桩基础水平变形限值——欧标&美标

库仑赵 发表了文章 • 0 个评论 • 373 次浏览 • 2024-01-22 11:21 • 来自相关话题

       受水平荷载影响的桩基础一般会涉及水平变形的评价,在这里给出常见的欧标&美标的水平变形限值要求,方便工程师在海外项目中采用。本文中给出的是建议值,实际工程中仍需要根据工程要求、国家及地区相关规定对限值进行调整。1 美标      具体要求可参见《The Engineering of Foundations , Slopes and Retaining Structures -CRC Press》,如下图:2 欧标       欧标涉及的国家较多,这里给一个统领规范EN1997中的指导性值。 查看全部
       受水平荷载影响的桩基础一般会涉及水平变形的评价,在这里给出常见的欧标&美标的水平变形限值要求,方便工程师在海外项目中采用。本文中给出的是建议值,实际工程中仍需要根据工程要求、国家及地区相关规定对限值进行调整。1 美标      具体要求可参见《The Engineering of Foundations , Slopes and Retaining Structures -CRC Press》,如下图:2 欧标       欧标涉及的国家较多,这里给一个统领规范EN1997中的指导性值。

美标桩基规范及原理

库仑赵 发表了文章 • 0 个评论 • 219 次浏览 • 2024-01-22 11:09 • 来自相关话题

       目前国内越来越多实力雄厚的设计研究院开始走出国门承接海外工程。桩基是海外工程中常见的设计方向,为方便广大海外项目用户更快熟悉欧标和美标相关规范关于桩基的相关理论。此次原理说明采用类比法,从工程师熟悉的中国规范方法类比到美标,掌握其中的异同点,以帮助工程师更快理解。部分重要参考文献列表如下:中国规范:《建筑桩基技术规范 JGJ 94-2008》《地基基础设计规范》附录R美标:NAVFAC DM 7.2, Foundation and Earth Structures, U.S. Department of the Navy 1984FHWA-NHI-16009Design and Construction of Driven Pile Foundation—volume I, Chapter7The Foundation Engineering Book, Chapter 6         一般规范主要由计算方法和验算方法两部分构成。对桩基规范来说,计算方法指承载力、沉降等计算方法(本次主要以解析法为主,不涉及弹性法内容);验算方法指安全系数法、分项系数法等。一、计算方法1、单桩(1)中国规范       中国规范桩基竖向承载力核心原理是:总承载力=桩侧承载力+桩端承载力。在《建筑桩基技术规范 JGJ 94-2008》中给出的计算公式如下:     拆分理解:       桩侧承载力=桩侧承载力参数*桩周长*有效侧阻桩长       桩端承载力=桩端承载力参数*桩端面积       在中国规范经验参数法中,桩侧承载力参数和桩端承载力参数由地区经验参数给出。如果采用静力触探等原位测试时,桩侧承载力参数和桩端承载力参数通常由原位测试值*修正系数得到。(2)美标       其核心原理同样是:总承载力=桩端承载力+桩侧承载力。拆分同样可以表达成:      桩侧承载力=桩侧承载力参数*桩周长*有效侧阻桩长      桩端承载力=桩端承载力参数*桩端面积       但和中国规范的区别在于桩侧承载力参数和桩端承载力参数的计算方式,美标大多数方法采用计算点位置处有效自重应力(无粘性土)或不排水强度(粘性土)乘以相应的端承或侧摩擦修正系数。这里以美标里面比较常用的NAVFAC DM 7.2 为例:1)桩侧承载力计算①对无粘性土:②对粘性土:2)桩端承载力计算①对无粘性土:②对粘性土:        以上便是美标计算方法的原理,其他如α,β,λ法均和此方法类似,均是用有效自重应力(无粘性土)或不排水强度(粘性土)乘以相应的端承或侧摩擦修正系数计算桩侧承载力参数和桩端承载力参数,但修正系数的表达形式略有不同,有兴趣的工程师可以自行了解。2、群桩(1)承载力计算1)中国规范      在计算群桩承载力时,将上部力平均至各个桩记为Nk,然后和Rg对比2)美标       由以上公式可见,相对于中国规范,美标在计算群桩承载力时多了一项修正系数,即群桩效应系数,其具体含义如下:(2)沉降1)中国规范2)美标       美标常用的方法和地基规范附录R中等代实体法一致,但是其扩散起始点不同。中国规范从承台底开始扩散,角度为φ/4;但是美标自承台低以下2L/3处开始扩散,角度为固定角度如下图:二、验算方法       通常情况下桩基的验算均采用安全系数法,美标也是如此。但如果监理要求美标计算情况下要采用分项系数法时,设计状况和分项系数如下所示:(1)Strength limit state(2)Service I Limit State         以上便是美标桩基规范基本原理,编者水平有限,有错误请随时指正。想要了解更多深入内容或结合GEO5的软件操作,请加入GEO5海外规范交流群:QQ273013644 查看全部
       目前国内越来越多实力雄厚的设计研究院开始走出国门承接海外工程。桩基是海外工程中常见的设计方向,为方便广大海外项目用户更快熟悉欧标和美标相关规范关于桩基的相关理论。此次原理说明采用类比法,从工程师熟悉的中国规范方法类比到美标,掌握其中的异同点,以帮助工程师更快理解。部分重要参考文献列表如下:中国规范:《建筑桩基技术规范 JGJ 94-2008》《地基基础设计规范》附录R美标:NAVFAC DM 7.2, Foundation and Earth Structures, U.S. Department of the Navy 1984FHWA-NHI-16009Design and Construction of Driven Pile Foundation—volume I, Chapter7The Foundation Engineering Book, Chapter 6         一般规范主要由计算方法和验算方法两部分构成。对桩基规范来说,计算方法指承载力、沉降等计算方法(本次主要以解析法为主,不涉及弹性法内容);验算方法指安全系数法、分项系数法等。一、计算方法1、单桩(1)中国规范       中国规范桩基竖向承载力核心原理是:总承载力=桩侧承载力+桩端承载力。在《建筑桩基技术规范 JGJ 94-2008》中给出的计算公式如下:     拆分理解:       桩侧承载力=桩侧承载力参数*桩周长*有效侧阻桩长       桩端承载力=桩端承载力参数*桩端面积       在中国规范经验参数法中,桩侧承载力参数和桩端承载力参数由地区经验参数给出。如果采用静力触探等原位测试时,桩侧承载力参数和桩端承载力参数通常由原位测试值*修正系数得到。(2)美标       其核心原理同样是:总承载力=桩端承载力+桩侧承载力。拆分同样可以表达成:      桩侧承载力=桩侧承载力参数*桩周长*有效侧阻桩长      桩端承载力=桩端承载力参数*桩端面积       但和中国规范的区别在于桩侧承载力参数和桩端承载力参数的计算方式,美标大多数方法采用计算点位置处有效自重应力(无粘性土)或不排水强度(粘性土)乘以相应的端承或侧摩擦修正系数。这里以美标里面比较常用的NAVFAC DM 7.2 为例:1)桩侧承载力计算①对无粘性土:②对粘性土:2)桩端承载力计算①对无粘性土:②对粘性土:        以上便是美标计算方法的原理,其他如α,β,λ法均和此方法类似,均是用有效自重应力(无粘性土)或不排水强度(粘性土)乘以相应的端承或侧摩擦修正系数计算桩侧承载力参数和桩端承载力参数,但修正系数的表达形式略有不同,有兴趣的工程师可以自行了解。2、群桩(1)承载力计算1)中国规范      在计算群桩承载力时,将上部力平均至各个桩记为Nk,然后和Rg对比2)美标       由以上公式可见,相对于中国规范,美标在计算群桩承载力时多了一项修正系数,即群桩效应系数,其具体含义如下:(2)沉降1)中国规范2)美标       美标常用的方法和地基规范附录R中等代实体法一致,但是其扩散起始点不同。中国规范从承台底开始扩散,角度为φ/4;但是美标自承台低以下2L/3处开始扩散,角度为固定角度如下图:二、验算方法       通常情况下桩基的验算均采用安全系数法,美标也是如此。但如果监理要求美标计算情况下要采用分项系数法时,设计状况和分项系数如下所示:(1)Strength limit state(2)Service I Limit State         以上便是美标桩基规范基本原理,编者水平有限,有错误请随时指正。想要了解更多深入内容或结合GEO5的软件操作,请加入GEO5海外规范交流群:QQ273013644

GEO5拟静力法分析爆破工况

南京库仑张工 发表了文章 • 0 个评论 • 266 次浏览 • 2024-01-09 14:29 • 来自相关话题

       近期有多位工程师咨询在GEO5当中如何模拟爆破工况,如果是采用拟静力法考虑爆破振动力,可以通过GEO5地震荷载中自定义水平地震系数的方法实现,本文将简述分析过程。1. 计算原理       根据《非煤露天矿边坡工程技术规范》(GB 51016-2014)附录D.2的说明,边坡稳定计算时,考虑爆破振动力,各条快的水平爆破力按下列公式计算式中:Fi’—第i条块爆破振动力的水平向等效静力(kN);Wi—第i条块的重量;βi—第i条块爆破力系数,可取0.1~0.3;ai—第i条块爆破振动质点水平向最大加速度(m/s2);g—重力加速度(m/s2);f—振动爆破频率(Hz);Vi—第i条块重心处质点向振动速度(cm/s);Q—爆破装药量,分段延时爆破时取最大一段的装药量(kg);Ri—爆破区药量分布的几何中心至观测点的距离;K、α—与采场地质条件、岩体性质、爆破条件等有关的系数,由振动检测和测试数据获取。2. 案例分析       某砂岩矿边坡坡高55m,根据初步设计,矿山采用分段逐孔起爆,最大一段(单孔)用药量为56.3kg,按《爆破安全规程》(GB6722-2014)取振动爆破频率为20Hz。爆破区药量分布的几何中心至观测点的综合距离取值为90m。参考《爆破安全规程》13.2.4参数建议值说明,K取150,α取1.5。爆破区不同岩性的K,α取值建议根据以上参数,另外βi取0.12,计算得到       打开GEO5土坡模块,建好模型后,将0.02直接输入到地震分析当中进行计算。       以上即为GEO5当中模拟爆破工况分析的方法,文中提到的两本规范电子版可点击下载:GB 51016-2014 非煤露天矿边坡工程技术规范.pdf爆破安全规程GB6722-2014.pdf 查看全部
       近期有多位工程师咨询在GEO5当中如何模拟爆破工况,如果是采用拟静力法考虑爆破振动力,可以通过GEO5地震荷载中自定义水平地震系数的方法实现,本文将简述分析过程。1. 计算原理       根据《非煤露天矿边坡工程技术规范》(GB 51016-2014)附录D.2的说明,边坡稳定计算时,考虑爆破振动力,各条快的水平爆破力按下列公式计算式中:Fi’—第i条块爆破振动力的水平向等效静力(kN);Wi—第i条块的重量;βi—第i条块爆破力系数,可取0.1~0.3;ai—第i条块爆破振动质点水平向最大加速度(m/s2);g—重力加速度(m/s2);f—振动爆破频率(Hz);Vi—第i条块重心处质点向振动速度(cm/s);Q—爆破装药量,分段延时爆破时取最大一段的装药量(kg);Ri—爆破区药量分布的几何中心至观测点的距离;K、α—与采场地质条件、岩体性质、爆破条件等有关的系数,由振动检测和测试数据获取。2. 案例分析       某砂岩矿边坡坡高55m,根据初步设计,矿山采用分段逐孔起爆,最大一段(单孔)用药量为56.3kg,按《爆破安全规程》(GB6722-2014)取振动爆破频率为20Hz。爆破区药量分布的几何中心至观测点的综合距离取值为90m。参考《爆破安全规程》13.2.4参数建议值说明,K取150,α取1.5。爆破区不同岩性的K,α取值建议根据以上参数,另外βi取0.12,计算得到       打开GEO5土坡模块,建好模型后,将0.02直接输入到地震分析当中进行计算。       以上即为GEO5当中模拟爆破工况分析的方法,文中提到的两本规范电子版可点击下载:GB 51016-2014 非煤露天矿边坡工程技术规范.pdf爆破安全规程GB6722-2014.pdf

