GEO5

GEO5

GEO5抗滑桩嵌固段设计与理正的异同

库仑产品库仑沈工 发表了文章 • 0 个评论 • 41 次浏览 • 4 天前 • 来自相关话题

最近,有GEO5用户反馈,采用同样的设计参数,理正抗滑桩设计中设置很小的岩石单轴极限抗压强度能计算通过,GEO5的抗滑桩设计模块却显示嵌岩段“岩石横向承载力不满足要求”。其实理正抗滑桩设计并没有严格的按照规范对嵌岩段的承载力进行验算,即使嵌岩段岩石横向承载力小于计算的岩石反力时,软件也不会给出提示的。下面我们将结合案例,针对两款软件在抗滑桩嵌固段(嵌岩段及嵌土段)计算的异同做详细说明。1. 嵌固段计算模型理正抗滑桩的帮助文档介绍内力、位移采用弹性法计算。嵌固段并没有区分嵌岩和嵌土,分析模型为桩前有弹簧支座。但是从计算结果看嵌土时土反力不会大于桩前被动土压力,嵌岩时岩石反力不会大于岩石的横向承载力。 理正抗滑桩计算模型简图GEO5抗滑桩的内力、位移采用弹塑性共同变形法计算,并考虑了嵌岩跟嵌土计算模型上的差异。嵌土时,桩前及桩后相当于土弹簧作用,土体按弹塑性材料考虑,最大应力不能大于被动土压力,最小应力不能小于主动土压力。嵌岩段,桩身一侧有弹簧作用(位置由桩身位移决定),岩体按弹性材料考虑,分析时岩石反力可以达到任意值,最终验算最大应力是否大于岩石的横向承载力。 GEO5抗滑桩计算模型简图具体可参考:抗滑桩计算中土体嵌固段和岩石嵌固段的区别2. 抗滑桩嵌岩段设计2.1 嵌岩段承载力验算抗滑桩设计应满足嵌固段承载力要求。依据《铁路路基支挡结构设计规范TB10025-2006(2009局部修订版)》,针对嵌岩段应当满足规范第10.2.10.1条规定,具体内容如下:1 地层为岩层时,桩的最大横向压应力 σmax应小于或等于地基的横向容许承载力。地基的横向容许承载力与岩石单轴抗压极限强度的对应关系可按本规范附录表B.0.1采用。当桩为矩形截面时,地基的横向容许承载力可按下式计算:                (10.2.10- 1)式中:--在水平方向的换算系数,根据岩石的完整程度、层理或片理产状、层间的股结物与胶结程度、节理裂隙的密度和充填物,可采用 0.5-1.0;--折减系数,根据岩层的裂隙、风化及软化程度,可采用 0.3-0.45;--岩石单轴抗压极限强度 (kPa)。GEO5软件严格按照上述规范验算,当不满足规范中的10.2.10-1公式时,软件会给出“岩石地基横向承载力 不满足要求”提示,如下图: 而理正软件目前只有「抗滑桩综合治理」模块可以进行嵌岩段设计。理正「抗滑桩综合治理」模块仅在桩的计算结果-->内力计算结果-->土反力图形上用红色线条表示的允许值。而关于它的设计值,也就是土反力由白色线条表示。 理正土反力结果图依据理正土反力结果图,「抗滑桩综合治理」模块似乎也对嵌岩段进行了验算,但其实这里的验算与规范要求是不相同。下面举例说明,当嵌岩段设置如下:  计算模型其他参数保持不变,仅设置单轴极限抗压强度R为变量,R分别取值1MPa,2MPa,2.5Mpa,5Mpa,10Mpa。在滑面上受滑坡推力的作用下(理正的第1种情况:滑坡推力),内力计算结果如下: 单轴极限抗压强度R=1Mpa 单轴极限抗压强度R=2Mpa 单轴极限抗压强度R=2.5Mpa 单轴极限抗压强度R=5Mpa 单轴极限抗压强度R=10Mpa对比1MPa,2MPa,2.5Mpa的计算结果,我们发现软件的岩石反力取值是不会大于横向允许承载力的。当岩石反力(=位移*岩石水平反力系数)>横向允许承载力时,取横向允许承载力值。即岩石反力=min{弹簧刚度K*位移X,横向允许承载力},理正软件将岩石视为弹塑性材料。软件没有且不会出现“岩石横向承载力不满足要求”。2.2 理正嵌岩段设计的正确性校验为进一步验证,我们缩短嵌固段,嵌岩段设置为1m,单轴极限抗压强度R=5MPa。此时对应的岩石地基横向容许承载力Rd=5000*0.3*0.5=750kPa,在此参数下进行对比分析。GEO5抗滑桩软件计算会提示地基横向承载力不满足要求(岩石当成弹性材料考虑)。如下图: 抗滑桩嵌岩段1m,R=5Mpa,允许反力=750kPa若将岩石当成弹塑性材料考虑,我们用两款软件对比计算。注:在GEO5中,我们用c足够大的弹塑性土体,来模拟理正模型中的弹塑性岩石,只要GEO5的允许反力(计算的被动土压力)与理正R=5MPa所能提供的岩石地基横向容许承载力Rd相当即可。GEO5计算出在允许反力≈780kPa时,结构不稳定,此时无法给出内力及位移详细计算结果。此时减小允许反力值,结构会更不稳,所以在允许反力=750kPa时,GEO5计算结构是会不稳定的。如下图:  弹塑性的土体模拟岩体,嵌岩1m深,允许反力≈780kPa理正岩石允许反力=750kPa时,分析仍能给出内力及位移结果。虽然结果明显错误但有结果给出说明计算是收敛。如下图: 嵌岩1m深,R=5Mpa,允许反力=750kPa如果岩石当成弹塑性材料考虑,那么当计算出的岩石反力>横向承载力的时候,计算出的岩石反力会进行调整然后进行二次迭代,而当变形足够大,势必会出现计算不收敛的情况,不收敛是计算不出结果的,此时结构不稳定,正如上面GEO5软件的提示。但我们发现无论理正中嵌岩段的岩石反力多小,软件都能计算出内力及位移。2.3结论理正抗滑桩软件岩石是当成弹塑性材料考虑的,岩石反力=min{弹簧刚度K*位移X,横向允许承载力},软件没有且不会出现“岩石横向承载力不满足要求”。软件并没有严格按照规范要求去验算嵌岩段。若岩石按弹塑性材料考虑,理正软件在嵌固段明显不满足要求,结构不稳定的时候,仍能输出内力及位移计算结果。GEO5抗滑桩软件岩石按弹性考虑,岩石反力=弹簧刚度K*位移X,分析时岩石反力可以达到任意值,最终验算最大应力是否大于岩石的横向承载力。