当土反力大于被动土压力时,即土体进入塑形变形区时,应对土反力进行调整。调整方法介绍如下。3. 土体塑形变形时土反力取值图4 土压力和位移(弹性)该图是深基坑分析模块分析结果图,绿色虚线代表经典土压力(极限土压力),蓝色实线代表土反力。相同条件下,作用在挡土构件上的土压力,被动土压力>静止土压力>主动土压力。同一深度下,最外侧绿线是被动土压力,最内侧绿线为主动土压力,中间绿线为静止土压力。蓝色的线为土反力,即真实土压力。真实土压力大小,应介于主动土压力与被动土压力之间。图5 土压力和位移(弹塑性)随着开挖深度加深,会导致计算土反力继续增大,土体进入塑形状态,这时按p=ky计算土压力,会导致计算土反力超过被动土压力,这不符合土体规律。软件在这个时候会有一个调整(如图红色线框标注位置)。软件比较计算土反力,与被动土压力的大小。当该单元的土反力大于被动土压力的时,会用该单元范围内的被动土压力代替土反力,进行下一次迭代,直到所有单元的土反力都不大于被动土压力为止。图中红框标注位置,被动土压力线与土压力线重合。4. 盆式开挖土压力计算图6 盆式开挖桩后土体依然使用土压力,桩前土体依然使用土弹簧计算,比较土弹簧与被动土压力的大小。难点在于预留土堤之后,土弹簧和被动土压力应该如何考虑,我们不妨先看一下桩前土体的被动土压力的变化。与水平开挖相比,如果盆式开挖范围在破裂面以外,那么不必考虑被动土压力变化;开挖范围在破裂面内时,则需要考虑被动土压力的减小。这里被动土压力计算,需要联合使用图解法和解析法,具体计算可以参考土力学教程中特殊土压力计算。预留土堤部分的土弹簧,依然按正常土体取值(土弹簧刚度与岩土材料和埋深有关)计算土反力。这时需要考虑的一个问题就是,预留土堤能否像水平土层那样提供那么大的土反力,如何判断,标准是什么。判断标准依然是土反力与被动土压力的大小。假如土反力小于被动土压力力,那么 计算土压力取土反力;假如土反力大于被动土压力,那么就将土反力调整为被动土压力。注意,这里提到的被动土压力是考虑了盆式开挖之后的被动土压力。这样就确保了预留土提部分的土反力计算是合理的。5. 盆式开挖预留土堤注意事项(1)假如预留土堤部分,计算出来大范围都进入塑性变形,即土反力与被动土压力线重合,那么需要考虑,是否开挖过大,或者预留土堤宽度过窄。(2)预留土堤部分,需验证边坡是否稳定,可以调用外部稳定性验算,用限制搜索,完成桩前边坡的验算。(3)当预留土堤宽开挖计算结果与未进行盆式开挖相比几乎没有变化时,说明预留土堤宽度已经足够大了。我们也可以通过调整预留土堤宽度,找到临界值。如果变形、塑性变形、土堤边坡稳定性都能满足要求时,我们可以认为预留土堤形状是合适的。(4)上海市基坑工程技术规范DGTJ08-61-2010对盆式开挖有一些要求,这里贴出来以供参考。 查看全部
概述:GEO5可以设计计算桩前预留土堤,进行盆式开挖的深基坑。有不少工程师朋友可能都试用过该功能,但是由于没有详细去了解软件对这种情况的计算原理,有时会出现一些与预期不太一样的结果。导致一些工程师朋友使用软件设计时,只是用软件做一个辅助验算,出一个计算书。针对这种情况,非常有必要对软件的计算原理做一个详细的说明。视频讲解部分:基坑盆式开挖设计计算1. 悬臂式结构土压力计算首先我们先看一下规范里面关于基坑支护结构的计算原理图。基坑外侧土压力计算采用,主动土压力(一般利用库仑土压力公式进行计算)。基坑内侧的土压力,不再使用被动土压力,而是利用竖向温克尔弹性地基梁进行迭代计算土反力。图1 悬臂式结构土反力p由弹簧刚度k和变形得到;弹簧刚度与水平反力系数m(K、c)和桩前土体埋深决定。岩土材料确定之后,m是个定值,当做常量考虑,弹簧刚度仅与埋深有关(z-h)。图2 基坑开挖示意图这里h为当前工况的基坑开挖深度,z为土层计算点到地面的距离,z-h即为桩前土体的埋深。随着开挖进行,开挖深度加深,弹簧刚度会变小,土反力调整,位移调整,结构内力调整。根据施工情况进行分步开挖分析,土反力就会随之调整,这也是规范里推荐使用增量法进行设计的原因所在。2. 土反力最大值图3 土体分步开挖主动土压力大小不变,随着开挖加深,弹簧范围和大小都在减小,弹簧为提供足够的抗力,需要有足够大的变形。但土体(弹簧)变形又不能无限增大,那么土体最大位移为多少时,土体会破坏?直接通过土体变形来判断土体是否能破坏,是很难实现的。那么我们应该怎么判断土体破坏呢?我们可以换一个思路——用土反力和极限土压力进行对比,来判断土体变形是否可控。岩土体是弹塑性的,土体变形到一定程度,就会进入塑形状态,这时候,变形继续增加,土反力却不会继续增大。土反力最大值不应大于被动土压力,大过被动土压力,土体就超出临界状态,会产生破坏。综上,由变形与弹簧刚度计算的土反力,最大值不应大于被动土压力。当土反力不大于被动土压力时,应取实际计算值;当土反力大于被动土压力时,即土体进入塑形变形区时,应对土反力进行调整。调整方法介绍如下。3. 土体塑形变形时土反力取值图4 土压力和位移(弹性)该图是深基坑分析模块分析结果图,绿色虚线代表经典土压力(极限土压力),蓝色实线代表土反力。相同条件下,作用在挡土构件上的土压力,被动土压力>静止土压力>主动土压力。同一深度下,最外侧绿线是被动土压力,最内侧绿线为主动土压力,中间绿线为静止土压力。蓝色的线为土反力,即真实土压力。真实土压力大小,应介于主动土压力与被动土压力之间。图5 土压力和位移(弹塑性)随着开挖深度加深,会导致计算土反力继续增大,土体进入塑形状态,这时按p=ky计算土压力,会导致计算土反力超过被动土压力,这不符合土体规律。软件在这个时候会有一个调整(如图红色线框标注位置)。软件比较计算土反力,与被动土压力的大小。当该单元的土反力大于被动土压力的时,会用该单元范围内的被动土压力代替土反力,进行下一次迭代,直到所有单元的土反力都不大于被动土压力为止。图中红框标注位置,被动土压力线与土压力线重合。4. 盆式开挖土压力计算图6 盆式开挖桩后土体依然使用土压力,桩前土体依然使用土弹簧计算,比较土弹簧与被动土压力的大小。难点在于预留土堤之后,土弹簧和被动土压力应该如何考虑,我们不妨先看一下桩前土体的被动土压力的变化。与水平开挖相比,如果盆式开挖范围在破裂面以外,那么不必考虑被动土压力变化;开挖范围在破裂面内时,则需要考虑被动土压力的减小。这里被动土压力计算,需要联合使用图解法和解析法,具体计算可以参考土力学教程中特殊土压力计算。预留土堤部分的土弹簧,依然按正常土体取值(土弹簧刚度与岩土材料和埋深有关)计算土反力。这时需要考虑的一个问题就是,预留土堤能否像水平土层那样提供那么大的土反力,如何判断,标准是什么。判断标准依然是土反力与被动土压力的大小。假如土反力小于被动土压力力,那么 计算土压力取土反力;假如土反力大于被动土压力,那么就将土反力调整为被动土压力。注意,这里提到的被动土压力是考虑了盆式开挖之后的被动土压力。这样就确保了预留土提部分的土反力计算是合理的。5. 盆式开挖预留土堤注意事项(1)假如预留土堤部分,计算出来大范围都进入塑性变形,即土反力与被动土压力线重合,那么需要考虑,是否开挖过大,或者预留土堤宽度过窄。(2)预留土堤部分,需验证边坡是否稳定,可以调用外部稳定性验算,用限制搜索,完成桩前边坡的验算。(3)当预留土堤宽开挖计算结果与未进行盆式开挖相比几乎没有变化时,说明预留土堤宽度已经足够大了。我们也可以通过调整预留土堤宽度,找到临界值。如果变形、塑性变形、土堤边坡稳定性都能满足要求时,我们可以认为预留土堤形状是合适的。(4)上海市基坑工程技术规范DGTJ08-61-2010对盆式开挖有一些要求,这里贴出来以供参考。