GEO5某灰厂稳定性评价

南京库仑张工 发表了文章 • 0 个评论 • 380 次浏览 • 2023-10-17 11:17 • 来自相关话题

使用模块:GEO5土坡稳定性分析一、  项目背景       某排土场斜坡表面堆积土体较为松散,排土场边坡整体处于稳定状态,坡度较陡地段存在局部失稳的现象。局部失稳出现在现场实测剖面2处,表现为边坡顶部边缘浅层的土体滑落,土体滑落宽度约45m,高度约15m,坡向301°,坡顶边缘处的最大坡度约35°。       现场调查发现,排土场斜坡表面堆积土体较为松散,在降雨的冲刷及坡顶雨水汇集的作用下,坡面多处存在冲刷沟槽。其中,发育范围最大的一处冲刷沟槽位于排土场东坡,坡高约55m,坡度37°,坡向106°,冲刷沟槽长度约90m,最大宽度8m~10m,最大切割深度10m~12m。二、场地岩土材料①弃渣       本次勘察过程中,在弃渣层共进行了70m的重型圆锥动力触探试验。动探数据显示变异系数达到0.98,说明回填的密实度很不均匀,回填时间短,欠固结,回填时未进行碾压,主要呈松散~稍密状态,局部呈中密~密实状态。坝体、坝基经过碾压后变异系数在0.172,整体夯实后较均匀,稍密状态。      根据本次勘察及前期勘察资料,并结合该区域的建筑经验综合推荐本层土的地基承载力特征值fak=100kPa~200kPa,内聚力标准值Ck=6~10kPa,内摩擦角标准值Фk=30°~33°,渗透系数k>2.0×10-1cm/s。       碾压后的坝体承载力特征值fak可达180kPa,内摩擦角标准值Фk=33°,变形模量为16MPa。       筑坝材料为排土场土料,即煤矿剥离的石渣料(碎石料),该石渣料储量很大,足以满足本期10m高的筑灰坝要求。②粉质黏土       黄褐色、灰褐色,以可塑状态为主。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=6击。       本层取土3件,物理力学性质指标平均值如下:       天然含水量为28.1%,天然孔隙比为0.824,重度为18.8kN/m3,饱和度为92.8%,液限为34.3%,塑限为20.8%,塑性指数为13.5,液性指数为0.54;直剪试验:内摩擦角为18.9°,内聚力为19.8kPa,压缩系数a1-2为0.38MPa-1,压缩模量为5.1MPa。属可塑状态中等压缩性土。       根据该层土的物理力学性质指标,并结合已有资料及标准贯入试验击数(N=6),综合推荐本层土的地基承载力特征值fak=150kPa。③黏土       可塑~硬塑状态,分布在泥岩、泥质砂岩顶部,为基岩风化形成的残积土层。本次勘测中,在该层进行了3次标准贯入试验,经修正后的锤击数(平均值)N=11击。       根据当地建筑经验及该层土的标准贯入试验击数(N=11),综合推荐本层土的地基承载力特征值fak=220kPa。④泥岩       本层以泥岩为主,部分地段夹泥质砂岩层,勘察范围内呈全风化状态。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=22击。根据当地建筑经验及该层土的标准贯入试验击数(N=22),综合推荐本层土的地基承载力特征值fak=260KPa。       岩土材料指标如下:三、分析工况       根据《火力发电厂干式贮灰场设计规程》(DL/T 5488-2014)中的相关条文,坝体应进行沉降计算、抗滑稳定计算,抗震设防烈度为7度及以上地区的坝体应进行抗震分析,必要时考虑渗流的影响。本工程场地地震基本烈度为6度,因此不考虑地震的影响,非正常条件下仅考虑暴雨的影响。       各工况抗滑稳定安全系数应按表1的规定确定,干灰场抗滑稳定的计算按照正常运行条件、非正常运行条件以及考虑贮灰、暴雨作用划分了不同的计算工况组合。(详见表2)表1  平原干灰场挡灰堤设计标准       根据可行性研究报告,灰场总容积约为1.3×107m3。根据表2平原干灰场挡灰堤设计标准,确定灰堤的设计等级应为二级。内、外坡正常运行条件下抗滑稳定安全系数K均为1.15,非常运行条件抗滑稳定安全系数K为1.00。       本项目无需考虑渗流和调洪水位,故对坝体、排土场原始边坡、排土场+坝体进行正常运行条件和考虑暴雨的非常运行条件下的稳定性计算与分析。(见表2)表2  干灰场边坡抗滑稳定计算工况表四、稳定性分析工况1:排土场+未贮灰       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa =10754.03 kN/m滑面上抗滑力的总和 :  Fp = 26536.15  kN/m下滑力矩 : Ma = 2276413.66  kNm/m抗滑力矩 : Mp = 5617171.42  kNm/m安全系数 = 2.47 > 1.15。排土场边坡在此工况下满足稳定性要求。工况2:排土场+贮灰       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 11986.31 kN/m滑面上抗滑力的总和 :  Fp = 29521.04 kN/m下滑力矩 : Ma = 2746662.31  kNm/m抗滑力矩 : Mp = 6764746.44  kNm/m安全系数 = 2.46 > 1.15。排土场边坡在此工况下满足稳定性要求。工况3:排土场+未贮灰+暴雨       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 11472.25 kN/m滑面上抗滑力的总和 :  Fp = 23401.98 kN/m下滑力矩 : Ma = 2428445.61  kNm/m抗滑力矩 : Mp = 4953731.64  kNm/m安全系数 = 2.04 > 1.00。排土场边坡在此工况下满足稳定性要求。工况4:排土场+贮灰+暴雨       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 12806.02 kN/m滑面上抗滑力的总和 :  Fp = 26057.66 kN/m下滑力矩 : Ma = 2934499.20  kNm/m抗滑力矩 : Mp = 5971113.16  kNm/m安全系数 = 2.03 > 1.00。排土场边坡在此工况下满足稳定性要求。五、 总结        按照规范要求,灰厂稳定性涉及多工况分析,通过GEO5软件建模,不需要多工况重复建模,在一个文件中即可实现不同工况的验算,操作方便快捷,也便于计算源文件的管理。 查看全部
使用模块:GEO5土坡稳定性分析一、  项目背景       某排土场斜坡表面堆积土体较为松散,排土场边坡整体处于稳定状态,坡度较陡地段存在局部失稳的现象。局部失稳出现在现场实测剖面2处,表现为边坡顶部边缘浅层的土体滑落,土体滑落宽度约45m,高度约15m,坡向301°,坡顶边缘处的最大坡度约35°。       现场调查发现,排土场斜坡表面堆积土体较为松散,在降雨的冲刷及坡顶雨水汇集的作用下,坡面多处存在冲刷沟槽。其中,发育范围最大的一处冲刷沟槽位于排土场东坡,坡高约55m,坡度37°,坡向106°,冲刷沟槽长度约90m,最大宽度8m~10m,最大切割深度10m~12m。二、场地岩土材料①弃渣       本次勘察过程中,在弃渣层共进行了70m的重型圆锥动力触探试验。动探数据显示变异系数达到0.98,说明回填的密实度很不均匀,回填时间短,欠固结,回填时未进行碾压,主要呈松散~稍密状态,局部呈中密~密实状态。坝体、坝基经过碾压后变异系数在0.172,整体夯实后较均匀,稍密状态。      根据本次勘察及前期勘察资料,并结合该区域的建筑经验综合推荐本层土的地基承载力特征值fak=100kPa~200kPa,内聚力标准值Ck=6~10kPa,内摩擦角标准值Фk=30°~33°,渗透系数k>2.0×10-1cm/s。       碾压后的坝体承载力特征值fak可达180kPa,内摩擦角标准值Фk=33°,变形模量为16MPa。       筑坝材料为排土场土料,即煤矿剥离的石渣料(碎石料),该石渣料储量很大,足以满足本期10m高的筑灰坝要求。②粉质黏土       黄褐色、灰褐色,以可塑状态为主。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=6击。       本层取土3件,物理力学性质指标平均值如下:       天然含水量为28.1%,天然孔隙比为0.824,重度为18.8kN/m3,饱和度为92.8%,液限为34.3%,塑限为20.8%,塑性指数为13.5,液性指数为0.54;直剪试验:内摩擦角为18.9°,内聚力为19.8kPa,压缩系数a1-2为0.38MPa-1,压缩模量为5.1MPa。属可塑状态中等压缩性土。       根据该层土的物理力学性质指标,并结合已有资料及标准贯入试验击数(N=6),综合推荐本层土的地基承载力特征值fak=150kPa。③黏土       可塑~硬塑状态,分布在泥岩、泥质砂岩顶部,为基岩风化形成的残积土层。本次勘测中,在该层进行了3次标准贯入试验,经修正后的锤击数(平均值)N=11击。       根据当地建筑经验及该层土的标准贯入试验击数(N=11),综合推荐本层土的地基承载力特征值fak=220kPa。④泥岩       本层以泥岩为主,部分地段夹泥质砂岩层,勘察范围内呈全风化状态。本次勘测中,在该层进行了4次标准贯入试验,经修正后的锤击数(平均值)N=22击。根据当地建筑经验及该层土的标准贯入试验击数(N=22),综合推荐本层土的地基承载力特征值fak=260KPa。       岩土材料指标如下:三、分析工况       根据《火力发电厂干式贮灰场设计规程》(DL/T 5488-2014)中的相关条文,坝体应进行沉降计算、抗滑稳定计算,抗震设防烈度为7度及以上地区的坝体应进行抗震分析,必要时考虑渗流的影响。本工程场地地震基本烈度为6度,因此不考虑地震的影响,非正常条件下仅考虑暴雨的影响。       各工况抗滑稳定安全系数应按表1的规定确定,干灰场抗滑稳定的计算按照正常运行条件、非正常运行条件以及考虑贮灰、暴雨作用划分了不同的计算工况组合。(详见表2)表1  平原干灰场挡灰堤设计标准       根据可行性研究报告,灰场总容积约为1.3×107m3。根据表2平原干灰场挡灰堤设计标准,确定灰堤的设计等级应为二级。内、外坡正常运行条件下抗滑稳定安全系数K均为1.15,非常运行条件抗滑稳定安全系数K为1.00。       本项目无需考虑渗流和调洪水位,故对坝体、排土场原始边坡、排土场+坝体进行正常运行条件和考虑暴雨的非常运行条件下的稳定性计算与分析。(见表2)表2  干灰场边坡抗滑稳定计算工况表四、稳定性分析工况1:排土场+未贮灰       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa =10754.03 kN/m滑面上抗滑力的总和 :  Fp = 26536.15  kN/m下滑力矩 : Ma = 2276413.66  kNm/m抗滑力矩 : Mp = 5617171.42  kNm/m安全系数 = 2.47 > 1.15。排土场边坡在此工况下满足稳定性要求。工况2:排土场+贮灰       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 11986.31 kN/m滑面上抗滑力的总和 :  Fp = 29521.04 kN/m下滑力矩 : Ma = 2746662.31  kNm/m抗滑力矩 : Mp = 6764746.44  kNm/m安全系数 = 2.46 > 1.15。排土场边坡在此工况下满足稳定性要求。工况3:排土场+未贮灰+暴雨       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 11472.25 kN/m滑面上抗滑力的总和 :  Fp = 23401.98 kN/m下滑力矩 : Ma = 2428445.61  kNm/m抗滑力矩 : Mp = 4953731.64  kNm/m安全系数 = 2.04 > 1.00。排土场边坡在此工况下满足稳定性要求。工况4:排土场+贮灰+暴雨       边坡稳定性验算 (瑞典法(Fellenius))滑面上下滑力的总和 :  Fa = 12806.02 kN/m滑面上抗滑力的总和 :  Fp = 26057.66 kN/m下滑力矩 : Ma = 2934499.20  kNm/m抗滑力矩 : Mp = 5971113.16  kNm/m安全系数 = 2.03 > 1.00。排土场边坡在此工况下满足稳定性要求。五、 总结        按照规范要求,灰厂稳定性涉及多工况分析,通过GEO5软件建模,不需要多工况重复建模,在一个文件中即可实现不同工况的验算,操作方便快捷,也便于计算源文件的管理。