验算是严格按照规范要求。3. 抗滑桩嵌土段设计3.1 嵌土段承载力验算针对嵌土段,规范10.2.10-2和10.2.10-3给出了横向允许承载力计算公式,可以按公式计算,此外规范10.2.10的条文说明对于规范正文也做了进一步说明,具体内容如下:10.2.10 对于较完整的岩质岩层及半岩质岩层的地基,桩身作用于围岩的侧向压应力,一般不应大于容许强度。桩周围岩的侧向允许抗压强度,必要时可直接在现场试验取得,一般按岩石的完整程度、层理或片理产状、层间的胶结物与胶结程度、节理裂隙的密度和充填物、各种构造裂面的性质和产状及其贯通程度等情况,分别采用垂直允许抗压强度的0.5 ~ 1.0倍。当围岩为密实土或砂层时,其值为0.5倍,较完整的半岩质岩层为0.60~0.75倍,块状或厚层少裂隙的岩层为 0.75~ 1.0倍。对于一般土层或风化成土、砂砾状的岩层地基,抗滑桩在侧向荷载作用下发生转动变位时,桩前的土体产生被动土压力,而在桩后的土体产生主动土压力。桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。在工程设计中,要使锚固段完全满足要求,有时会很困难,所以根据多年的工程经验,满足滑动面以下深度 h2/3 和h2(滑动面以下桩长)处的横向压应力应小于或等于被动土压力与主动士压力之差即可。此时滑动面以下h2/3深度范围内进入塑性区。依据GEO5抗滑桩计算理论,GEO5土体按弹塑性材料考虑,采用弹塑性共同变形法,嵌土段桩前及桩后都有土弹簧作用,结构受力由下式计算:针对GEO5抗滑桩的嵌土段,作用在变形结构上的土压力最大不能大于被动土压力,最小不能小于主动土压力。即桩前计算土压力≤桩前被动土压力,桩后计算土压力≥桩后主动土压力。那么-桩后计算土压力≤-桩后主动土压力。据此可推导得到,桩前计算土压力-桩后计算土压力≤桩前被动土压力-桩后主动土压力恒成立。而GEO5的土反力是桩前桩后计算土压力的合力。也就是GEO5抗滑桩的计算土反力≤桩前被动土压力-桩后主动土压力,依据GEO5的计算理论,如果软件计算结果收敛,无结构不稳定的提示,那么计算结果将严格满足规范第10.2.10的条文说明的“桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。”此外,我们可以依据GEO5分析结果的“土压力+位移”图示很容易判断被动区土体的塑性区的范围。 理正土体也是按弹塑性材料考虑,由于计算模型的不同,理正软件的计算土反力特指滑坡面以下桩的土抗力,由下式计算:在桩的计算结果-->内力计算结果-->土反力图形上用红色线条表示的被动土压力数值。理正软件计算的土反力不会大于被动土压力,同样也可以根据图形来判断被动区塑性区范围。 首先,理正软件是没有按照规范正文要求去进行计算允许横向承载力计算,其次,因为没有考虑桩后主动土压力,所以也不能按规范条文说明去验算嵌土段是否满足滑动面以下深度 h2/3 和h2(滑动面以下桩长)处土反力是否小于等于被动土压力与主动土压力之差。综上,理正抗滑桩的嵌土段并没有按照规范要求进行验算。3.2 理正嵌土段设计的正确性校验举例用两款软件分析下列抗滑桩: 计算简图两款软件的计算结果: 理正计算最大位移= -73.28(mm) GEO5计算最大位移= -26.9(mm)两款软件位移计算结果相差太多,下面我们用有限元分析软件OptumG2进行复核。将抗滑桩桩后嵌固段以上9m以上的土折算成超载施加在模型里,同时将理正计算出来的滑坡推力的水平和竖直分布力施加在模型中。选择弹塑性分析方法,具体如下: 初始地应力分析弹塑性分析分析结果: Optumn G2的计算结果(位移28.02mm)相比较理正的70.28mm的水平位移,Optumn G2的计算结果(位移28.02mm)与GEO5(位移26.9mm)的更接近。3.3结论理正跟GEO5两款抗滑桩软件,均可以依据结果图示判断被动区塑性区范围,但是两款软件土反力计算公式不相同,由于理正嵌固段不考虑桩后土弹簧作用,所以计算结果只考虑桩前土抗力。嵌土段没有考虑桩后主动土压力,所以无法按照规范正文或条文说明的要求去验算。而GEO5软件只要计算结果收敛,没有结构不稳定的提示,那么计算结果将严格满足规范第10.2.10的条文说明的“桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。” 查看全部
<p>最近,有GEO5用户反馈,采用同样的设计参数,理正抗滑桩设计中设置很小的岩石单轴极限抗压强度能计算通过,GEO5的抗滑桩设计模块却显示嵌岩段“岩石横向承载力不满足要求”。其实理正抗滑桩设计并没有严格的按照规范对嵌岩段的承载力进行验算,即使嵌岩段岩石横向承载力小于计算的岩石反力时,软件也不会给出提示的。</p><p>下面我们将结合案例,针对两款软件在抗滑桩嵌固段(嵌岩段及嵌土段)计算的异同做详细说明。</p><p><strong>1.</strong><strong>&nbsp;</strong><strong>嵌固段计算模型</strong></p><p>理正抗滑桩的帮助文档介绍内力、位移采用<strong>弹性法</strong>计算。嵌固段并没有区分嵌岩和嵌土,分析模型为桩前有弹簧支座。但是从计算结果看嵌土时土反力不会大于桩前被动土压力,嵌岩时岩石反力不会大于岩石的横向承载力。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015226813015.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">理正抗滑桩计算模型简图</p><p>GEO5抗滑桩的内力、位移采用<strong>弹塑性共同变形法</strong>计算,并考虑了嵌岩跟嵌土计算模型上的差异。