“模量”大荟萃——GEO5和G2常见模量参数简介

南京库仑张工 发表了文章 • 0 个评论 • 5820 次浏览 • 2020-02-13 09:43 • 来自相关话题

        在使用GEO5或G2进行计算分析的时候,我们经常会遇到要输入各种模量参数,很多用户不知道这些模量到底是什么意思,该怎么取值,所以本文做一个简单梳理,以便于各位用户更好的使用软件。        模量是指材料在受力状态下应力和应变的比值,量纲是L-1MT-2,常用单位是MPa和GPa。如果在应力和应变上加上限定条件和修饰词语,就会衍生出不同的模量,比如最常用的弹性模量E(或杨氏模量),是指材料在弹性变形阶段正应力与正应变的比值,如图1就是低碳钢拉伸过程的应力-应变曲线图,图中Oa段为弹性变形,该段的斜率值即为弹性模量。图1:低碳钢拉伸过程的应力-应变曲线图        在弹性变形阶段剪切应力与剪切应变的比值,则称为切变模量G(或剪切模量)。此外,还有一种体积模量K,指的是材料在弹性变形范围内,平均应力(某一点三个主应力的平均值)和体积应变的比值,与弹性模量的关系可表示为,其中μ为泊松比。        以上三个概念在弹性力学或线弹性材料当中应用比较广泛。除了弹性模量,切变模量和体积模量这两个模量在岩土分析当中则用的比较少。        实际上,我们在用软件分析岩土问题的时候,遇到最多的是弹性模量E、压缩模量Es和变形模量E0。弹性模量的概念在上文中已给出,而对于压缩模量和变形模量,笔者在查阅资料之前,认为二者的区别主要在于压缩模量是室内试验得到的结果,变形模量是野外原位测试的结果。然而这种认识是不准确的,实际上二者最大的区别在于试验条件是否完全侧限(即不允许侧向变形)。压缩模量是指土在完全侧限条件下,竖向正应力与相应的变形稳定情况下正应变的比值,一般通过室内固结试验测得。变形模量则是指土体在侧向自由膨胀条件下,正应力与相应正应变的比值,既可通过现场原位试验(比如平板载荷试验、扁铲侧胀试验、旁压试验等)测得,也可以通过室内三轴压缩试验获得。               与弹性模量不同,测量压缩模量和变形模量的应力-应变曲线是非线性的。如图2所示,在侧限压缩条件下,压缩模量随竖向应力的增加而增加;在常规三轴条件下,变形模量随偏差应力的增加而减小。由此可见压缩模量和变形模量都具有分段性,不同压力范围有不同的取值。因此也就衍生出不同取值方法下的模量参数,如图3展示的就是变形模量的不同取值,包括了切线模量和割线模量。      图2:两种室内试验的应力-应变关系曲线                       图3:变形模量的不同模量类型               典型的切线模量是初始切线模量(或叫初始弹性模量),是土体应力-应变曲线初始段切线斜率最大的部分,可以用来表征土体弹性变形阶段的模量。典型的割线模量是E50,对应土体峰值应力(破坏时的应力)一半时的应力与相应应变的比值,如图4。        从图4和图5可知,土体在荷载的作用下产生变形,在外荷载卸除后,土的应力-应变关系并没有回到原点,变形中有一部分是可以恢复的,而另一部分是不可恢复的,这个过程说明了土体材料典型的弹塑性。土体回弹和再加载过程一般可以用一个模量表示,即回弹模量Eur,假设能够回弹的变形都是弹性变形,那么回弹模量近似等于初始弹性模量,根据经验,土体初始弹性模量约为变形模量的3~5倍,所以当没有试验资料时,回弹模量一般按变形模量的3~5倍取值。这个经验十分有用,比如在使用GEO5有限元分析模块定义修正线弹性模型、Mohr-Coulomb弹塑性模型或者D-P模型时,以及使用G2定义HMC(硬化摩尔库仑)材料时,都需要输入材料的回弹模量。图4:割线模量E50图5:土的加载-卸载应力应变曲线        在假定相同起始状态的条件下,三轴压缩的变形模量E0和侧限压缩试验中的压缩模量Es可以通过广义胡克定律推导出二者的关系,公式如下:其中μ为泊松比。上式是基于线弹性假定的理论关系式,但土体并不是理想弹性体,所以按上述公式换算在大部分土体中都不太符合。在GEO5的帮助文档中也提到:实践经验表明由变形模量推导而来的压缩模量和由现场实测荷载沉降曲线得到的压缩模量往往会出现很大的不同,甚至处于不同的数量级。一般来说结构性较弱的软土比较符合这个公式。        此外,当使用G2分析,选择Tresca材料时,需要输入不排水变形模量Eu,该值可通过室内不排水三轴压缩试验或野外原位测试试验获得。另外,GEO5有限元分析模块进行应力应变分析时,允许用户定义随深度增加的材料刚度,即土体不同深度处具有不同的模量,如图6所示,可以输入弹性模量随深度的变化率,相关理论可参考http://www.wen.kulunsoft.com/question/865。图6:GEO5有限元模块岩土材料参数中定义随深度变化的弹性模量        综上所述,那么应该何时采用何种模量呢。本文建议,在一维沉降分析时,比如利用分层总和法计算沉降或者固结分析时,建议土体采用压缩模量进行分析;而在进行三维变形分析,比如边坡稳定性分析和基坑开挖分析时,土体则可以采用变形模量;而岩体和混凝土结构一般采用弹性模量进行分析。土体的初始弹性模量主要用于计算瞬时沉降。        以上介绍的各种模量都应当通过可靠的实验来测得,如果没有试验资料,可参考地区经验取值或参考GEO5帮助文档给出的建议值。 查看全部