GEO5东北某中学实验楼挡土墙设计

南京库仑张工 发表了文章 • 0 个评论 • 400 次浏览 • 2023-10-17 11:07 • 来自相关话题

使用模块:GEO5悬臂式挡土墙设计一、项目背景       本加固设计服务范围为东北某中学实验楼北侧西段挡土墙,挡墙上部建有换热站,换热站为单层砖混结构,梭形钢屋架,槽板屋盖,现为使用状态;挡土墙南侧距离学校实验楼2.7m左右。挡土墙总长度约25.0m。既有挡土墙为毛石挡土墙,挡土墙表面勾缝已基本脱落,毛石间砂浆已基本无粘结强度,砂土从石缝间流出,局部有块石脱落现象,挡墙中部外鼓约200mm,该段挡土墙处于极限平衡状态。       毛石挡土墙一般采用锚杆格构式加固、增加墙体厚度加固、墙后注浆加固等方式,虽然每种方案均具有一定的优势,但也有自身的缺陷。本工程因为对噪声的控制严格、且墙底施工空间狭小、墙顶无施工空间,故,上述加固方案均难以实施。       为保证学校学生的正常学习生活,宜选用施工噪声较小的加固方案,且要兼顾施工作业面狭小的因素,故采用墙前扶壁式挡土墙对既有毛石挡土墙进行加固。二、场地环境条件      为了解挡土墙场地地质条件,现场布设了3个钻孔,1#、2#勘察孔布置于挡土墙底,3#勘察孔布置于墙顶以外3.5m处。其中1#孔:0~0.90m为杂填土,0.9~1.70m为中风化砂岩砂岩。2#孔:0~2.60m为杂填土,2.60~3.50m为碎石土,3.50~3.80m为中风化砂岩。3#孔:0~3.10m为杂填土,3.10~3.80m为硬可塑粉质黏土,3.80~4.70m为全风化砂岩,4.70m~5.50m为强风化砂岩,5.50~5.90m为中风化砂岩。       本区属季节性冻胀区,标准冻结深度为1.20m,最大冻深1.49m。标准冻结深度范围内①杂填土应按具有冻胀性考虑,冻胀类别属弱冻胀,冻胀等级为II级;②粉质粘土,冻胀类别属强冻胀性,冻胀等级为III级。       场地基本烈度7度,抗震设防烈度为7度。设计基本地震加速度值0.10g,特征周期为0.35s。设计地震分组为第一组,建筑场地类别为Ⅱ类。三、设计方案       采用墙前扶壁式挡土墙设计,对既有毛石挡土墙中的砂浆层风化严重,扶壁式挡土墙施工前应将毛石挡土墙中破碎砂浆层剔除后并采用高压水枪冲洗,然后用M15砂浆对缝隙填充密实;待砂浆达到设计强度的75%后,方可进行新增扶壁式挡土墙的施工。挡土墙加固立面展开图挡土墙加固剖面图                1-1剖面挡土墙立板及底板配筋图             2-2 剖面挡土墙立板及底板配筋图3-3 剖面挡土墙立板及扶壁配筋图四、设计成果分析验算       采用南京库仑GEO5岩土设计分析软件,对墙前扶壁式挡墙进行计算,挡墙倾覆滑移稳定性,承载能力,截面强度验算及整体稳定性均满足要求。墙前扶壁悬臂式挡墙模型地基承载能力验算结果截面强度验算结果外部稳定性验算结果五、施工效果       病害挡土墙加固前及加固后的现场照片。      六、总结       现行的岩土设计软件,多数无法进行墙前扶壁式挡土墙的设计计算,但是南京库仑GEO5的悬臂式挡土墙设计模块有这个模型,而且操作简单,试算结果和预估结果大致吻合。       项目竣工后,经历了下半年的雨季及冬季的考验,挡土墙未发生变形,保证了墙顶锅炉房、墙底实验楼的安全,确保了供暖公司的正常运营和学校的学习生活,达到了良好的加固效果,证明了本墙前扶壁式加固毛石挡土墙方案选型的正确,为挡土墙加固提供了实践经验,同时也验证了GEO5软件的准确性和可靠性。 查看全部
使用模块:GEO5悬臂式挡土墙设计一、项目背景       本加固设计服务范围为东北某中学实验楼北侧西段挡土墙,挡墙上部建有换热站,换热站为单层砖混结构,梭形钢屋架,槽板屋盖,现为使用状态;挡土墙南侧距离学校实验楼2.7m左右。挡土墙总长度约25.0m。既有挡土墙为毛石挡土墙,挡土墙表面勾缝已基本脱落,毛石间砂浆已基本无粘结强度,砂土从石缝间流出,局部有块石脱落现象,挡墙中部外鼓约200mm,该段挡土墙处于极限平衡状态。       毛石挡土墙一般采用锚杆格构式加固、增加墙体厚度加固、墙后注浆加固等方式,虽然每种方案均具有一定的优势,但也有自身的缺陷。本工程因为对噪声的控制严格、且墙底施工空间狭小、墙顶无施工空间,故,上述加固方案均难以实施。       为保证学校学生的正常学习生活,宜选用施工噪声较小的加固方案,且要兼顾施工作业面狭小的因素,故采用墙前扶壁式挡土墙对既有毛石挡土墙进行加固。二、场地环境条件      为了解挡土墙场地地质条件,现场布设了3个钻孔,1#、2#勘察孔布置于挡土墙底,3#勘察孔布置于墙顶以外3.5m处。其中1#孔:0~0.90m为杂填土,0.9~1.70m为中风化砂岩砂岩。2#孔:0~2.60m为杂填土,2.60~3.50m为碎石土,3.50~3.80m为中风化砂岩。3#孔:0~3.10m为杂填土,3.10~3.80m为硬可塑粉质黏土,3.80~4.70m为全风化砂岩,4.70m~5.50m为强风化砂岩,5.50~5.90m为中风化砂岩。       本区属季节性冻胀区,标准冻结深度为1.20m,最大冻深1.49m。标准冻结深度范围内①杂填土应按具有冻胀性考虑,冻胀类别属弱冻胀,冻胀等级为II级;②粉质粘土,冻胀类别属强冻胀性,冻胀等级为III级。       场地基本烈度7度,抗震设防烈度为7度。设计基本地震加速度值0.10g,特征周期为0.35s。设计地震分组为第一组,建筑场地类别为Ⅱ类。三、设计方案       采用墙前扶壁式挡土墙设计,对既有毛石挡土墙中的砂浆层风化严重,扶壁式挡土墙施工前应将毛石挡土墙中破碎砂浆层剔除后并采用高压水枪冲洗,然后用M15砂浆对缝隙填充密实;待砂浆达到设计强度的75%后,方可进行新增扶壁式挡土墙的施工。挡土墙加固立面展开图挡土墙加固剖面图                1-1剖面挡土墙立板及底板配筋图             2-2 剖面挡土墙立板及底板配筋图3-3 剖面挡土墙立板及扶壁配筋图四、设计成果分析验算       采用南京库仑GEO5岩土设计分析软件,对墙前扶壁式挡墙进行计算,挡墙倾覆滑移稳定性,承载能力,截面强度验算及整体稳定性均满足要求。墙前扶壁悬臂式挡墙模型地基承载能力验算结果截面强度验算结果外部稳定性验算结果五、施工效果       病害挡土墙加固前及加固后的现场照片。      六、总结       现行的岩土设计软件,多数无法进行墙前扶壁式挡土墙的设计计算,但是南京库仑GEO5的悬臂式挡土墙设计模块有这个模型,而且操作简单,试算结果和预估结果大致吻合。       项目竣工后,经历了下半年的雨季及冬季的考验,挡土墙未发生变形,保证了墙顶锅炉房、墙底实验楼的安全,确保了供暖公司的正常运营和学校的学习生活,达到了良好的加固效果,证明了本墙前扶壁式加固毛石挡土墙方案选型的正确,为挡土墙加固提供了实践经验,同时也验证了GEO5软件的准确性和可靠性。

GEO5某水库库岸边坡支护设计

南京库仑张工 发表了文章 • 0 个评论 • 415 次浏览 • 2023-10-17 10:58 • 来自相关话题

使用模块:GEO5土质边坡稳定性分析、GEO5抗滑桩设计一、  项目背景       拟建项目为道路边坡支护工程。道路北侧为拟建水库,规划水库岸坡距离道路路肩最近约8.38m,岸坡建成后标高为108.5m,坡比为1:4;为施工水库,K0+740~K1+007 段已进行放坡开挖;该段道路路肩标高为117.7~118.6m。       支护范围:K0+660~K1+007临湖侧(道路北侧)       边坡高度:10~12m       地质条件:将勘探深度范围内的地层划分为5个工程地质层,自上而下分别为:①素填土(Q4ml),平均厚度为2.48m;②粉质粘土(Q4al+pl)可塑,局部分布,平均厚度为5.01m;③粉质粘土(Q4al+pl)场地均有分布,平均厚度为6.59m;④强风化泥质砂岩(K2z)岩体破碎,属极软岩,岩体基本质量等级为Ⅴ级,平均厚度为3.89m;⑤中风化泥质砂岩(K2z),岩体较完整,属极软岩,岩体基本质量等级为Ⅴ级       特殊要求:道路边坡支护结构不侵占库岸边线       安全等级:一级二、设计方案       综合考虑地质、环境、边坡高度等诸方面因素,本着“安全可靠,经济合理,技术可行,方便施工”的原则,临湖侧边坡采用桩板墙方案:桩顶4m进行1:1放坡,坡体采用加筋格栅加固,坡面进行生态绿化;抗滑桩桩径1.4m,间距3m,桩长18m,进入中风化泥质砂岩层。边坡支护平面图边坡支护典型剖面图三、设计成果分析       采用GEO5边坡稳定性验算 (毕肖普法(Bishop))结果显示:安全系数 = 1.48 > 1.35 边坡稳定性满足要求。       抗滑桩验算结果显示:最大位移53.2mm;岩石地基横向承载力满足要求;弯矩最大值=1221.20kNm/m, 剪力最大值= 262.71kN/m,主筋为32根直径28mm,剪力筋为直径10mm,间距200mm。四、总结       该项目为库岸边坡治理设计,分析过程考虑库水位、坡顶超载的影响,支护设计采用抗滑桩+加筋土的联合支挡形式。通过GEO5软件能快速实现建模计算,方便工程师对设计方案进行评估和验证。 查看全部
使用模块:GEO5土质边坡稳定性分析、GEO5抗滑桩设计一、  项目背景       拟建项目为道路边坡支护工程。道路北侧为拟建水库,规划水库岸坡距离道路路肩最近约8.38m,岸坡建成后标高为108.5m,坡比为1:4;为施工水库,K0+740~K1+007 段已进行放坡开挖;该段道路路肩标高为117.7~118.6m。       支护范围:K0+660~K1+007临湖侧(道路北侧)       边坡高度:10~12m       地质条件:将勘探深度范围内的地层划分为5个工程地质层,自上而下分别为:①素填土(Q4ml),平均厚度为2.48m;②粉质粘土(Q4al+pl)可塑,局部分布,平均厚度为5.01m;③粉质粘土(Q4al+pl)场地均有分布,平均厚度为6.59m;④强风化泥质砂岩(K2z)岩体破碎,属极软岩,岩体基本质量等级为Ⅴ级,平均厚度为3.89m;⑤中风化泥质砂岩(K2z),岩体较完整,属极软岩,岩体基本质量等级为Ⅴ级       特殊要求:道路边坡支护结构不侵占库岸边线       安全等级:一级二、设计方案       综合考虑地质、环境、边坡高度等诸方面因素,本着“安全可靠,经济合理,技术可行,方便施工”的原则,临湖侧边坡采用桩板墙方案:桩顶4m进行1:1放坡,坡体采用加筋格栅加固,坡面进行生态绿化;抗滑桩桩径1.4m,间距3m,桩长18m,进入中风化泥质砂岩层。边坡支护平面图边坡支护典型剖面图三、设计成果分析       采用GEO5边坡稳定性验算 (毕肖普法(Bishop))结果显示:安全系数 = 1.48 > 1.35 边坡稳定性满足要求。       抗滑桩验算结果显示:最大位移53.2mm;岩石地基横向承载力满足要求;弯矩最大值=1221.20kNm/m, 剪力最大值= 262.71kN/m,主筋为32根直径28mm,剪力筋为直径10mm,间距200mm。四、总结       该项目为库岸边坡治理设计,分析过程考虑库水位、坡顶超载的影响,支护设计采用抗滑桩+加筋土的联合支挡形式。通过GEO5软件能快速实现建模计算,方便工程师对设计方案进行评估和验证。