嵌土时,桩前及桩后相当于土弹簧作用,<strong>土体按弹塑性材料</strong>考虑,最大应力不能大于被动土压力,最小应力不能小于主动土压力。嵌岩段,桩身一侧有弹簧作用(位置由桩身位移决定),<strong>岩体按弹性材料考虑</strong>,分析时岩石反力可以达到任意值,最终验算最大应力是否大于岩石的横向承载力。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015252891365.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">GEO5抗滑桩计算模型简图</p><p>具体可参考:<a href="http://www.wen.kulunsoft.com/article/15">抗滑桩计算中土体嵌固段和岩石嵌固段的区别</a></p><p><strong>2.</strong><strong>&nbsp;</strong><strong>抗滑桩嵌岩段设计</strong></p><p><strong>2.1 嵌岩段承载力验算</strong></p><p>抗滑桩设计应满足嵌固段承载力要求。依据《铁路路基支挡结构设计规范TB10025-2006(2009局部修订版)》,针对<strong>嵌岩段</strong>应当满足规范第10.2.10.1条规定,具体内容如下:</p><p>1 地层为岩层时,桩的最大横向压应力 σmax应小于或等于地基的横向容许承载力。地基的横向容许承载力与岩石单轴抗压极限强度的对应关系可按本规范附录表B.0.1采用。当桩为矩形截面时,地基的横向容许承载力可按下式计算:</p><p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015281209620.png" alt="image.png"/>&nbsp; &nbsp; (10.2.10- 1)</p><p>式中:<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015304989700.png" alt="image.png"/>--在水平方向的换算系数,根据岩石的完整程度、层理或片理产状、层间的股结物与胶结程度、节理裂隙的密度和充填物,可采用 0.5-1.0;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015320609237.png" alt="image.png"/>--折减系数,根据岩层的裂隙、风化及软化程度,可采用 0.3-0.45;</p><p><img width="17" height="18" src="http://www.wen.kulunsoft.com/s ... ot%3B word_img="file:///C:\Users\南京库~1\AppData\Local\Temp\ksohtml25044\wps46.png" style="background:url(http://www.wen.kulunsoft.com/s ... rd.gif) no-repeat center center;border:1px solid #ddd"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015340476762.png" alt="image.png"/>--岩石单轴抗压极限强度 (kPa)。</p><p>GEO5软件严格按照上述规范验算,当不满足规范中的10.2.10-1公式时,软件会给出“<span style="color: #FF0000;">岩石地基横向承载力 不满足要求</span>”提示,如下图:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015374641698.png" alt="image.png"/>&nbsp;</p><p>而理正软件目前只有「抗滑桩综合治理」模块可以进行嵌岩段设计。理正「抗滑桩综合治理」模块仅在桩的计算结果--&gt;内力计算结果--&gt;土反力图形上用红色线条表示的允许值。而关于它的设计值,也就是土反力由白色线条表示。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015383130771.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">理正土反力结果图</p><p>依据理正土反力结果图,「抗滑桩综合治理」模块似乎也对嵌岩段进行了验算,但其实这里的验算与规范要求是不相同。下面举例说明,当嵌岩段设置如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015396193099.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015403873002.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">计算模型</p><p>其他参数保持不变,仅设置单轴极限抗压强度R为变量,R分别取值1MPa,2MPa,2.5Mpa,5Mpa,10Mpa。在滑面上受滑坡推力的作用下(理正的第1种情况:滑坡推力),内力计算结果如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015415950534.