        在使用GEO5或G2进行计算分析的时候,我们经常会遇到要输入各种模量参数,很多用户不知道这些模量到底是什么意思,该怎么取值,所以本文做一个简单梳理,以便于各位用户更好的使用软件。        模量是指材料在受力状态下应力和应变的比值,量纲是L-1MT-2,常用单位是MPa和GPa。如果在应力和应变上加上限定条件和修饰词语,就会衍生出不同的模量,比如最常用的弹性模量E(或杨氏模量),是指材料在弹性变形阶段正应力与正应变的比值,如图1就是低碳钢拉伸过程的应力-应变曲线图,图中Oa段为弹性变形,该段的斜率值即为弹性模量。图1:低碳钢拉伸过程的应力-应变曲线图        在弹性变形阶段剪切应力与剪切应变的比值,则称为切变模量G(或剪切模量)。此外,还有一种体积模量K,指的是材料在弹性变形范围内,平均应力(某一点三个主应力的平均值)和体积应变的比值,与弹性模量的关系可表示为,其中μ为泊松比。        以上三个概念在弹性力学或线弹性材料当中应用比较广泛。除了弹性模量,切变模量和体积模量这两个模量在岩土分析当中则用的比较少。        实际上,我们在用软件分析岩土问题的时候,遇到最多的是弹性模量E、压缩模量Es和变形模量E0。弹性模量的概念在上文中已给出,而对于压缩模量和变形模量,笔者在查阅资料之前,认为二者的区别主要在于压缩模量是室内试验得到的结果,变形模量是野外原位测试的结果。然而这种认识是不准确的,实际上二者最大的区别在于试验条件是否完全侧限(即不允许侧向变形)。压缩模量是指土在完全侧限条件下,竖向正应力与相应的变形稳定情况下正应变的比值,一般通过室内固结试验测得。变形模量则是指土体在侧向自由膨胀条件下,正应力与相应正应变的比值,既可通过现场原位试验(比如平板载荷试验、扁铲侧胀试验、旁压试验等)测得,也可以通过室内三轴压缩试验获得。               与弹性模量不同,测量压缩模量和变形模量的应力-应变曲线是非线性的。如图2所示,在侧限压缩条件下,压缩模量随竖向应力的增加而增加;在常规三轴条件下,变形模量随偏差应力的增加而减小。由此可见压缩模量和变形模量都具有分段性,不同压力范围有不同的取值。因此也就衍生出不同取值方法下的模量参数,如图3展示的就是变形模量的不同取值,包括了切线模量和割线模量。      图2:两种室内试验的应力-应变关系曲线                       图3:变形模量的不同模量类型               典型的切线模量是初始切线模量(或叫初始弹性模量),是土体应力-应变曲线初始段切线斜率最大的部分,可以用来表征土体弹性变形阶段的模量。典型的割线模量是E50,对应土体峰值应力(破坏时的应力)一半时的应力与相应应变的比值,如图4。        从图4和图5可知,土体在荷载的作用下产生变形,在外荷载卸除后,土的应力-应变关系并没有回到原点,变形中有一部分是可以恢复的,而另一部分是不可恢复的,这个过程说明了土体材料典型的弹塑性。土体回弹和再加载过程一般可以用一个模量表示,即回弹模量Eur,假设能够回弹的变形都是弹性变形,那么回弹模量近似等于初始弹性模量,根据经验,土体初始弹性模量约为变形模量的3~5倍,所以当没有试验资料时,回弹模量一般按变形模量的3~5倍取值。这个经验十分有用,比如在使用GEO5有限元分析模块定义修正线弹性模型、Mohr-Coulomb弹塑性模型或者D-P模型时,以及使用G2定义HMC(硬化摩尔库仑)材料时,都需要输入材料的回弹模量。图4:割线模量E50图5:土的加载-卸载应力应变曲线        在假定相同起始状态的条件下,三轴压缩的变形模量E0和侧限压缩试验中的压缩模量Es可以通过广义胡克定律推导出二者的关系,公式如下:其中μ为泊松比。上式是基于线弹性假定的理论关系式,但土体并不是理想弹性体,所以按上述公式换算在大部分土体中都不太符合。在GEO5的帮助文档中也提到:实践经验表明由变形模量推导而来的压缩模量和由现场实测荷载沉降曲线得到的压缩模量往往会出现很大的不同,甚至处于不同的数量级。一般来说结构性较弱的软土比较符合这个公式。        此外,当使用G2分析,选择Tresca材料时,需要输入不排水变形模量Eu,该值可通过室内不排水三轴压缩试验或野外原位测试试验获得。另外,GEO5有限元分析模块进行应力应变分析时,允许用户定义随深度增加的材料刚度,即土体不同深度处具有不同的模量,如图6所示,可以输入弹性模量随深度的变化率,相关理论可参考http://www.wen.kulunsoft.com/question/865。图6:GEO5有限元模块岩土材料参数中定义随深度变化的弹性模量        综上所述,那么应该何时采用何种模量呢。本文建议,在一维沉降分析时,比如利用分层总和法计算沉降或者固结分析时,建议土体采用压缩模量进行分析;而在进行三维变形分析,比如边坡稳定性分析和基坑开挖分析时,土体则可以采用变形模量;而岩体和混凝土结构一般采用弹性模量进行分析。土体的初始弹性模量主要用于计算瞬时沉降。        以上介绍的各种模量都应当通过可靠的实验来测得,如果没有试验资料,可参考地区经验取值或参考GEO5帮助文档给出的建议值。