GEO5西南某房建工程高填方加筋土治理设计

南京库仑张工 发表了文章 • 0 个评论 • 431 次浏览 • 2023-10-17 10:07 • 来自相关话题

使用模块:GEO5加筋土式挡土墙、土质边坡稳定性分析一、  项目背景       项目位于西南某地级市,由重庆永固设计并提供现场服务。拟建建筑结构类型为框支剪力墙结构,属民用建筑。场地原始地面为第四系均匀的中软土、软弱土,属Ⅱ类建筑场地,建筑抗震设防烈度为6度,设计地震分组为第一组,为建筑抗震一般地段。根据《建筑边坡工程技术规范》(GB50330-2013)相关规定,边坡工程安全性等级为一级。       拟建挡墙位于一期和二期建筑合围形成的中庭坡地上,一、二期正负零高差近25米,长约120m。挡墙须结合园林景观、水景和步道建设,形成多平台且通过人行步道相互联通的具有层次感的支护结构。经业主多方对比,最终选择桩基+4阶加筋土挡墙的解决方案。场地周边情况2-2剖面工程地质剖面图二、加筋土挡墙立面和剖面设计1、挡土墙立面设计方案。       因挡墙底部临近一期地下室建筑,为保证安全先采用抗滑桩支护,后采用整体墙面加筋土挡墙进行支挡,挡墙分为4阶,台阶高程分别为:423.80、427.60、433.60,墙顶设计高程439.60,台阶宽度3-10米不等,墙面垂直。台阶间设置人行步道相通,423.8高程台阶设置搭板与一期车库顶相连。挡墙西北端与抗滑桩相接、东南端与现状山体相接。2、加筋土挡墙剖面设计方案。       此次涉及挡墙结合本项目地形及相关构造要求,拟设计为第1阶挡墙高4.0米,第2阶挡墙高3.8米,第3阶挡墙高6.0米,第4阶挡墙高6.0米,每阶挡墙的加筋材料长度采用等长断面设计,加筋材料层间距0.4米,每阶底部设置水平碎石排水层。三、加筋土挡墙计算       设计采用南京库仑岩土GEO5软件计算。项目设计合理使用年限为50年,场地地震按烈度6度,不考虑地震荷载作用。一级边坡设计一般工况下稳定安全系数Fs≥1.35。墙顶荷载考虑35KPa,加筋结构回填区填料参数Φd=35.0°,C=0 kPa,γ=18 KN/m3;加筋区后填土参数 Φ=25.0°,C=0 kPa,γ=18 KN/m3,挡墙基础置于中风化基岩和桩基之上。加筋土挡墙抗倾覆、滑移、加筋材料抗拉抗拔及整体稳定计算结果如下:      四、加筋土挡墙的构造要求       1、加筋材料。加筋材料采用整体钢塑土工格栅,整体钢塑土工格栅采用整体成型工艺,钢塑复合材质,肋带的主要受力元件为条带内的高强冷拔钢丝,蠕变极小;经抗老化处理的聚乙烯保护层,具有耐酸、碱、盐腐蚀的化学特性,破断伸长率小,强度高;条带交叉交点结点分离力要求大于500N。设计力学及物理尺寸指标必须满足交通行业标准《公路工程土工合成材料 土工格栅 第1部分:钢塑格栅》(JT/T925.1-2014)的要求。本项目采用材料规格及技术指标如下:       2、加筋结构回填区填料。要求采用现场开挖的碎石类土回填,综合内摩擦角不小于35度,与加筋材料接触部分的填料不允许有尖锐的棱角以避免损伤加筋材料。填料分层碾压,加筋体区域内及加筋体以外压实度均要求不小于93%。       3、加筋土挡墙墙面。墙面采用整体钢塑土工格栅反包袋碎石装体,回填同时预埋锚杆钢筋,后浇钢筋混凝土防护。碎石袋装体在永久墙面形成后作为墙面反滤层使用。       4、加筋土挡墙基础和压顶要求采用现浇C30钢筋混凝土。       5、加筋土挡墙在墙面、墙面后方、台阶处及加筋体后方须采取防水、排水措施,防止挡墙积水。五、现场施工场景和效果六、总结       针对高填方支挡项目,重庆永固已为全国大部分省市房地产、水利、公路、市政、铁路、矿山等工程建设提供了产品及工程服务,积累了大量工程实践经验。       加筋土技术作为一种新的技术,近年来也有了长足的进步,成为高填方支挡结构的最佳解决方案。GEO5不仅能计算单阶直立的加筋土挡墙,还能计算分阶带面坡的加筋土挡墙和陡坡,给设计人员的工作带来了极大的方便。 查看全部
使用模块:GEO5加筋土式挡土墙、土质边坡稳定性分析一、  项目背景       项目位于西南某地级市,由重庆永固设计并提供现场服务。拟建建筑结构类型为框支剪力墙结构,属民用建筑。场地原始地面为第四系均匀的中软土、软弱土,属Ⅱ类建筑场地,建筑抗震设防烈度为6度,设计地震分组为第一组,为建筑抗震一般地段。根据《建筑边坡工程技术规范》(GB50330-2013)相关规定,边坡工程安全性等级为一级。       拟建挡墙位于一期和二期建筑合围形成的中庭坡地上,一、二期正负零高差近25米,长约120m。挡墙须结合园林景观、水景和步道建设,形成多平台且通过人行步道相互联通的具有层次感的支护结构。经业主多方对比,最终选择桩基+4阶加筋土挡墙的解决方案。场地周边情况2-2剖面工程地质剖面图二、加筋土挡墙立面和剖面设计1、挡土墙立面设计方案。       因挡墙底部临近一期地下室建筑,为保证安全先采用抗滑桩支护,后采用整体墙面加筋土挡墙进行支挡,挡墙分为4阶,台阶高程分别为:423.80、427.60、433.60,墙顶设计高程439.60,台阶宽度3-10米不等,墙面垂直。台阶间设置人行步道相通,423.8高程台阶设置搭板与一期车库顶相连。挡墙西北端与抗滑桩相接、东南端与现状山体相接。2、加筋土挡墙剖面设计方案。       此次涉及挡墙结合本项目地形及相关构造要求,拟设计为第1阶挡墙高4.0米,第2阶挡墙高3.8米,第3阶挡墙高6.0米,第4阶挡墙高6.0米,每阶挡墙的加筋材料长度采用等长断面设计,加筋材料层间距0.4米,每阶底部设置水平碎石排水层。三、加筋土挡墙计算       设计采用南京库仑岩土GEO5软件计算。项目设计合理使用年限为50年,场地地震按烈度6度,不考虑地震荷载作用。一级边坡设计一般工况下稳定安全系数Fs≥1.35。墙顶荷载考虑35KPa,加筋结构回填区填料参数Φd=35.0°,C=0 kPa,γ=18 KN/m3;加筋区后填土参数 Φ=25.0°,C=0 kPa,γ=18 KN/m3,挡墙基础置于中风化基岩和桩基之上。加筋土挡墙抗倾覆、滑移、加筋材料抗拉抗拔及整体稳定计算结果如下:      四、加筋土挡墙的构造要求       1、加筋材料。加筋材料采用整体钢塑土工格栅,整体钢塑土工格栅采用整体成型工艺,钢塑复合材质,肋带的主要受力元件为条带内的高强冷拔钢丝,蠕变极小;经抗老化处理的聚乙烯保护层,具有耐酸、碱、盐腐蚀的化学特性,破断伸长率小,强度高;条带交叉交点结点分离力要求大于500N。设计力学及物理尺寸指标必须满足交通行业标准《公路工程土工合成材料 土工格栅 第1部分:钢塑格栅》(JT/T925.1-2014)的要求。本项目采用材料规格及技术指标如下:       2、加筋结构回填区填料。要求采用现场开挖的碎石类土回填,综合内摩擦角不小于35度,与加筋材料接触部分的填料不允许有尖锐的棱角以避免损伤加筋材料。填料分层碾压,加筋体区域内及加筋体以外压实度均要求不小于93%。       3、加筋土挡墙墙面。墙面采用整体钢塑土工格栅反包袋碎石装体,回填同时预埋锚杆钢筋,后浇钢筋混凝土防护。碎石袋装体在永久墙面形成后作为墙面反滤层使用。       4、加筋土挡墙基础和压顶要求采用现浇C30钢筋混凝土。       5、加筋土挡墙在墙面、墙面后方、台阶处及加筋体后方须采取防水、排水措施,防止挡墙积水。五、现场施工场景和效果六、总结       针对高填方支挡项目,重庆永固已为全国大部分省市房地产、水利、公路、市政、铁路、矿山等工程建设提供了产品及工程服务,积累了大量工程实践经验。       加筋土技术作为一种新的技术,近年来也有了长足的进步,成为高填方支挡结构的最佳解决方案。GEO5不仅能计算单阶直立的加筋土挡墙,还能计算分阶带面坡的加筋土挡墙和陡坡,给设计人员的工作带来了极大的方便。