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">单轴极限抗压强度R=1Mpa</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015420507471.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">单轴极限抗压强度R=2Mpa</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015428632221.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">单轴极限抗压强度R=2.5Mpa</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015434899048.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">单轴极限抗压强度R=5Mpa</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015442785177.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">单轴极限抗压强度R=10Mpa</p><p>对比1MPa,2MPa,2.5Mpa的计算结果,我们发现软件的岩石反力取值是不会大于横向允许承载力的。当岩石反力(=位移*岩石水平反力系数)>横向允许承载力时,取横向允许承载力值。即岩石反力=min{弹簧刚度K*位移X,横向允许承载力},理正软件将岩石视为弹塑性材料。软件没有且不会出现“岩石横向承载力不满足要求”。</p><p><strong>2.2 理正嵌岩段设计的正确性</strong><strong>校验</strong></p><p>为进一步验证,我们缩短嵌固段,嵌岩段设置为1m,单轴极限抗压强度R=5MPa。此时对应的岩石地基横向容许承载力Rd=5000*0.3*0.5=750kPa,在此参数下进行对比分析。</p><p>GEO5抗滑桩软件计算会提示地基横向承载力不满足要求(岩石当成弹性材料考虑)。如下图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015467678427.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">抗滑桩嵌岩段1m,R=5Mpa,允许反力=750kPa</p><p>若将岩石当成弹塑性材料考虑,我们用两款软件对比计算。</p><blockquote><p>注:在GEO5中,我们用c足够大的弹塑性土体,来模拟理正模型中的弹塑性岩石,只要GEO5的允许反力(计算的被动土压力)与理正R=5MPa所能提供的岩石地基横向容许承载力Rd相当即可。</p></blockquote><p>GEO5计算出在允许反力≈780kPa时,结构不稳定,此时无法给出内力及位移详细计算结果。此时减小允许反力值,结构会更不稳,所以在允许反力=750kPa时,GEO5计算结构是会不稳定的。如下图:</p><p>&nbsp;</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015486618818.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">弹塑性的土体模拟岩体,嵌岩1m深,允许反力≈780kPa</p><p>理正岩石允许反力=750kPa时,分析仍能给出内力及位移结果。虽然结果明显错误但有结果给出说明计算是收敛。如下图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015498184013.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">嵌岩1m深,R=5Mpa,允许反力=750kPa</p><p>如果岩石当成弹塑性材料考虑,那么当计算出的岩石反力>横向承载力的时候,计算出的岩石反力会进行调整然后进行二次迭代,而当变形足够大,势必会出现计算不收敛的情况,不收敛是计算不出结果的,此时结构不稳定,正如上面GEO5软件的提示。但我们发现无论理正中嵌岩段的岩石反力多小,软件都能计算出内力及位移。</p><p><strong>2.3结论</strong></p><p>理正抗滑桩软件岩石是当成弹塑性材料考虑的,岩石反力=min{弹簧刚度K*位移X,横向允许承载力},软件没有且不会出现“岩石横向承载力不满足要求”。软件并没有严格按照规范要求去验算嵌岩段。若岩石按弹塑性材料考虑,理正软件在嵌固段明显不满足要求,结构不稳定的时候,仍能输出内力及位移计算结果。GEO5抗滑桩软件岩石按弹性考虑,岩石反力=弹簧刚度K*位移X,分析时岩石反力可以达到任意值,最终验算最大应力是否大于岩石的横向承载力。验算是严格按照规范要求。</p><p><strong>3.</strong><strong>&nbsp;</strong><strong>抗滑桩嵌土段设计</strong></p><p><strong>3.1 嵌土段承载力验算</strong></p><p>针对<strong>嵌土段,规范10.2.10-2和10.2.10-3给出了横向允许承载力计算公式,可以按公式计算,此外规范</strong>10.2.10的条文说明对于规范正文也做了进一步说明,具体内容如下:</p><p>10.2.10 对于较完整的岩质岩层及半岩质岩层的地基,桩身作用于围岩的侧向压应力,一般不应大于容许强度。