求解器状态不可行是什么原因,怎么解决?

回答

t13983007248 发起了问题 • 2 人关注 • 0 个回答 • 1818 次浏览 • 2020-01-06 09:46 • 来自相关话题

抗滑桩模块,桩身嵌岩,由等效内摩擦角换算地基横向承载力特征值

库仑刘工 发表了文章 • 0 个评论 • 3343 次浏览 • 2019-12-26 10:15 • 来自相关话题

在抗滑桩模块,当选择桩身嵌岩时,需输入岩石的天然单轴极限抗压强度标准值,来计算岩石地基横向容许承载力。计算公式如下:具体参数说明可以查看:桩身嵌岩水平方向换算系数K及折减系数v说明假若,没有岩石天然单轴极限抗压强度参数,也可以根据建筑边坡工程技术规范GB50330-2013中板桩式挡土墙章节的换算公式,利用等效内摩擦角进行换算。规范内容摘录如下:嵌入土层或风化层土、砂砾状岩层时,滑动面以下或桩嵌入稳定岩土层内深度为h2/3和h2(滑动面以下或嵌入稳定岩土层内桩长)处的横向压应力不应大于地基横向承载力特征值。悬臂抗滑桩(图13.2.8)地基横向承载力特征值可按下列公式计算:1)当设桩处沿滑动方向地面坡度小于8°时地基y点的横向承载力特征值可按下式计算:图13.2.8悬臂抗滑桩土质地基横向承载力特征值计算简图1一桩顶地面;2一滑面;3一抗滑桩;4一滑动方向;5一被动土压力分布图;6一主动土压力分布图2)当设桩处沿滑动方向地面坡度i≥8°且i≤φ0时,地基y点的横向承载力特征值可按下式计算:软件里面需要输入岩石单轴抗压极限强度,需要把横向承载力特征值换算成标准值。frk = fH/kv 查看全部
在抗滑桩模块,当选择桩身嵌岩时,需输入岩石的天然单轴极限抗压强度标准值,来计算岩石地基横向容许承载力。计算公式如下:具体参数说明可以查看:桩身嵌岩水平方向换算系数K及折减系数v说明假若,没有岩石天然单轴极限抗压强度参数,也可以根据建筑边坡工程技术规范GB50330-2013中板桩式挡土墙章节的换算公式,利用等效内摩擦角进行换算。规范内容摘录如下:嵌入土层或风化层土、砂砾状岩层时,滑动面以下或桩嵌入稳定岩土层内深度为h2/3和h2(滑动面以下或嵌入稳定岩土层内桩长)处的横向压应力不应大于地基横向承载力特征值。悬臂抗滑桩(图13.2.8)地基横向承载力特征值可按下列公式计算:1)当设桩处沿滑动方向地面坡度小于8°时地基y点的横向承载力特征值可按下式计算:图13.2.8悬臂抗滑桩土质地基横向承载力特征值计算简图1一桩顶地面;2一滑面;3一抗滑桩;4一滑动方向;5一被动土压力分布图;6一主动土压力分布图2)当设桩处沿滑动方向地面坡度i≥8°且i≤φ0时,地基y点的横向承载力特征值可按下式计算:软件里面需要输入岩石单轴抗压极限强度,需要把横向承载力特征值换算成标准值。frk = fH/kv