GEO5塞尔维亚某高速公路重力式挡墙设计

南京库仑张工 发表了文章 • 0 个评论 • 345 次浏览 • 2023-10-16 10:28 • 来自相关话题

使用模块:GEO5重力式挡墙、土质边坡稳定性分析一、项目背景       该项目全长74.7km,途径4个中型城市,其中平原微丘区设计速度120km/h,山岭重丘区设计速度100km/h。       该工点位于9号隧道出口的隧道管理中心平台,平台外侧为了避免挖方边坡过高,沿着外侧边坡设置长度为76m重力式挡墙,挡墙控制段高度6m,单侧模板,开挖时增加临时防护锚杆。二、场地地质条件       该工点覆盖层为d-e,第四纪全新世洪积沉积物,主要成分为粉土和砂质粘土,GN-200的挖掘类别为Ⅱ-Ⅲ,天然重度γ=19kN/m3,内聚力c=15kPa,内摩擦角φ=19.1°,压缩模量Mv=10Mpa(100-200kPa)。覆盖层以下为强风化至全风化的古生代石炭纪的变质砂岩和页岩MPs Sk**,天然重度γ=21.9kN/m3,完整岩石材料的单轴抗压强度σci=5MPa,地质强度指数GSI=15,霍克布朗岩石参数mi=9,扰动因子D=0.5,以及中风化到强风化的MPs Sk*,天然重度γ=24.5kN/m3,完整岩石材料的单轴抗压强度σci=25MPa,地质强度指数GSI=35,霍克布朗岩石参数mi=12,扰动因子D=0.5,GN-200挖掘类别为Ⅳ-Ⅵ。该工点根据EN1998-1的场地类别分类为B类,S=1.2,根据地勘提供的资料,水平地震力系数kh=0.09。三、设计方案       根据塞尔维亚欧标国家附录,该重力式挡墙设计采用规范为欧洲标准Euro Code7,DA2。该边坡稳定性分析及临时边坡支护设计采用Euro Code7,DA3。采用欧标C30/37混凝土,混凝土耐久性指标为VⅡ、M100,钢筋型号为B500。       根据与地勘工程师及结构工程师的沟通,将采用GEO5对挡墙及临时边坡进行静态计算,其中霍克布朗破坏准则参数转换为摩尔库伦参数进行计算。根据计算确定结构尺寸及临时边坡防护如图。重力式挡墙设计过程中,持久工况墙前抗力取1/2被动土压力+1/2静止土压力,地震工况墙前抗力为被动土压力,主要考虑到结构前地面应有部分荷载为有利作用,取消该部分荷载的考虑而增加墙前的土压力,同时欧标EN1997-1DA2对于不利作用会进行参数调整,见下图滑移倾覆系数,故认为算得的滑移倾覆利用率满足工程需求。对于地基承载力,采用欧标EN1997-1附录D进行计算,其计算原理为太沙基理论,算得的地基承载力特征值略大于1000kPa。墙趾处每5m(一板挡土墙)应配26根L型钢筋,钢筋直径为32mm,以及若干构造钢筋,初步设计对于钢筋数量合理预估。       根据EN1990-1中,短暂工况是指比结构设计使用寿命短的多的时间段内有较高的发生几率的相关设计状况,例如施工与修复阶段,故临时边坡开挖采用短暂工况进行计算。不同于国内安全系数法,欧标EN1997-1DA3对于短暂工况对于不利永久作用及土壤参数进行了折减,提供了一定的安全预留,并且地勘提供的参数根据塞尔维亚规范也进行了保守处理,所以临时工况最终边坡计算利用率99.6%符合工程实际需求。四、总结       该项目为海外公路项目,总体设计不复杂,但勘察资料、依据规范均不同于国内,上手并不容易。       GEO5岩土设计软件内置欧标规范,方便工程师直接使用,同时提高了跟国外工程师的沟通效率,为项目的顺利实施奠定了坚实基础。 查看全部
使用模块:GEO5重力式挡墙、土质边坡稳定性分析一、项目背景       该项目全长74.7km,途径4个中型城市,其中平原微丘区设计速度120km/h,山岭重丘区设计速度100km/h。       该工点位于9号隧道出口的隧道管理中心平台,平台外侧为了避免挖方边坡过高,沿着外侧边坡设置长度为76m重力式挡墙,挡墙控制段高度6m,单侧模板,开挖时增加临时防护锚杆。二、场地地质条件       该工点覆盖层为d-e,第四纪全新世洪积沉积物,主要成分为粉土和砂质粘土,GN-200的挖掘类别为Ⅱ-Ⅲ,天然重度γ=19kN/m3,内聚力c=15kPa,内摩擦角φ=19.1°,压缩模量Mv=10Mpa(100-200kPa)。覆盖层以下为强风化至全风化的古生代石炭纪的变质砂岩和页岩MPs Sk**,天然重度γ=21.9kN/m3,完整岩石材料的单轴抗压强度σci=5MPa,地质强度指数GSI=15,霍克布朗岩石参数mi=9,扰动因子D=0.5,以及中风化到强风化的MPs Sk*,天然重度γ=24.5kN/m3,完整岩石材料的单轴抗压强度σci=25MPa,地质强度指数GSI=35,霍克布朗岩石参数mi=12,扰动因子D=0.5,GN-200挖掘类别为Ⅳ-Ⅵ。该工点根据EN1998-1的场地类别分类为B类,S=1.2,根据地勘提供的资料,水平地震力系数kh=0.09。三、设计方案       根据塞尔维亚欧标国家附录,该重力式挡墙设计采用规范为欧洲标准Euro Code7,DA2。该边坡稳定性分析及临时边坡支护设计采用Euro Code7,DA3。采用欧标C30/37混凝土,混凝土耐久性指标为VⅡ、M100,钢筋型号为B500。       根据与地勘工程师及结构工程师的沟通,将采用GEO5对挡墙及临时边坡进行静态计算,其中霍克布朗破坏准则参数转换为摩尔库伦参数进行计算。根据计算确定结构尺寸及临时边坡防护如图。重力式挡墙设计过程中,持久工况墙前抗力取1/2被动土压力+1/2静止土压力,地震工况墙前抗力为被动土压力,主要考虑到结构前地面应有部分荷载为有利作用,取消该部分荷载的考虑而增加墙前的土压力,同时欧标EN1997-1DA2对于不利作用会进行参数调整,见下图滑移倾覆系数,故认为算得的滑移倾覆利用率满足工程需求。对于地基承载力,采用欧标EN1997-1附录D进行计算,其计算原理为太沙基理论,算得的地基承载力特征值略大于1000kPa。墙趾处每5m(一板挡土墙)应配26根L型钢筋,钢筋直径为32mm,以及若干构造钢筋,初步设计对于钢筋数量合理预估。       根据EN1990-1中,短暂工况是指比结构设计使用寿命短的多的时间段内有较高的发生几率的相关设计状况,例如施工与修复阶段,故临时边坡开挖采用短暂工况进行计算。不同于国内安全系数法,欧标EN1997-1DA3对于短暂工况对于不利永久作用及土壤参数进行了折减,提供了一定的安全预留,并且地勘提供的参数根据塞尔维亚规范也进行了保守处理,所以临时工况最终边坡计算利用率99.6%符合工程实际需求。四、总结       该项目为海外公路项目,总体设计不复杂,但勘察资料、依据规范均不同于国内,上手并不容易。       GEO5岩土设计软件内置欧标规范,方便工程师直接使用,同时提高了跟国外工程师的沟通效率,为项目的顺利实施奠定了坚实基础。

复杂地基处理场地沉降评价

库仑赵 发表了文章 • 0 个评论 • 486 次浏览 • 2023-10-07 14:43 • 来自相关话题

       部分地基处理场地,由于地基处理方案或地层条件的复杂性,在进行沉降性评价时已经无法符合常规“分层总和法”的计算假设条件,或评估沉降时需要考虑非水平地层的影响及差异性沉降时(如下图1),常规的分层总和法就无法再满足工程师的计算要求。这时可以采用有限元进行沉降评价。图1 非水平地层地基处理       本贴所述内容的优势在于:介绍的是沉降计算的综合思路,具体沉降计算公式工程师可依据项目所在地的要求进行切换,但思路始终保持不变。此思路可以用于绝大多数复杂复合地基处理场地的沉降,且在海外项目的评估中仍然适用。下面进行具体介绍:步骤1:确定未处理前土体压缩模型Es和承载力fsk       压缩模量是评估沉降变形的重要参数之一。无论是采用经典分层总和法计算,还是采用有限元中各类常见的本构模型,计算都需要此参数。       原土体承载力fsk可由经验法结合载荷板等原位试验得到步骤2:确定复合地基承载力fspk       采用公式法,如中国《建筑地基处理技术规范》7.1.5条所述求得fspk(条款相关公式除中国范围内采用外,在国外大部分国家也适用);或者采用相应的场地试验进行确定(此方法国外工程采用居多)步骤3:确定复合地基压缩模型Eeq        经过处理后的复合地基的压缩模型Eeq=ζ Es,在未处理前土体压缩模型Es已经确定的情况下,只要确定放大系数ζ 的大小即可得到复合地基的压缩模型Eeq       放大系数ζ在中国规范中可依照《建筑地基处理技术规范》7.1.7条得到,即ζ=fspk/fsk       在海外工程中可采用原位试验法或者经验公式法,经验公式可参见Barksdale and Bachus(1983),Han(2010),在此进行引述:ζ=1+(n-1)m上式中:       m——地基处理时的面积置换率        n——可由增强体材料的模量EC和土体模量ES计算得到:n=1+0.217(Ec/Es-1)步骤4:进行复合地基的变形计算在进行变形计算时可分为如下两类情况:(1)地层条件简单且地基处理方法单一,符合土力学经典分层总和法计算模型       计算时,可直接按照《地基基础设计规范》5.3.5节所述的分层总和法进行计算。注意,中国规范在用分层总和法求解出沉降计算值s’后,尚应当根据《建筑地基处理技术规范》7.1.8节对沉降计算值s’进行修正,后方可作为评估的计算结果。 (2)地层复杂或地基处理方法多样,不符合土力学经典分层总和法计算模型       此种模式的计算,建议采用数值分析的方法进行计算。计算的步骤思路也是按照本文所述,不再采用分层总和法,而是在进行完本文所述的前3个步骤后,采用数值分析的方法进行变形计算。 步骤5:进行变形验算      根据上部结构的类型,及工程的要求,进行上部结构的验算。附例说明       假设某储仓如图所示,在储仓下部和一定的扩大范围内采用地基处理。储仓下部采用长短桩综合处理,短桩采用散体桩,长桩采用混凝土桩;扩大范围内仅采用短桩处理。具体处理平面布置图及地层条件如下图所示:示例的复合地基变形的求解过程如下:(1)确定原土体压缩模型Es和承载力特征值fsk(2)确定复合地基fspk(3)确定上部结构的荷载(4)确定模量放大系数ζ ,并确定复合地基模量Eeq(5)本例题由于处理方法多样,不符合分层总和法的计算模型,故采用数值分析进行变形求解。模型如下: 查看全部
       部分地基处理场地,由于地基处理方案或地层条件的复杂性,在进行沉降性评价时已经无法符合常规“分层总和法”的计算假设条件,或评估沉降时需要考虑非水平地层的影响及差异性沉降时(如下图1),常规的分层总和法就无法再满足工程师的计算要求。这时可以采用有限元进行沉降评价。图1 非水平地层地基处理       本贴所述内容的优势在于:介绍的是沉降计算的综合思路,具体沉降计算公式工程师可依据项目所在地的要求进行切换,但思路始终保持不变。此思路可以用于绝大多数复杂复合地基处理场地的沉降,且在海外项目的评估中仍然适用。下面进行具体介绍:步骤1:确定未处理前土体压缩模型Es和承载力fsk       压缩模量是评估沉降变形的重要参数之一。无论是采用经典分层总和法计算,还是采用有限元中各类常见的本构模型,计算都需要此参数。       原土体承载力fsk可由经验法结合载荷板等原位试验得到步骤2:确定复合地基承载力fspk       采用公式法,如中国《建筑地基处理技术规范》7.1.5条所述求得fspk(条款相关公式除中国范围内采用外,在国外大部分国家也适用);或者采用相应的场地试验进行确定(此方法国外工程采用居多)步骤3:确定复合地基压缩模型Eeq        经过处理后的复合地基的压缩模型Eeq=ζ Es,在未处理前土体压缩模型Es已经确定的情况下,只要确定放大系数ζ 的大小即可得到复合地基的压缩模型Eeq       放大系数ζ在中国规范中可依照《建筑地基处理技术规范》7.1.7条得到,即ζ=fspk/fsk       在海外工程中可采用原位试验法或者经验公式法,经验公式可参见Barksdale and Bachus(1983),Han(2010),在此进行引述:ζ=1+(n-1)m上式中:       m——地基处理时的面积置换率        n——可由增强体材料的模量EC和土体模量ES计算得到:n=1+0.217(Ec/Es-1)步骤4:进行复合地基的变形计算在进行变形计算时可分为如下两类情况:(1)地层条件简单且地基处理方法单一,符合土力学经典分层总和法计算模型       计算时,可直接按照《地基基础设计规范》5.3.5节所述的分层总和法进行计算。注意,中国规范在用分层总和法求解出沉降计算值s’后,尚应当根据《建筑地基处理技术规范》7.1.8节对沉降计算值s’进行修正,后方可作为评估的计算结果。 (2)地层复杂或地基处理方法多样,不符合土力学经典分层总和法计算模型       此种模式的计算,建议采用数值分析的方法进行计算。计算的步骤思路也是按照本文所述,不再采用分层总和法,而是在进行完本文所述的前3个步骤后,采用数值分析的方法进行变形计算。 步骤5:进行变形验算      根据上部结构的类型,及工程的要求,进行上部结构的验算。附例说明       假设某储仓如图所示,在储仓下部和一定的扩大范围内采用地基处理。储仓下部采用长短桩综合处理,短桩采用散体桩,长桩采用混凝土桩;扩大范围内仅采用短桩处理。具体处理平面布置图及地层条件如下图所示:示例的复合地基变形的求解过程如下:(1)确定原土体压缩模型Es和承载力特征值fsk(2)确定复合地基fspk(3)确定上部结构的荷载(4)确定模量放大系数ζ ,并确定复合地基模量Eeq(5)本例题由于处理方法多样,不符合分层总和法的计算模型,故采用数值分析进行变形求解。模型如下:

GEO5有限元稳定性分析、变形分析和结构设计概念辨析

库仑赵 发表了文章 • 0 个评论 • 331 次浏览 • 2023-10-07 14:30 • 来自相关话题

       很多用户在进行GEO5有限元应用的时候,对稳定性分析、变形分析、结构设计三个概念不能很好地分辨,这里专门写一个帖子进行说明,以期能够给大家提供一定的帮助。首先,进行三者的概念辨析,为方便更形象地理解,这里以边坡工程为例进行说明:(1)稳定性分析——安全系数求解        稳定性分析,也即安全系数求解。类比中国规范中边坡条分法传递系数法隐式+显式,隐式在求解安全系数的时候是折减了抗力R/Fs,而显式则是增大了作用A*Fs。进一步说明,隐式解是在荷载设计值不变的情况下,进行岩土强度参数设计值的折减从而求解安全系数;显式解则是在岩土强度参数设计值不变的情况下,对荷载设计值进行放大从而求解安全系数。隐式解安全系数含义图(Fs=F)显式解安全系数含义图(Fs=a)     因岩土工程的特性,及目前主流的方法,采用隐式解模式的情况更多。所以在使用有限元分析进行安全系数求解的时候多采用保持荷载设计值不变,对岩土强度参数设计值折减。当存在支护结构时,结构本身强度采用设计值,然后对岩土强度参数设计值进行折减以求解安全系数。(2)变形分析变形分析分为两大类:设计要求的变形和真实变形。①设计要求变形是在荷载设计值+岩土强度参数设计值情况下进行应力应变分析并与规范要求数值进行比较,设计要求变形一般是有安全储备概念蕴含其中的,是为了设计安全度进行的变形控制,并非真实状况的变形。②真实变形是在荷载标准值+岩土强度参数标准值情况下进行应力应变分析,真实变形没有安全储备概念,多数是为了进行现场监测对比或用作科研用途。(3)结构设计结构设计依照安全系数定义的模式,同样分为两个主流思路:①将设计要求的安全度储备于荷载设计值中:A*Fst。也即设计荷载放大Fst倍,岩土强度设计参数不变,求解结构的受力。②将设计要求的安全度储备于设计岩土强度参数设计值中:c/Fst,tanφ/Fst。也即设计荷载不变,岩土强度设计参数折减Fst倍,求解结构受力。 当然也有同时放大荷载并折减强度的做法,这里就不赘述,可自行查阅文献学习。 查看全部
       很多用户在进行GEO5有限元应用的时候,对稳定性分析、变形分析、结构设计三个概念不能很好地分辨,这里专门写一个帖子进行说明,以期能够给大家提供一定的帮助。首先,进行三者的概念辨析,为方便更形象地理解,这里以边坡工程为例进行说明:(1)稳定性分析——安全系数求解        稳定性分析,也即安全系数求解。类比中国规范中边坡条分法传递系数法隐式+显式,隐式在求解安全系数的时候是折减了抗力R/Fs,而显式则是增大了作用A*Fs。进一步说明,隐式解是在荷载设计值不变的情况下,进行岩土强度参数设计值的折减从而求解安全系数;显式解则是在岩土强度参数设计值不变的情况下,对荷载设计值进行放大从而求解安全系数。隐式解安全系数含义图(Fs=F)显式解安全系数含义图(Fs=a)     因岩土工程的特性,及目前主流的方法,采用隐式解模式的情况更多。所以在使用有限元分析进行安全系数求解的时候多采用保持荷载设计值不变,对岩土强度参数设计值折减。当存在支护结构时,结构本身强度采用设计值,然后对岩土强度参数设计值进行折减以求解安全系数。(2)变形分析变形分析分为两大类:设计要求的变形和真实变形。①设计要求变形是在荷载设计值+岩土强度参数设计值情况下进行应力应变分析并与规范要求数值进行比较,设计要求变形一般是有安全储备概念蕴含其中的,是为了设计安全度进行的变形控制,并非真实状况的变形。②真实变形是在荷载标准值+岩土强度参数标准值情况下进行应力应变分析,真实变形没有安全储备概念,多数是为了进行现场监测对比或用作科研用途。(3)结构设计结构设计依照安全系数定义的模式,同样分为两个主流思路:①将设计要求的安全度储备于荷载设计值中:A*Fst。也即设计荷载放大Fst倍,岩土强度设计参数不变,求解结构的受力。②将设计要求的安全度储备于设计岩土强度参数设计值中:c/Fst,tanφ/Fst。也即设计荷载不变,岩土强度设计参数折减Fst倍,求解结构受力。 当然也有同时放大荷载并折减强度的做法,这里就不赘述,可自行查阅文献学习。

GEO5砖砌体挡墙强度自定义说明

库仑赵 发表了文章 • 0 个评论 • 249 次浏览 • 2023-10-07 14:12 • 来自相关话题

       在工程设计中,某些情况下工程师会采用砖砌体重力式挡墙,而目前在Geo5重力式挡墙模块中没有内置砖砌体墙的综合强度参数。为了方便后续有相同使用需求的工程师,本贴将说明如何在GEO5重力式挡墙中自定义各类砖砌体墙材料。          这里需要填写上图所示的四个参数,①②根据实际采用的砖块体强度填写即可;③④可参照《GB50003-2011砌体结构设计规范》中的相关推荐参数。 查看全部
       在工程设计中,某些情况下工程师会采用砖砌体重力式挡墙,而目前在Geo5重力式挡墙模块中没有内置砖砌体墙的综合强度参数。为了方便后续有相同使用需求的工程师,本贴将说明如何在GEO5重力式挡墙中自定义各类砖砌体墙材料。          这里需要填写上图所示的四个参数,①②根据实际采用的砖块体强度填写即可;③④可参照《GB50003-2011砌体结构设计规范》中的相关推荐参数。

GEO5某圆形顶管工作井稳定性分析

南京库仑张工 发表了文章 • 0 个评论 • 305 次浏览 • 2023-06-27 11:30 • 来自相关话题

一、项目背景       某地下暗挖施工采用泥水平衡岩石顶管机施工工艺,管材采用DN2400管径钢筋混凝土管。顶管机机头自重56t,直径为2.92m,长5.85m,采用全地面起重机整体吊入工作井内导轨上,然后在顶推设备作用下进行顶进作业。工作井采用护壁逆作法施工,深度为15m,支护结构采用桩径1m咬合式排桩,桩长21m,嵌固深度7m,在深度0.5m处设置1m×1m冠梁、5.6m与10.2m处设2道0.8×0.8钢筋混凝土环梁支撑。图1:顶管机机头吊装现场图2:吊装作业平面布置二、设计方案       工作井由设计单位设计,未考虑临近桩基吊车荷载对桩基础影响,设计地面超载一般为20kPa,本次吊装施工中,地面超载远超过了设计允许值。超载过大容易导致工作井位移过大,影响支护结构安全。吊装工况的发生,是设计单位在设计阶段无法预料的,施工单位在该特殊工况下,应进行安全性复核。       由于R3、R4离基坑较远,超载引起的土压力扩散对工作井影响较小,仅考虑R1、R2对工作井影响。支腿1受力912.30 kN ,支腿2受力 702.44 kN,支腿下设置路基箱1.5m×6m,分别等效局部荷载为101.37kPa,78.05kPa。       模型建立过程中,地基土体采用修正Mohr-Coulomb模型进行模拟,土压力采用主动土压力计算,并考虑地下水位影响,地下水位根据施工实测取-6m。支护结构受力主要在水平方向,忽略支护桩的自重等轴向受力。选用GEO5“竖井模块”进行结构受力计算。岩土材料指标如下:三、分析计算       依次对各工况进行计算分析,得到围护桩受力情况见图3、图4。图3:围护桩弯矩图4:围护桩剪力      桩身受力弯矩最大值为1170.13kNm,剪力最大值417.49KN,均在第三道腰梁处(Z=10.2m),与桩身截面承载力1168.49 kN·m大致相等,考虑吊车荷载为偶然状态下短暂施加,非持久设计工况下,可认为达到承载力状态。开挖至基底时,桩身位移达到最大为8.1mm。       Z=0.5m、Z=5.6m、Z=10.2m处设置三道腰梁,受力分别如下图5至图10       通过腰梁受力分析,三道腰梁受力包络图均表现椭圆形,均存在受压区和受拉区,且受压区受拉区径向对称,最大值相似。具有环状物受力形态的共同点。第一道和第二道腰梁水平环向受力性状基本相同,随着深度增加,呈现第三道腰梁>第二道腰梁>第一道腰梁。       最大弯矩值1070.13 kN.m与桩身截面承载力1168.49kN.m大致相等,考虑吊车荷载为偶然状态下短暂施加,以及荷载取值与材料性能的安全储备,可认为满足安全要求。       第三道腰梁受力最大,以第三道腰梁截面复核为例,根据《混凝土结构设计规范》GB50010第6.1.2条,在最大弯矩和剪力作用下,上部钢筋应配置钢筋面积1280mm2,实配6C20(钢筋面积1885mm2),腰筋应配置1224mm2,实配4 C 20(钢筋面积1257mm2),下部纵筋应配置2419mm2,实配钢筋8 C 20(钢筋面积2513mm2),满足要求。四、 总结       暗挖始发井和顶管工作井等竖井结构不同于一般基坑工程,不仅有围护结构,还需要加环形腰梁。利用GEO5竖井模块建模,使用方便,可以得到环形腰梁的内力包络图,为后续结构设计提供受力依据。 查看全部
一、项目背景       某地下暗挖施工采用泥水平衡岩石顶管机施工工艺,管材采用DN2400管径钢筋混凝土管。顶管机机头自重56t,直径为2.92m,长5.85m,采用全地面起重机整体吊入工作井内导轨上,然后在顶推设备作用下进行顶进作业。工作井采用护壁逆作法施工,深度为15m,支护结构采用桩径1m咬合式排桩,桩长21m,嵌固深度7m,在深度0.5m处设置1m×1m冠梁、5.6m与10.2m处设2道0.8×0.8钢筋混凝土环梁支撑。图1:顶管机机头吊装现场图2:吊装作业平面布置二、设计方案       工作井由设计单位设计,未考虑临近桩基吊车荷载对桩基础影响,设计地面超载一般为20kPa,本次吊装施工中,地面超载远超过了设计允许值。超载过大容易导致工作井位移过大,影响支护结构安全。吊装工况的发生,是设计单位在设计阶段无法预料的,施工单位在该特殊工况下,应进行安全性复核。       由于R3、R4离基坑较远,超载引起的土压力扩散对工作井影响较小,仅考虑R1、R2对工作井影响。支腿1受力912.30 kN ,支腿2受力 702.44 kN,支腿下设置路基箱1.5m×6m,分别等效局部荷载为101.37kPa,78.05kPa。       模型建立过程中,地基土体采用修正Mohr-Coulomb模型进行模拟,土压力采用主动土压力计算,并考虑地下水位影响,地下水位根据施工实测取-6m。支护结构受力主要在水平方向,忽略支护桩的自重等轴向受力。选用GEO5“竖井模块”进行结构受力计算。岩土材料指标如下:三、分析计算       依次对各工况进行计算分析,得到围护桩受力情况见图3、图4。图3:围护桩弯矩图4:围护桩剪力      桩身受力弯矩最大值为1170.13kNm,剪力最大值417.49KN,均在第三道腰梁处(Z=10.2m),与桩身截面承载力1168.49 kN·m大致相等,考虑吊车荷载为偶然状态下短暂施加,非持久设计工况下,可认为达到承载力状态。开挖至基底时,桩身位移达到最大为8.1mm。       Z=0.5m、Z=5.6m、Z=10.2m处设置三道腰梁,受力分别如下图5至图10       通过腰梁受力分析,三道腰梁受力包络图均表现椭圆形,均存在受压区和受拉区,且受压区受拉区径向对称,最大值相似。具有环状物受力形态的共同点。第一道和第二道腰梁水平环向受力性状基本相同,随着深度增加,呈现第三道腰梁>第二道腰梁>第一道腰梁。       最大弯矩值1070.13 kN.m与桩身截面承载力1168.49kN.m大致相等,考虑吊车荷载为偶然状态下短暂施加,以及荷载取值与材料性能的安全储备,可认为满足安全要求。       第三道腰梁受力最大,以第三道腰梁截面复核为例,根据《混凝土结构设计规范》GB50010第6.1.2条,在最大弯矩和剪力作用下,上部钢筋应配置钢筋面积1280mm2,实配6C20(钢筋面积1885mm2),腰筋应配置1224mm2,实配4 C 20(钢筋面积1257mm2),下部纵筋应配置2419mm2,实配钢筋8 C 20(钢筋面积2513mm2),满足要求。四、 总结       暗挖始发井和顶管工作井等竖井结构不同于一般基坑工程,不仅有围护结构,还需要加环形腰梁。利用GEO5竖井模块建模,使用方便,可以得到环形腰梁的内力包络图,为后续结构设计提供受力依据。