桩周围岩的侧向允许抗压强度,必要时可直接在现场试验取得,一般按岩石的完整程度、层理或片理产状、层间的胶结物与胶结程度、节理裂隙的密度和充填物、各种构造裂面的性质和产状及其贯通程度等情况,分别采用垂直允许抗压强度的0.5 ~ 1.0倍。当围岩为密实土或砂层时,其值为0.5倍,较完整的半岩质岩层为0.60~0.75倍,块状或厚层少裂隙的岩层为 0.75~ 1.0倍。对于一般土层或风化成土、砂砾状的岩层地基,<strong>抗滑桩在侧向荷载作用下发生转动变位时,桩前的土体产生被动土压力,而在桩后的土体产生主动土压力。桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。在工程设计中,要使锚固段完全满足要求,有时会很困难,所以根据多年的工程经验,满足滑动面以下深度 h<sub>2</sub>/3 和h<sub>2</sub>(滑动面以下桩长)处的横向压应力应小于或等于被动土压力与主动士压力之差即可。</strong>此时滑动面以下h2/3深度范围内进入塑性区。</p><p>依据GEO5抗滑桩计算理论,GEO5土体按弹塑性材料考虑,采用弹塑性共同变形法,嵌土段桩前及桩后都有土弹簧作用,结构受力由下式计算:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015529673204.png" alt="image.png"/></p><p>针对GEO5抗滑桩的嵌土段,作用在变形结构上的土压力最大不能大于被动土压力,最小不能小于主动土压力。即桩前计算土压力≤桩前被动土压力,桩后计算土压力≥桩后主动土压力。那么-桩后计算土压力≤-桩后主动土压力。据此可推导得到,桩前计算土压力-桩后计算土压力≤桩前被动土压力-桩后主动土压力恒成立。而GEO5的土反力是桩前桩后计算土压力的合力。也就是GEO5抗滑桩的计算土反力≤桩前被动土压力-桩后主动土压力,依据GEO5的计算理论,如果软件计算结果收敛,无结构不稳定的提示,那么计算结果将严格满足规范第10.2.10的条文说明的“<strong>桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。</strong>”</p><p>此外,我们可以依据GEO5分析结果的“土压力+位移”图示很容易判断被动区土体的塑性区的范围。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015561456784.png" alt="image.png"/>&nbsp;</p><p>理正<strong>土体也是按弹塑性材料</strong>考虑,由于计算模型的不同,理正软件的计算土反力特指滑坡面以下桩的土抗力,由下式计算:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015578780627.png" alt="image.png"/></p><p>在桩的计算结果--&gt;内力计算结果--&gt;土反力图形上用红色线条表示的被动土压力数值。理正软件计算的土反力不会大于被动土压力,同样也可以根据图形来判断被动区塑性区范围。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015588409095.png" alt="image.png"/>&nbsp;</p><p>首先,理正软件是没有按照规范正文要求去进行计算允许横向承载力计算,其次,因为没有考虑桩后主动土压力,所以也不能按规范条文说明去验算嵌土段是否满足滑动面以下深度 h2/3 和h2(滑动面以下桩长)处土反力是否小于等于被动土压力与主动土压力之差。综上,理正抗滑桩的嵌土段并没有按照规范要求进行验算。</p><p><strong>3.2 理正嵌土段设计的正确性</strong><strong>校验</strong></p><p>举例用两款软件分析下列抗滑桩:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015602169359.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">计算简图</p><p>两款软件的计算结果:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015624596342.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">理正计算最大位移= -73.28(mm)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015631100298.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">GEO5计算最大位移= -26.9(mm)</p><p>两款软件位移计算结果相差太多,下面我们用有限元分析软件OptumG2进行复核。将抗滑桩桩后嵌固段以上9m以上的土折算成超载施加在模型里,同时将理正计算出来的滑坡推力的水平和竖直分布力施加在模型中。选择弹塑性分析方法,具体如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015644374963.