GEO5三维地质建模工程实例——山体滑坡

库仑赵 发表了文章 • 0 个评论 • 3265 次浏览 • 2018-09-19 10:35 • 来自相关话题

        岩土工程设计基于两个重要的信息模型:地质模型和岩土模型。地质模型包括场地条件、地下勘察和三维结构等信息,岩土模型是在地质模型的基础上复合岩土材料性质, 地震, 动力和静力荷载, 施工方法和管理等信息。       本文以某山体滑坡为例,介绍如何利用GEO5软件实现从地质模型到岩土模型,再到分析设计的整个岩土工程设计流程。1.整体地质环境的判断受山体滑坡威胁的道路(印度,哈马拉亚斯)       山体岩土组成:上层为层厚不规则的厚黄土层,下部为冲击扇,粘结程度较差,工程地质条件差,遇水易发生破坏。2.根据地形点构造三维地形面       在三维地质建模“地形点”选项中导入地形点数据,软件根据数据信息生成地形模型。三维地形面3.输入地质调查数据生成三维地质模型       在生成的三维地形模型基础上,输入相应的地质调查信息和试验数据,软件根据信息进行岩土层的划分,生成三维地质模型。带勘查信息的三维地质模型4.在生成的三维地质模型中选取剖面进行稳定性分析在三维地质模型上选取劣势位置切割直接生成二维剖面5.边坡稳定性分析       借助GEO5软件的灵活性,在三维地质建模模块中直接调用边坡稳定性分析模块,对截取的二维剖面进行稳定性分析(A-A,C-C,D-D,F-F,G-G),此处以较为复杂的剖面C-C为例进行介绍。局部稳定性分析(不满于要求)支护形式设计(挡土墙+回填)支护后局部稳定性分析(满足要求)整体稳定性分析(满足要求) 查看全部
        岩土工程设计基于两个重要的信息模型:地质模型和岩土模型。地质模型包括场地条件、地下勘察和三维结构等信息,岩土模型是在地质模型的基础上复合岩土材料性质, 地震, 动力和静力荷载, 施工方法和管理等信息。       本文以某山体滑坡为例,介绍如何利用GEO5软件实现从地质模型到岩土模型,再到分析设计的整个岩土工程设计流程。1.整体地质环境的判断受山体滑坡威胁的道路(印度,哈马拉亚斯)       山体岩土组成:上层为层厚不规则的厚黄土层,下部为冲击扇,粘结程度较差,工程地质条件差,遇水易发生破坏。2.根据地形点构造三维地形面       在三维地质建模“地形点”选项中导入地形点数据,软件根据数据信息生成地形模型。三维地形面3.输入地质调查数据生成三维地质模型       在生成的三维地形模型基础上,输入相应的地质调查信息和试验数据,软件根据信息进行岩土层的划分,生成三维地质模型。带勘查信息的三维地质模型4.在生成的三维地质模型中选取剖面进行稳定性分析在三维地质模型上选取劣势位置切割直接生成二维剖面5.边坡稳定性分析       借助GEO5软件的灵活性,在三维地质建模模块中直接调用边坡稳定性分析模块,对截取的二维剖面进行稳定性分析(A-A,C-C,D-D,F-F,G-G),此处以较为复杂的剖面C-C为例进行介绍。局部稳定性分析(不满于要求)支护形式设计(挡土墙+回填)支护后局部稳定性分析(满足要求)整体稳定性分析(满足要求)