当搜索的滑面位于坡面时GEO5的几种处理方法

南京库仑张工 发表了文章 • 0 个评论 • 537 次浏览 • 2023-04-12 15:18 • 来自相关话题

       很多工程师在使用岩土分析软件搜索边坡最危险滑动面时,会遇到滑动面贴着地形坡面的情况,如下图所示:       这种情况不仅出现在GEO5中,使用其他软件同样存在这种问题,而造成这种滑动面的原因在于所给定的贴近坡面的那层岩土体参数的粘聚力c值取为了0。       对于无粘性土,可以认为最陡的坡面位置即为最危险的滑面。在自然堆积状态下,无粘性土的极限堆积坡角会无限接近于内摩擦角,这也是下图所示自然休止角的由来。       因此当土体无粘聚力时,边坡搜索得到最危险滑面位于地形坡面上是正常的情况。但是实际工程中的岩土体很少是纯粹的无粘性土,大家搜出来的这种滑面并不符合大家的经验和现场实际情况,需要调整。GEO5软件,在遇到这种问题时,给大家提供了三种处理的方法,本文对此进行简单说明。方法一:调整c值       这种方法是最简单的办法。只要将土体材料的c值提高一点,滑面就不会贴着坡面了,下面两张截图分别是c=1kPa和c=3kPa时滑面的情况。       随着c值的增加,滑弧会越往坡体内部移动,所以增加c值可以避免出现滑面贴近坡面。但具体取值会影响边坡稳定系数,c值增加后,建议适当降低内摩擦角取值,不至于出现偏危险的情况。方法二:设定最小滑体重量       在GEO5 2023版当中,当选择搜索区域时,增加了一个“考虑滑面以上岩土体的最小重量”的功能,这个功能可以人为设置滑体大小,来搜索满足当前设置条件下的最危险滑面。      以下两张截图反应的是土体c值都为0时,滑体最小体积分别设定为100kN/m和500kN/m的滑面情况。       使用方法二,在不改变岩土参数的情况下,也能快速实现滑面不位于坡面。方法三:使用限制线限定滑面       GEO5自动搜索时,支持输入多条限制线控制滑动面搜索的范围,原理是滑动面不能和限制线相交,基于此,为让滑面不贴与坡表,可以人为设置多条限制线控制滑动面,示例如下:该方法相较于方法一和方法二操作更加复杂一些,而且最终搜索结果也有跟限制线的设置情况密切相关。       综上,为了避免出现搜索的最危险滑面位于坡面,GEO5提供了3种处理办法,每种办法都有其优劣点,用户在使用时可根据使用习惯和项目实际情况采用相应的办法。 查看全部
       很多工程师在使用岩土分析软件搜索边坡最危险滑动面时,会遇到滑动面贴着地形坡面的情况,如下图所示:       这种情况不仅出现在GEO5中,使用其他软件同样存在这种问题,而造成这种滑动面的原因在于所给定的贴近坡面的那层岩土体参数的粘聚力c值取为了0。       对于无粘性土,可以认为最陡的坡面位置即为最危险的滑面。在自然堆积状态下,无粘性土的极限堆积坡角会无限接近于内摩擦角,这也是下图所示自然休止角的由来。       因此当土体无粘聚力时,边坡搜索得到最危险滑面位于地形坡面上是正常的情况。但是实际工程中的岩土体很少是纯粹的无粘性土,大家搜出来的这种滑面并不符合大家的经验和现场实际情况,需要调整。GEO5软件,在遇到这种问题时,给大家提供了三种处理的方法,本文对此进行简单说明。方法一:调整c值       这种方法是最简单的办法。只要将土体材料的c值提高一点,滑面就不会贴着坡面了,下面两张截图分别是c=1kPa和c=3kPa时滑面的情况。       随着c值的增加,滑弧会越往坡体内部移动,所以增加c值可以避免出现滑面贴近坡面。但具体取值会影响边坡稳定系数,c值增加后,建议适当降低内摩擦角取值,不至于出现偏危险的情况。方法二:设定最小滑体重量       在GEO5 2023版当中,当选择搜索区域时,增加了一个“考虑滑面以上岩土体的最小重量”的功能,这个功能可以人为设置滑体大小,来搜索满足当前设置条件下的最危险滑面。      以下两张截图反应的是土体c值都为0时,滑体最小体积分别设定为100kN/m和500kN/m的滑面情况。       使用方法二,在不改变岩土参数的情况下,也能快速实现滑面不位于坡面。方法三:使用限制线限定滑面       GEO5自动搜索时,支持输入多条限制线控制滑动面搜索的范围,原理是滑动面不能和限制线相交,基于此,为让滑面不贴与坡表,可以人为设置多条限制线控制滑动面,示例如下:该方法相较于方法一和方法二操作更加复杂一些,而且最终搜索结果也有跟限制线的设置情况密切相关。       综上,为了避免出现搜索的最危险滑面位于坡面,GEO5提供了3种处理办法,每种办法都有其优劣点,用户在使用时可根据使用习惯和项目实际情况采用相应的办法。

加筋土挡墙面板(模块式面板)受力状况

回答

谭小工 发起了问题 • 1 人关注 • 0 个回答 • 456 次浏览 • 2023-03-09 15:57 • 来自相关话题

浅基础多层土地基承载力计算方法

库仑赵 发表了文章 • 0 个评论 • 428 次浏览 • 2023-02-13 16:15 • 来自相关话题

        在计算浅基础对应的地基承载力时,大部分的参考书和规范都仅仅给出了单层均质土的经典计算方法。但实际工程中存在有效计算深度内由多层土构成的情况,这里简单分享几本参考书及规范中关于多层土地基承载力计算的方法,希望能够对各位工程师提供一定的帮助。(1)方法一:来自《Foundation Analysis and Design》v5th joseph e. bowles,书中4-8节。其本质是根据土层构成对承载力系数进行修正,然后再套用经典公式(2)方法二:来自《Foundation Analysis and Design》v5th joseph e. bowles,书中4-8节。根据土层构成进行加权平均,然后用加权平均后的参数带入经典计算公式。(3)方法三:来自《The Foundation Engineering HandBook》-2006,3.2.5节。通过静力触探CPT的方法,确定基础影响范围内承载力的上下限值,然后真实承载力位于上下限之间。(4)方法四:来自《NAVFAC-Foundations&EarthStructures》,7.2节。通过对承载力系数的修正,及岩土强度参数c和φ的折减进行求解。        以上便是个人了解到的一些多层土地基承载力的计算方法及相关出处,有需要相关文献的工程师可以联系南京库仑获得技术支持。 查看全部
        在计算浅基础对应的地基承载力时,大部分的参考书和规范都仅仅给出了单层均质土的经典计算方法。但实际工程中存在有效计算深度内由多层土构成的情况,这里简单分享几本参考书及规范中关于多层土地基承载力计算的方法,希望能够对各位工程师提供一定的帮助。(1)方法一:来自《Foundation Analysis and Design》v5th joseph e. bowles,书中4-8节。其本质是根据土层构成对承载力系数进行修正,然后再套用经典公式(2)方法二:来自《Foundation Analysis and Design》v5th joseph e. bowles,书中4-8节。根据土层构成进行加权平均,然后用加权平均后的参数带入经典计算公式。(3)方法三:来自《The Foundation Engineering HandBook》-2006,3.2.5节。通过静力触探CPT的方法,确定基础影响范围内承载力的上下限值,然后真实承载力位于上下限之间。(4)方法四:来自《NAVFAC-Foundations&EarthStructures》,7.2节。通过对承载力系数的修正,及岩土强度参数c和φ的折减进行求解。        以上便是个人了解到的一些多层土地基承载力的计算方法及相关出处,有需要相关文献的工程师可以联系南京库仑获得技术支持。

不平衡推力法(隐式)手算与GEO5计算结果对比

南京库仑张工 发表了文章 • 0 个评论 • 1453 次浏览 • 2023-01-05 15:28 • 来自相关话题

1、不平衡推力法隐式解       根据《建筑边坡工程技术规范》(GB50330-2013)附录A,不平衡推力法(传递系数法)隐式解的计算公式如下:其中:       Pn为第n条块单位宽度剩余下滑力(kN/m),实际就是位于剪出口位置的条块,Pn=0是用于计算边坡当前稳定系数的条件,当要计算剩余下滑力或滑坡推力时,Pn需要计算得到;       Pi为第i计算条块与第i+1计算条块单位宽度剩余下滑力(kN/m),需要注意的是,当Pi 查看全部
1、不平衡推力法隐式解       根据《建筑边坡工程技术规范》(GB50330-2013)附录A,不平衡推力法(传递系数法)隐式解的计算公式如下:其中:       Pn为第n条块单位宽度剩余下滑力(kN/m),实际就是位于剪出口位置的条块,Pn=0是用于计算边坡当前稳定系数的条件,当要计算剩余下滑力或滑坡推力时,Pn需要计算得到;       Pi为第i计算条块与第i+1计算条块单位宽度剩余下滑力(kN/m),需要注意的是,当Pi<0(i<n)时,由于条块不能传递拉力,Pi=0;       Ti为第i计算条块单位宽度重力及其他外力引起的下滑力(kN/m);       Ri为第i计算条块单位宽度重力及其他外力引起的抗滑力(kN/m);       Φi-1为第i-1计算条块对第i计算条块的传递系数。2、隐式解利用excel手算方法       在上述计算公式中,实际还缺少一个稳定系数,也就是Fs的计算,Fs可以用总的抗滑力比上总的下滑力得到,但是因为在计算过程中,Fs作为变量参与了传递系数的计算,所以无法给出Fs的解析解,只能通过迭代计算的方式计算当Pi=0条件下的稳定系数Fs。       利用excel可以实现迭代计算出Fs,常用的方式一种是试算,另一种是简单编制一个VBA的代码,通过运行宏计算,但是网上分享的一些计算表格,有的算法简单,计算很耗时,有的无法在其他电脑运行宏,所以这里借本篇文章分项另一种迭代计算Fs的方法,即采用excel自带的规划求解功能(Solver)。       将稳定系数定义为可变单元格,将剪出口位置条块的剩余下滑力Pn定义为目标单元格,目标值为0,另外约束稳定系数大于0。点击求解之后能快速的计算出隐士解的稳定系数。(如何掉出excel的规划求解功能可百度查看)       在求解出稳定系数之后,如果需要再计算剩余下滑力,那么将上述公式中的稳定系数Fs替换为设计安全系数Fst,比如建筑边坡天然工况的1.35即可。3、手算和GEO5计算结果对比       某路堑边坡高约44m,采用不平衡推力法隐式解计算边坡安全系数,以及在设计安全系数1.35情况下的剩余下滑力,边坡模型如下:       滑面为折线,总共7个条块,采用excel规划求解,计算结果如下:       得到稳定系数为1.036,采用GEO5计算,得到稳定系数为1.038。       当设计安全系数为1.35时,手算和GEO5计算得到的每个条块剩余下滑力的大小对比如下:         从上面结果看出大部分条块的误差低于千分之一,由此可见GEO5计算不平衡推力法隐式解的结果和手算结果基本一致。本文涉及到的不平衡推力法通过规划求解计算安全系数的Excel表格如下,感兴趣的工程师可以自行下载。不平衡推力法隐式解安全系数计算.xlsx

BIM技术在岩溶发育区岩质高陡边坡稳定性分析中的应用

库仑赵 发表了文章 • 0 个评论 • 455 次浏览 • 2022-12-26 11:30 • 来自相关话题

         基于GEO5的岩土BIM应用流程一直以来深受广大用户好评,长期以来也分享了诸多可行的实践方法(http://www.wen.kulunsoft.com/article/333),本帖分享一个基于GEO5岩土BIM应用的优质成果:《基于BIM技术的岩溶发育区岩质高陡边坡稳定性分析》本贴涉及的文字内容和图片均引自:[1]刘均利,廖恒彬,张炳辉.基于BIM技术的岩溶发育区岩质高陡边坡稳定性分析[J].建筑科学与工程学报,2022,39(05):274-283.        研究成果旨在解决岩溶发育区岩质高边坡工程中特殊地质可视化表达和三维模型对接数值分析的问题,利用BIM技术进行建模并和现场地质勘察(钻孔电视等)相互印证对复杂地质情况实现三维重现,并通过多种分析方法(传统极限平衡、数值分析等)进行定量分析并提出解决方案。下面进行成果一览:(1)应用流程图1 边坡BIM应用流程(刘均利等)(2)三维模型建立和印证图2 边坡地质模型和关键剖面(刘均利等)       三维模型的建立依据现场勘察资料,实现断层、层间错动带、控制性构造裂隙等边坡稳定性主控因素的三维化,并利用二维剖面进行印证。(3)极限平衡法分析(条分法)图3 边坡稳定性分析——MP法(刘均利等)(4)数值分析(极限分析法)图4 边坡稳定性分析——极限分析法(刘均利等)(5)支护分析图5 边坡支护分析——极限分析法(刘均利等)(6)云平台发布图6 云平台发布(刘均利等)部分关键位置匹配信息涉及保密,无法展示请谅解。 查看全部
         基于GEO5的岩土BIM应用流程一直以来深受广大用户好评,长期以来也分享了诸多可行的实践方法(http://www.wen.kulunsoft.com/article/333),本帖分享一个基于GEO5岩土BIM应用的优质成果:《基于BIM技术的岩溶发育区岩质高陡边坡稳定性分析》本贴涉及的文字内容和图片均引自:[1]刘均利,廖恒彬,张炳辉.基于BIM技术的岩溶发育区岩质高陡边坡稳定性分析[J].建筑科学与工程学报,2022,39(05):274-283.        研究成果旨在解决岩溶发育区岩质高边坡工程中特殊地质可视化表达和三维模型对接数值分析的问题,利用BIM技术进行建模并和现场地质勘察(钻孔电视等)相互印证对复杂地质情况实现三维重现,并通过多种分析方法(传统极限平衡、数值分析等)进行定量分析并提出解决方案。下面进行成果一览:(1)应用流程图1 边坡BIM应用流程(刘均利等)(2)三维模型建立和印证图2 边坡地质模型和关键剖面(刘均利等)       三维模型的建立依据现场勘察资料,实现断层、层间错动带、控制性构造裂隙等边坡稳定性主控因素的三维化,并利用二维剖面进行印证。(3)极限平衡法分析(条分法)图3 边坡稳定性分析——MP法(刘均利等)(4)数值分析(极限分析法)图4 边坡稳定性分析——极限分析法(刘均利等)(5)支护分析图5 边坡支护分析——极限分析法(刘均利等)(6)云平台发布图6 云平台发布(刘均利等)部分关键位置匹配信息涉及保密,无法展示请谅解。