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">初始地应力分析</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015665247033.png" alt="image.png"/></p><p style="text-align: center;">弹塑性分析</p><p>分析结果:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015690771650.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">Optumn G2的计算结果(位移28.02mm)</p><p>相比较理正的70.28mm的水平位移,Optumn G2的计算结果(位移28.02mm)与GEO5(位移26.9mm)的更接近。</p><p><strong>3.3结论</strong></p><p>理正跟GEO5两款抗滑桩软件,均可以依据结果图示判断被动区塑性区范围,但是两款软件土反力计算公式不相同,由于理正嵌固段不考虑桩后土弹簧作用,所以计算结果只考虑桩前土抗力。嵌土段没有考虑桩后主动土压力,所以无法按照规范正文或条文说明的要求去验算。而GEO5软件只要计算结果收敛,没有结构不稳定的提示,那么计算结果将严格满足规范第10.2.10的条文说明的“<strong>桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。</strong>”</p><p><br/></p>

竖井设计点击截面强度验算会报错

库仑产品库仑吴汶垣 回答了问题 • 2 人关注 • 1 个回答 • 43 次浏览 • 5 天前 • 来自相关话题

指定边坡滑面参数说明

库仑产品库仑刘工 发表了文章 • 0 个评论 • 29 次浏览 • 5 天前 • 来自相关话题

GEO5不需要单独输入滑面参数,软件会自动读取岩土材料参数。软件的使用思路是,首先创建所要分析边坡的剖面地层线,然后为地层指定岩土材料,最后在建立的模型上分析各类滑面。图1 滑面类型在分析边坡稳定性时,根据边坡滑面是否确定,可以大致分为有软弱滑面与无软弱滑面(如图)。有软弱滑面(即滑面固定,不用自动搜索)的情况可以分为两种:一个是土石交接的情况,滑面参数取上层岩土材料的参数;一个是有软弱滑带,滑面参数取滑带土参数。无软弱滑面(即勘察报告中没提供滑面位置)需要使用自动搜索功能。这里主要介绍有软弱滑面边坡的滑面参数赋值操作说明。1. 有软弱滑面——土石交接边坡下部为岩石,上部为土层或者破碎岩石的情况,滑面确定为土石交界位置处。这种情况我们只需绘制滑面,软件会读取滑面经过岩土材料的参数。操作步骤如下:(1)使用“导入”功能里的“将DXF文件以模板导入”,将滑面导入到软件中。图2 以模板导入滑面(2)在“分析”选项下,选择折线滑面,输入滑面。输入方式是点击“输入”,然后在图形界面捕捉读入的滑面点。图3 输入滑面图4 图形交互输入滑面这里需要注意的是,用捕捉点的方法绘制滑面时,需保证绘制滑面与导入滑面保持一致,不要出现滑面越过下层滑面的情况。下面这种情况,软件读取岩土材料参数时会读到下面的岩土材料来。图5 滑面错误的输入方式(3)分析并查看计算书指定滑面之后,可以点击左侧的开始分析按钮。分析完成之后可以在计算书中找到每一土的详细信息。软件会读取,滑面经过土层的岩土材料内摩擦角、粘聚力、容重等信息。土石交接处读取的是上层岩土材料的参数。在计算书的详细结果中会给出每个土体的详细信息。图6 滑面每个土条的详细信息2. 有软弱滑面——滑带土石交接滑面取的岩土材料参数是上层岩土材料的参数,对于一些有滑带的情况其滑面参数不是使用上层土层,而是滑带土的参数。这里就需要我们定义一层滑带,为滑带指定岩土材料,最后将滑面指定到滑带位置。有两种操作方式,一是在CAD中,使用偏移命令,在CAD中绘制一层薄滑带;二是在GEO5中,利用复制多段线命令进行绘制。2.1. CAD中绘制滑带(1)CAD中选择要偏移的线段(2)英文输入法下输入快捷键“o”,回车或空格确定(3)输入偏移距离,如0.1,回车确定(4)在选择线段的上方或下方点击左键,软件即可完成偏移操作(5)进行延长、修剪,将图形修整为符合软件读取的图形,读入软件图7 CAD中进行偏移操作图8 修剪生成的地层线2.2. GEO5中绘制GEO5中也可以进行简单偏移操作(GEO5偏移操作,不能有多段线交叉;有交叉的情况,最好在CAD中做好)。GEO5中偏移操作如下:(1)在“多段线”菜单下,选择要复制(偏移)的多段线,复制选择的多段线,然后粘贴。图9 GEO5中进行多段线偏移(2)粘贴之后可以选择偏移距离,“+”为向上偏移;“-”为向下偏移。这里输入0.1m,使多段线向上偏移0.1m。点击粘贴即可在原多段线的上方0.1m处复制一条新的多段线,这时就生成的了一层较薄的滑带土。将新生成的地层指定为滑带土的岩土材料即可。图10 偏移方向说明图11 生成滑带后指定岩土材料接下来,将滑面的CAD图形以模板读入,用“输入”功能在滑带土上输入滑面即可。图12 以模板输入滑面3. 无软弱滑面无软弱滑面只需任意指定一个初始滑面,点击自动搜索即可。同样,软件也会读取滑面经过岩土材料的参数。对于圆弧型滑面,软件会自动划分成20个条块。简化毕肖普法、瑞典条分法等方法,对条间里进行简化,并不是土条划分得越细精度就越高。工程上土条一般取10~20,软件里取20。图13 自动搜索图  查看全部