重力式挡墙计算堆边坡的问题

回答

ES 发起了问题 • 1 人关注 • 0 个回答 • 904 次浏览 • 2018-07-17 16:29 • 来自相关话题

关于库仑土压力计算

库仑孙工 发表了文章 • 0 个评论 • 9236 次浏览 • 2018-06-08 08:57 • 来自相关话题

        库仑土压力作为一种经典土压力,由于其计算简单方便等特点一直被工程师所广泛接受。但是经典的库仑土压力是由较多理想的假定条件的,如①挡墙为刚性体,墙后填土为无粘性土(粘聚力c=0);②极限土压力条件下,滑动破裂面为一平面;③滑动土楔体为刚体。然而,大多情况下,土体并不是完全无粘性土,也就是说工程上遇到的大部分土体并不适用经典的库仑土压力理论。幸运的是,学者们通过不懈努力对其进行了修正,修正后的库仑土压力计算方法同样适用于非黏性土。由于库仑土压力理论是基于假定的破裂面进行土楔计算的,也就是说找到最大土压力对应的破裂面是解决库仑土压力的重中之中。经典土压力理论是通过求导,得到破裂面角θ的极值,进而确定最大主动土压力或被动土压力的。然而,在加入粘聚力等对土压力的影响后,用求导的方式求解破裂面角θ的极值已经变得越来越困难,求解公式也越来越复杂,基本不能适用手算。因此目前求解库仑土压力的两个方向:一是求解力的多边形,对公式简化求得最大破裂面角θ的极值;二通过暴力搜索试算不同破裂面角θ所对应的土压力值,确定最大土压力。下面将结合两种计算方式进行详述。一、求解力的多边形,求导得到最大破裂面角θ的极值,进而求得最大土压力。(1)规范中的计算方法       根据建筑边坡技术工程规范,对于挡墙的主动土压力采用库仑土压力理论,考虑土与结构之间的摩擦系数以及土的粘聚力,其计算简图如图1,其计算原理即假定一个破裂面,及滑动楔体,根据力的平衡,如图2,计算出主动土压力的合力Ea,进而根据求得主动土压力系数。        根据李兴高以及魏汝龙等对库仑土压力计算理论的探讨,发现当不考虑墙面摩擦的影响时,土的粘聚力并不会影响破裂面倾角θ;而当考虑墙面的摩擦影响时,破裂面倾角不仅随着土的内摩擦角和岩土与墙面摩擦角变化,而且还随着粘聚力c的变化而变化,因此在用求导方法求解破裂面倾角θ的极值变得复杂困难。为了方便工程师计算,建筑边坡规范中的库仑主动土压力是经过简化后,比如破裂面的长度用h/sinθ,破裂面的倾角θ也是进行了简化假定,求导得到的极值,土压力系数公式如图2,这样计算出来的土压力其实是一个简化后的近似值,并且随着粘聚力c的增大其与真实值得结果偏差也越大。                                                                        图2(2)GEO5中计算方法        根据前人的研究,发现粘聚力的存在其实可以很好增强岩土的自稳性,进而限制主动土压力破裂面最后减小主动土压力,当粘聚力足够大时,其时土体是自稳的,此时的主动土压力应该是趋于0的。基于此种现象与共识,GEO5中对库仑主动土压力求解, 则将粘聚力c对主动土压力的影响进行单独考虑,分别在无粘性土中求得精确解的破裂面倾角极值得到精确的土压力系数,然后再减去由粘聚力引起的土压力的减小的粘聚力产生的土压力系数,最终求得库仑土压力在粘性土情况下的主动土压力。除此,GEO5中还根据支挡结构与水平面的夹角的不同进行分类考虑,其计算原理如图3,分别考虑了俯斜式挡墙与仰斜式挡墙的不同情况,分别给出粘聚力对其的影响,其计算原理相比边坡规范更全面详细。图3二、通过试算不同破裂面倾角θ求解库仑主动土压力        该种方法也是基于力的多变形进行计算的,只是在计算时不停赋予破裂倾角θ值,分别计算出其对应的主动土压力合力值Ea,最后搜索最大Ea值多对应的破裂面倾角θ即为主动土压力破裂面倾角。首先该种方法是不能进行手算校核的,只能通过计算机软件进行计算;其次该种方法其实求解的也是个近似解,其计算精度受搜索步长的限制,搜索步长越小计算精度越高,但是其计算成本也较高。三、三种方法进行对比      (1)以下是对同一模型,调整不同参数,采用三种不同库仑土压力计算结果的对比。    (2)测试结果对比       根据测试,发现对于条件较为简单情况下,三种计算结果完全一样,对于算例3-5中出现计算结果相差,是由于计算条件更加复杂,考虑了墙后土体倾斜,岩土与挡强的摩擦角等因素,这种参数较多条件复杂情况下,建筑边坡规范中为了手算的方便,如上文分析所说,其对库仑土压力计算理论进行了简化,对破裂面进行了假定,而其他两种方法的破裂面倾角并没有假定,计算出的是主动土压力最大的倾角。 四、总结        根据测试,以上三种求解库仑土压力的方法虽然简化思路不同,但是计算结果均比较相近,即使在复杂情况下,计算结果虽有相差,但是均可认为在误差允许范围之内。        但是值得注意的是,由于库仑土压力的计算在经典理论中是不考虑土体的粘聚力,不论是规范中计算公式还是暴力搜索试算以及GEO5中的解析解,在考虑粘聚力时都是对其进行近似假定的,也就是说在假定的过程中,当粘聚力较小时,三种方法计算非常相近,当粘聚力非常大时,三者的差异也会增大。 查看全部