防浪墙动力分析

库仑赵 发表了文章 • 0 个评论 • 558 次浏览 • 2022-12-26 11:22 • 来自相关话题

1项目概况       水库坝顶上游侧设置“L”形钢筋混凝土防浪墙,防浪墙顶高程2186.30m,墙高2.50m,底宽3.50m,墙厚0.40m,墙顶高出坝顶1.00m。2场地参数       根据《中国地震动参数区划图》(GB18306-2015),工程区地震基本烈度为Ⅶ度,地震动峰值加速度0.15g,地震动反映谱特征0.45s。       水库总库容为1228.81万m3,工程规模属中型,工程等别为Ⅲ等。主要建筑物大坝因坝高超过70m(坝高85.3m),按2级设计;表孔泄洪隧洞、输水隧洞按3级设计。工程建筑物按Ⅶ度设防。根据《水工建筑物抗震设计标准》(GB51247—2018)的规定,水库粘土心墙风化料坝属于丙类工程抗震设防级别。有抗震设防要求的坝顶防浪墙结构,除了进行静力稳定性分析,还应进行动力稳定性分析。本工程采用有限元法进行坝顶防浪墙地震作用效应的动力分析。3地震动力分析设置        水库粘土心墙土石坝的上下游坝壳料、粘土心墙、反滤料、坝壳风化砂岩料及排水棱体的材料参数(包括土体的邓肯张本构模型的材料参数),见下表。4分析结果4.1极限状态稳定性分析天然状况+正常蓄水位,上游稳定性地震状况+正常蓄水位,上游稳定性4.2位移分析初始地应力正常工况位移地震工况位移 查看全部
1项目概况       水库坝顶上游侧设置“L”形钢筋混凝土防浪墙,防浪墙顶高程2186.30m,墙高2.50m,底宽3.50m,墙厚0.40m,墙顶高出坝顶1.00m。2场地参数       根据《中国地震动参数区划图》(GB18306-2015),工程区地震基本烈度为Ⅶ度,地震动峰值加速度0.15g,地震动反映谱特征0.45s。       水库总库容为1228.81万m3,工程规模属中型,工程等别为Ⅲ等。主要建筑物大坝因坝高超过70m(坝高85.3m),按2级设计;表孔泄洪隧洞、输水隧洞按3级设计。工程建筑物按Ⅶ度设防。根据《水工建筑物抗震设计标准》(GB51247—2018)的规定,水库粘土心墙风化料坝属于丙类工程抗震设防级别。有抗震设防要求的坝顶防浪墙结构,除了进行静力稳定性分析,还应进行动力稳定性分析。本工程采用有限元法进行坝顶防浪墙地震作用效应的动力分析。3地震动力分析设置        水库粘土心墙土石坝的上下游坝壳料、粘土心墙、反滤料、坝壳风化砂岩料及排水棱体的材料参数(包括土体的邓肯张本构模型的材料参数),见下表。4分析结果4.1极限状态稳定性分析天然状况+正常蓄水位,上游稳定性地震状况+正常蓄水位,上游稳定性4.2位移分析初始地应力正常工况位移地震工况位移

GEO5抗滑桩计算核心步骤及其原理解析

库仑赵 发表了文章 • 0 个评论 • 708 次浏览 • 2022-12-26 11:02 • 来自相关话题

       介于边坡加抗滑桩的分析计算使用的广泛性,特写本帖对计算工况中的一些要点进行总结,旨在于协助工程师更正确合理地使用GEO5中的边坡+抗滑桩模块。以下图所示综合支护形式为例进行说明:针对以上综合支护结构,推荐的分析步骤如下:步骤一:不加任何支护结构,进行剩余下滑力的分析        如上图所示,第一步不加任何支护结构,进行剩余下滑力的计算。通常如果有勘察给出的滑面,可直接指定滑面,然后进行辅助性自动搜索,反向校验勘察结果。但如果需要搜索滑面时,切记搜索目标选择:最大剩余下滑力的模式。(因为最小安全系数对应的滑面虽然安全系数最小,但是剩余下滑力未必最大,而支护结构的目的是为了应对最不利的受力情况)。步骤二:加入刚性支护结构(如抗滑桩)       首先加入刚性支护结构,暂不加锚杆(索)等柔性支护结构,因为刚性支护结构的可信度更高,我们要首先评估仅用合理尺寸的刚性结构能够使此工程达到的基本的稳定性。一般可接近设计要求的安全系数(略低一些),然后后续工况(本帖步骤3)中再加入柔性支护结构(经济性地考虑部分能力)。在加入抗滑桩后,要进行三类滑面的验算:①最大剩余下滑力滑面(由步骤(1)中确定的)。此种滑面验算的是桩身材料强度。②越顶破坏(限制区域——对桩顶上部自动搜索)    虽然抗滑桩能够将最不利滑体挡住,但是局部浅层还是不稳定,需要进行加固(采用锚杆)③整体破坏(限制区域——对桩底以下搜索)    整体破坏的验证是为了说明桩长达到要求了。步骤三:加入柔性支护结构(如锚杆等)此步骤中两个计算滑面①最大剩余下滑力滑面(由步骤(1)中确定的)。此种滑面验算的是桩身材料强度。这里这个滑面相对步骤二稳定性系数有了进一步的提升,同时能够在即保证刚性支护结构为主体的情况下,部分考虑柔性支护结构的贡献,并能够从两次安全系数的变化上大致估算贡献比例。(为什么不能一次算?因为只要是条分法就是从上往下算,如果一次性加了太多支护结构,该理论方法是先考虑锚杆后考虑桩,但是实际工程应当是桩是主体。理论有局限性,所以通过工况步骤去弥补这种局限性)②越顶破坏(限制区域——对桩顶上部自动搜索)   说明再增加柔性支护之后浅部稳定性同样也满足要求了 帖子中讲的比较简略,关于更详细的操作步骤可以看视频:https://www.bilibili.com/video/BV1wP411H7kw/?spm_id_from=333.337.search-card.all.click&vd_source=d737fa154709006df17182a4e1fc96f8 查看全部
       介于边坡加抗滑桩的分析计算使用的广泛性,特写本帖对计算工况中的一些要点进行总结,旨在于协助工程师更正确合理地使用GEO5中的边坡+抗滑桩模块。以下图所示综合支护形式为例进行说明:针对以上综合支护结构,推荐的分析步骤如下:步骤一:不加任何支护结构,进行剩余下滑力的分析        如上图所示,第一步不加任何支护结构,进行剩余下滑力的计算。通常如果有勘察给出的滑面,可直接指定滑面,然后进行辅助性自动搜索,反向校验勘察结果。但如果需要搜索滑面时,切记搜索目标选择:最大剩余下滑力的模式。(因为最小安全系数对应的滑面虽然安全系数最小,但是剩余下滑力未必最大,而支护结构的目的是为了应对最不利的受力情况)。步骤二:加入刚性支护结构(如抗滑桩)       首先加入刚性支护结构,暂不加锚杆(索)等柔性支护结构,因为刚性支护结构的可信度更高,我们要首先评估仅用合理尺寸的刚性结构能够使此工程达到的基本的稳定性。一般可接近设计要求的安全系数(略低一些),然后后续工况(本帖步骤3)中再加入柔性支护结构(经济性地考虑部分能力)。在加入抗滑桩后,要进行三类滑面的验算:①最大剩余下滑力滑面(由步骤(1)中确定的)。此种滑面验算的是桩身材料强度。②越顶破坏(限制区域——对桩顶上部自动搜索)    虽然抗滑桩能够将最不利滑体挡住,但是局部浅层还是不稳定,需要进行加固(采用锚杆)③整体破坏(限制区域——对桩底以下搜索)    整体破坏的验证是为了说明桩长达到要求了。步骤三:加入柔性支护结构(如锚杆等)此步骤中两个计算滑面①最大剩余下滑力滑面(由步骤(1)中确定的)。此种滑面验算的是桩身材料强度。这里这个滑面相对步骤二稳定性系数有了进一步的提升,同时能够在即保证刚性支护结构为主体的情况下,部分考虑柔性支护结构的贡献,并能够从两次安全系数的变化上大致估算贡献比例。(为什么不能一次算?因为只要是条分法就是从上往下算,如果一次性加了太多支护结构,该理论方法是先考虑锚杆后考虑桩,但是实际工程应当是桩是主体。理论有局限性,所以通过工况步骤去弥补这种局限性)②越顶破坏(限制区域——对桩顶上部自动搜索)   说明再增加柔性支护之后浅部稳定性同样也满足要求了 帖子中讲的比较简略,关于更详细的操作步骤可以看视频:https://www.bilibili.com/video ... c96f8

边坡加固工程应用思路

库仑赵 发表了文章 • 0 个评论 • 455 次浏览 • 2022-12-26 10:50 • 来自相关话题

       在工程中有时遇到已支护边坡发生再次滑动的情况,这里借助《建筑边坡工程鉴定与加固技术》这本规范,简单介绍如何进行加固设计计算:一、计算原理见规范6.2.2节上述公式可以变形为更容易理解的方式:        则公式表达的含义为:新增支护结构经折减后的安全系数+原支护结构残余的安全系数≥工程要求的安全系数。       新增支护结构因二次受力存在应变滞后,难以充分发挥,所以给予折减系数。原支护结构的残余有效抗力应通过鉴定给出。二、原支护结构残余有效抗力原支护结构的残余有效抗力应根据6.2.3和6.2.4章节进行:三、新增支护结构新增支护结构的折减系数如下:四、GEO5应用思路(1)首先依据原支护结构的鉴定结果设置,进行残余稳定性系数的计算;(2)根据选定的新增支护结构形式查表得到折减系数(3)在GEO5中添加新增支护结构,赋予折减后的抗力,验算稳定性系数是否能够达到要求。      以上仅为建议方法,编者水平有限,有错误请及时指正。 查看全部
       在工程中有时遇到已支护边坡发生再次滑动的情况,这里借助《建筑边坡工程鉴定与加固技术》这本规范,简单介绍如何进行加固设计计算:一、计算原理见规范6.2.2节上述公式可以变形为更容易理解的方式:        则公式表达的含义为:新增支护结构经折减后的安全系数+原支护结构残余的安全系数≥工程要求的安全系数。       新增支护结构因二次受力存在应变滞后,难以充分发挥,所以给予折减系数。原支护结构的残余有效抗力应通过鉴定给出。二、原支护结构残余有效抗力原支护结构的残余有效抗力应根据6.2.3和6.2.4章节进行:三、新增支护结构新增支护结构的折减系数如下:四、GEO5应用思路(1)首先依据原支护结构的鉴定结果设置,进行残余稳定性系数的计算;(2)根据选定的新增支护结构形式查表得到折减系数(3)在GEO5中添加新增支护结构,赋予折减后的抗力,验算稳定性系数是否能够达到要求。      以上仅为建议方法,编者水平有限,有错误请及时指正。