<p>GEO5不需要单独输入滑面参数,软件会自动读取岩土材料参数。软件的使用思路是,首先创建所要分析边坡的剖面地层线,然后为地层指定岩土材料,最后在建立的模型上分析各类滑面。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924631872894.png" alt="image.png"/></p><p style="text-align: center;">图1 滑面类型</p><p>在分析边坡稳定性时,根据边坡滑面是否确定,可以大致分为有软弱滑面与无软弱滑面(如图)。有软弱滑面(即滑面固定,不用自动搜索)的情况可以分为两种:一个是土石交接的情况,滑面参数取上层岩土材料的参数;一个是有软弱滑带,滑面参数取滑带土参数。无软弱滑面(即勘察报告中没提供滑面位置)需要使用自动搜索功能。这里主要介绍有软弱滑面边坡的滑面参数赋值操作说明。</p><p><strong>1. 有软弱滑面——土石交接</strong></p><p>边坡下部为岩石,上部为土层或者破碎岩石的情况,滑面确定为土石交界位置处。这种情况我们只需绘制滑面,软件会读取滑面经过岩土材料的参数。操作步骤如下:</p><p>(1)使用“导入”功能里的“将DXF文件以模板导入”,将滑面导入到软件中。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924650683733.png" alt="image.png"/></p><p style="text-align: center;">图2 以模板导入滑面</p><p>(2)在“分析”选项下,选择折线滑面,输入滑面。输入方式是点击“输入”,然后在图形界面捕捉读入的滑面点。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924663973741.png" alt="image.png"/></p><p style="text-align: center;">图3 输入滑面</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924675553197.png" alt="image.png"/></p><p style="text-align: center;">图4 图形交互输入滑面</p><p>这里需要注意的是,用捕捉点的方法绘制滑面时,需保证绘制滑面与导入滑面保持一致,不要出现滑面越过下层滑面的情况。下面这种情况,软件读取岩土材料参数时会读到下面的岩土材料来。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924688190615.png" alt="image.png"/></p><p style="text-align: center;">图5 滑面错误的输入方式</p><p>(3)分析并查看计算书</p><p>指定滑面之后,可以点击左侧的开始分析按钮。分析完成之后可以在计算书中找到每一土的详细信息。软件会读取,滑面经过土层的岩土材料内摩擦角、粘聚力、容重等信息。土石交接处读取的是上层岩土材料的参数。在计算书的详细结果中会给出每个土体的详细信息。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924700460905.png" alt="image.png"/></p><p style="text-align: center;">图6 滑面每个土条的详细信息</p><p><strong>2. 有软弱滑面——滑带</strong></p><p>土石交接滑面取的岩土材料参数是上层岩土材料的参数,对于一些有滑带的情况其滑面参数不是使用上层土层,而是滑带土的参数。这里就需要我们定义一层滑带,为滑带指定岩土材料,最后将滑面指定到滑带位置。有两种操作方式,一是在CAD中,使用偏移命令,在CAD中绘制一层薄滑带;二是在GEO5中,利用复制多段线命令进行绘制。</p><p>2.1. CAD中绘制滑带</p><p>(1)CAD中选择要偏移的线段</p><p>(2)英文输入法下输入快捷键“o”,回车或空格确定</p><p>(3)输入偏移距离,如0.1,回车确定</p><p>(4)在选择线段的上方或下方点击左键,软件即可完成偏移操作</p><p>(5)进行延长、修剪,将图形修整为符合软件读取的图形,读入软件</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924714517681.png" alt="image.png"/></p><p style="text-align: center;">图7 CAD中进行偏移操作</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924745293577.png" alt="image.png"/></p><p style="text-align: center;">图8 修剪生成的地层线</p><p>2.2. GEO5中绘制</p><p>GEO5中也可以进行简单偏移操作(GEO5偏移操作,不能有多段线交叉;有交叉的情况,最好在CAD中做好)。GEO5中偏移操作如下:</p><p>(1)在“多段线”菜单下,选择要复制(偏移)的多段线,复制选择的多段线,然后粘贴。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924775867115.png" alt="image.png"/></p><p style="text-align: center;">图9 GEO5中进行多段线偏移</p><p>(2)粘贴之后可以选择偏移距离,“+”为向上偏移;“-”为向下偏移。这里输入0.1m,使多段线向上偏移0.1m。点击粘贴即可在原多段线的上方0.1m处复制一条新的多段线,这时就生成的了一层较薄的滑带土。将新生成的地层指定为滑带土的岩土材料即可。