        库仑土压力作为一种经典土压力,由于其计算简单方便等特点一直被工程师所广泛接受。但是经典的库仑土压力是由较多理想的假定条件的,如①挡墙为刚性体,墙后填土为无粘性土(粘聚力c=0);②极限土压力条件下,滑动破裂面为一平面;③滑动土楔体为刚体。然而,大多情况下,土体并不是完全无粘性土,也就是说工程上遇到的大部分土体并不适用经典的库仑土压力理论。幸运的是,学者们通过不懈努力对其进行了修正,修正后的库仑土压力计算方法同样适用于非黏性土。由于库仑土压力理论是基于假定的破裂面进行土楔计算的,也就是说找到最大土压力对应的破裂面是解决库仑土压力的重中之中。经典土压力理论是通过求导,得到破裂面角θ的极值,进而确定最大主动土压力或被动土压力的。然而,在加入粘聚力等对土压力的影响后,用求导的方式求解破裂面角θ的极值已经变得越来越困难,求解公式也越来越复杂,基本不能适用手算。因此目前求解库仑土压力的两个方向:一是求解力的多边形,对公式简化求得最大破裂面角θ的极值;二通过暴力搜索试算不同破裂面角θ所对应的土压力值,确定最大土压力。下面将结合两种计算方式进行详述。一、求解力的多边形,求导得到最大破裂面角θ的极值,进而求得最大土压力。(1)规范中的计算方法       根据建筑边坡技术工程规范,对于挡墙的主动土压力采用库仑土压力理论,考虑土与结构之间的摩擦系数以及土的粘聚力,其计算简图如图1,其计算原理即假定一个破裂面,及滑动楔体,根据力的平衡,如图2,计算出主动土压力的合力Ea,进而根据求得主动土压力系数。        根据李兴高以及魏汝龙等对库仑土压力计算理论的探讨,发现当不考虑墙面摩擦的影响时,土的粘聚力并不会影响破裂面倾角θ;而当考虑墙面的摩擦影响时,破裂面倾角不仅随着土的内摩擦角和岩土与墙面摩擦角变化,而且还随着粘聚力c的变化而变化,因此在用求导方法求解破裂面倾角θ的极值变得复杂困难。为了方便工程师计算,建筑边坡规范中的库仑主动土压力是经过简化后,比如破裂面的长度用h/sinθ,破裂面的倾角θ也是进行了简化假定,求导得到的极值,土压力系数公式如图2,这样计算出来的土压力其实是一个简化后的近似值,并且随着粘聚力c的增大其与真实值得结果偏差也越大。                                                                        图2(2)GEO5中计算方法        根据前人的研究,发现粘聚力的存在其实可以很好增强岩土的自稳性,进而限制主动土压力破裂面最后减小主动土压力,当粘聚力足够大时,其时土体是自稳的,此时的主动土压力应该是趋于0的。基于此种现象与共识,GEO5中对库仑主动土压力求解, 则将粘聚力c对主动土压力的影响进行单独考虑,分别在无粘性土中求得精确解的破裂面倾角极值得到精确的土压力系数,然后再减去由粘聚力引起的土压力的减小的粘聚力产生的土压力系数,最终求得库仑土压力在粘性土情况下的主动土压力。除此,GEO5中还根据支挡结构与水平面的夹角的不同进行分类考虑,其计算原理如图3,分别考虑了俯斜式挡墙与仰斜式挡墙的不同情况,分别给出粘聚力对其的影响,其计算原理相比边坡规范更全面详细。图3二、通过试算不同破裂面倾角θ求解库仑主动土压力        该种方法也是基于力的多变形进行计算的,只是在计算时不停赋予破裂倾角θ值,分别计算出其对应的主动土压力合力值Ea,最后搜索最大Ea值多对应的破裂面倾角θ即为主动土压力破裂面倾角。首先该种方法是不能进行手算校核的,只能通过计算机软件进行计算;其次该种方法其实求解的也是个近似解,其计算精度受搜索步长的限制,搜索步长越小计算精度越高,但是其计算成本也较高。三、三种方法进行对比      (1)以下是对同一模型,调整不同参数,采用三种不同库仑土压力计算结果的对比。    (2)测试结果对比       根据测试,发现对于条件较为简单情况下,三种计算结果完全一样,对于算例3-5中出现计算结果相差,是由于计算条件更加复杂,考虑了墙后土体倾斜,岩土与挡强的摩擦角等因素,这种参数较多条件复杂情况下,建筑边坡规范中为了手算的方便,如上文分析所说,其对库仑土压力计算理论进行了简化,对破裂面进行了假定,而其他两种方法的破裂面倾角并没有假定,计算出的是主动土压力最大的倾角。 四、总结        根据测试,以上三种求解库仑土压力的方法虽然简化思路不同,但是计算结果均比较相近,即使在复杂情况下,计算结果虽有相差,但是均可认为在误差允许范围之内。        但是值得注意的是,由于库仑土压力的计算在经典理论中是不考虑土体的粘聚力,不论是规范中计算公式还是暴力搜索试算以及GEO5中的解析解,在考虑粘聚力时都是对其进行近似假定的,也就是说在假定的过程中,当粘聚力较小时,三种方法计算非常相近,当粘聚力非常大时,三者的差异也会增大。

地震荷载作用下既有桩基础建筑物地震水平荷载对支挡结构土压力的影响

库仑孙工 发表了文章 • 0 个评论 • 2566 次浏览 • 2018-05-18 15:44 • 来自相关话题

    不论是边坡工程或是基坑工程,经常会遇到这种情况:在已有的边坡附近或基坑周边存在以桩基础为基础形式的建(构)筑物。通常在设计时, 仅是将基坑或边坡工程附近的建(构)筑物作为超载来处理,并没有考虑再地震工况下,由于地震荷载引起的建(构)筑物的桩基础对已有支挡结构上的土压力的影响。为此,利用岩土数值分析软件对该种情况进行了分析,为日后的岩土工程设计提供参考。    1、模型概况    土体采用库仑摩尔本构模型,支挡结构采用板结构,建筑物基础采用排桩模拟,桩之间利用板结构连接,建筑的自重等效为荷载施加在桩基础上,地震荷载采用体荷载模拟(可参考http://www.wen.kulunsoft.com/dochelp/1559)模型如图1。图1模型    2、结果分析    重点分析了建(构)筑物距支挡结构的距离以及建构筑物的荷载对支挡结构土压力的影响。   (1)建(构)筑物与支挡结构的距离对土压力的影响    当支挡结构附件没有建筑物时,地震作用下,挡墙的土压力分布,如下图人,土压力最大值为68.312kpa。    如图3,当支挡结构附近有建(构)筑物时,随着建(构)筑物与支挡结构的距离的增大,支挡结构上的最大土压力先增大后慢慢趋于缓慢的减小,并在建筑物距离支挡结构一倍的支挡结构长度时达到最大,其值接近没有建筑物时的土压力值。而距离超过一倍支挡结构长度时,支挡结构上的土压力趋于平缓,减小缓慢。    由此可知,当支挡结构附近有以桩基础形式的建筑时,且距离支挡结构较近时(一倍支挡结构长度范围内),由于地震作用引起的建筑物的水平荷载对支挡结构的土压力影响十分明显,使得支挡结构土压力减小。这是因为当建筑物在支挡结构长度一倍范围内时,建筑物的桩基础位于土压力破裂面内,有效的减小了土压力破裂的范围,使得土压力减小。而当建筑物距支挡结构的距离大于一倍支挡结构长度时,如压力破裂面与没有支挡结构时的相同,因此其对支挡结构产生的土压力也大致相当。    由以上分析可知,对于嵌固式支挡结构,地震作用下,具有桩基础的建筑物地震水平荷载对支挡结构的土压力影响是相对有利的。图2支挡结构附近无建筑物时的土压力分布图3距离对土压力的影响    (2)建筑物荷载对支挡结构土压力的影响     图4反映了距离支挡结构一倍长度范围时,随着建构筑物自重的增加,在地震作用下,建筑物地震水平荷载对支挡结构的影响,由图可以看出,其对土压力的影响是可以忽略不计的。图4等效超载对土压力的影响    3、总结    对于地震工况下,在距离支挡结构相对较远(大于一倍支挡结构长度)时,由地震引起的建筑物地震水平荷载对土压力的影响可以忽略不计,在设计时可以直接用GEO5中的地震工况设计即可。 查看全部
    不论是边坡工程或是基坑工程,经常会遇到这种情况:在已有的边坡附近或基坑周边存在以桩基础为基础形式的建(构)筑物。通常在设计时, 仅是将基坑或边坡工程附近的建(构)筑物作为超载来处理,并没有考虑再地震工况下,由于地震荷载引起的建(构)筑物的桩基础对已有支挡结构上的土压力的影响。为此,利用岩土数值分析软件对该种情况进行了分析,为日后的岩土工程设计提供参考。    1、模型概况    土体采用库仑摩尔本构模型,支挡结构采用板结构,建筑物基础采用排桩模拟,桩之间利用板结构连接,建筑的自重等效为荷载施加在桩基础上,地震荷载采用体荷载模拟(可参考http://www.wen.kulunsoft.com/dochelp/1559)模型如图1。图1模型    2、结果分析    重点分析了建(构)筑物距支挡结构的距离以及建构筑物的荷载对支挡结构土压力的影响。   (1)建(构)筑物与支挡结构的距离对土压力的影响    当支挡结构附件没有建筑物时,地震作用下,挡墙的土压力分布,如下图人,土压力最大值为68.312kpa。    如图3,当支挡结构附近有建(构)筑物时,随着建(构)筑物与支挡结构的距离的增大,支挡结构上的最大土压力先增大后慢慢趋于缓慢的减小,并在建筑物距离支挡结构一倍的支挡结构长度时达到最大,其值接近没有建筑物时的土压力值。而距离超过一倍支挡结构长度时,支挡结构上的土压力趋于平缓,减小缓慢。    由此可知,当支挡结构附近有以桩基础形式的建筑时,且距离支挡结构较近时(一倍支挡结构长度范围内),由于地震作用引起的建筑物的水平荷载对支挡结构的土压力影响十分明显,使得支挡结构土压力减小。这是因为当建筑物在支挡结构长度一倍范围内时,建筑物的桩基础位于土压力破裂面内,有效的减小了土压力破裂的范围,使得土压力减小。而当建筑物距支挡结构的距离大于一倍支挡结构长度时,如压力破裂面与没有支挡结构时的相同,因此其对支挡结构产生的土压力也大致相当。    由以上分析可知,对于嵌固式支挡结构,地震作用下,具有桩基础的建筑物地震水平荷载对支挡结构的土压力影响是相对有利的。图2支挡结构附近无建筑物时的土压力分布图3距离对土压力的影响    (2)建筑物荷载对支挡结构土压力的影响     图4反映了距离支挡结构一倍长度范围时,随着建构筑物自重的增加,在地震作用下,建筑物地震水平荷载对支挡结构的影响,由图可以看出,其对土压力的影响是可以忽略不计的。图4等效超载对土压力的影响    3、总结    对于地震工况下,在距离支挡结构相对较远(大于一倍支挡结构长度)时,由地震引起的建筑物地震水平荷载对土压力的影响可以忽略不计,在设计时可以直接用GEO5中的地震工况设计即可。

桩筏基础中桩的轴向刚度系数确定

库仑沈工 发表了文章 • 0 个评论 • 2485 次浏览 • 2018-04-24 09:37 • 来自相关话题

采用「GEO5筏基有限元」模块计算桩筏基础的筏板时,需要把桩等效成作用在筏板上的弹簧(采用「点支座」实现),弹簧的刚度选取参照下图中的公式计算:《高桩码头设计与施工规范》JTS167-1-2010 的3.3.11章节
采用「GEO5筏基有限元」模块计算桩筏基础的筏板时,需要把桩等效成作用在筏板上的弹簧(采用「点支座」实现),弹簧的刚度选取参照下图中的公式计算:《高桩码头设计与施工规范》JTS167-1-2010 的3.3.11章节

ABAQUS如何在UMAT子程序中继续添加DLOAD子程序

回答

JRDoggy 发起了问题 • 1 人关注 • 0 个回答 • 3918 次浏览 • 2018-04-20 22:11 • 来自相关话题