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924797578233.png" alt="image.png"/></p><p style="text-align: center;">图10 偏移方向说明</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924807871671.png" alt="image.png"/></p><p style="text-align: center;">图11 生成滑带后指定岩土材料</p><p>接下来,将滑面的CAD图形以模板读入,用“输入”功能在滑带土上输入滑面即可。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924819953231.png" alt="image.png"/></p><p style="text-align: center;">图12 以模板输入滑面</p><p><strong>3. 无软弱滑面</strong></p><p style="text-align: center;">无软弱滑面只需任意指定一个初始滑面,点击自动搜索即可。同样,软件也会读取滑面经过岩土材料的参数。对于圆弧型滑面,软件会自动划分成20个条块。简化毕肖普法、瑞典条分法等方法,对条间里进行简化,并不是土条划分得越细精度就越高。工程上土条一般取10~20,软件里取20。<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924842387730.png" alt="image.png"/></p><p style="text-align: center;">图13 自动搜索图</p><p>&nbsp;</p><p><br/></p>

土钉边坡支护钢筋网片面层截面强度验算理论解析

库仑产品库仑沈工 发表了文章 • 0 个评论 • 32 次浏览 • 6 天前 • 来自相关话题

在【尺寸】菜单内,面层类型有两种选择,一是混凝土面层,二是钢筋网,本文着重介绍钢筋网的计算原理。当选择钢筋网面层时,要注意此时土钉的位置是交错布置的。这里还需要设置风化层的厚度和岩土材料参数。风化层的厚度和岩土材料参数直接影响到土钉和钢筋网的受力。在【钢筋网类型】菜单中,确定钢筋网的各项承载力及安全系数,最后在进行钢筋网的冲切和受剪力验算,需要将承载力除以安全系数作为验算标准。即Rp/SFmesh与Rs/SFmesh。  同理,在【土钉类型】菜单中,确定土钉的各项强度及安全系数,将各强度允许值除以安全系数,作为验算标准: 坡段,明确土钉的空间布置: 这里的板指的是土钉下面的垫板,板宽度hw对受力计算没有影响,但是该尺寸可以明确垫板尺寸,板的长度lw参与钢筋网冲切计算,垫板长度越大越有利,但是不可能无限大。最后,在【截面强度验算】菜单中,共进行四项验算:土钉受剪承载力验算、钢筋网受冲切承载力验算、钢筋网受剪承载力验算、土钉组合应变验算。此处需要设置是否考虑渗流,压力锥角度及土钉轴力。 关于渗流的影响,在计算土钉剪力和钢筋网剪力时,可以考虑由风化层中水流引起的渗流力Fw。关于压力锥的角度确定了土钉轴力在风化层中的传递扩散角度,这对钢筋网剪力的计算会产生影响。该角度使得作用在钢筋网上的各土钉轴力的水平间距减小了,同时也减小了单元土块的宽度。折减后的单元土块是一个梯形,可以等效为一个等面积的矩形,矩形的宽度为。压力锥角度θ通常在30°到80°之间。压力锥上部半径取板长度的一半。   关于土钉轴力,土钉轴力直接参与钢筋网抗冲切验算。轴力过大可能会导致钢筋网抗冲切不满足要求。1.土钉受剪承载力验算满足Fs≤Rs/SFmesh即可。在土钉抗剪验算中,选择风化层底面作为滑面,土钉剪力Fs则由单根土钉分担的单元土块引起的剪力计算得到。   上面的公式看似复杂,其实就是土块重力W、土钉轴力Fnail及渗流力Fw延着的滑面分力减去摩擦力,为摩擦系数,土块重力W、土钉轴力Fnail垂直与滑面的分力乘以摩擦系数即为摩擦力,在国内规范中不考虑作用,可以设置c=0。2.钢筋网受冲切承载力验算满足Fnail≤Rp/SFmesh即可。Fnail为土钉轴力3.钢筋网受剪承载力验算满足Sd≤Rs/SFmesh即可。软件自动计算由四根土钉包围的单元土块中两种类型滑面下的最大钢筋网剪力。直线滑面 - 在整个风化层厚度范围内自动找到使得钢筋网剪力最大的滑面。 剪力 - 直线滑面 分子很复杂,其实就是土块重力W、渗流力Fw延着的直线滑面分力减去摩擦力,这个力就是下图中的F分子,力的方向是沿滑面水平向下的。钢筋网所受的剪力跟此大小相等,方向相反。 折线滑面 - 在整个风化层厚度范围内自动找到使得钢筋网剪力最大的土块底面倾角。 剪力 - 折线滑面当采用折线滑面计算时,两个滑块之间的作用力X按下式计算:   公式的解析可以参考上面的直线滑面。注意:考虑压力锥影响,替代上面的,影响单元土块的宽度,最终体现在公式里面的滑块重量。4. 土钉组合应变验算 查看全部
<p>在【尺寸】菜单内,面层类型有两种选择,一是混凝土面层,二是钢筋网,本文着重介绍钢筋网的计算原理。</p><p>当选择钢筋网面层时,要注意此时土钉的位置是交错布置的。这里还需要设置风化层的厚度和岩土材料参数。风化层的厚度和岩土材料参数直接影响到土钉和钢筋网的受力。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871124644646.png" alt="image.png"/></p><p>在【钢筋网类型】菜单中,确定钢筋网的各项承载力及安全系数,最后在进行钢筋网的冲切和受剪力验算,需要将承载力除以安全系数作为验算标准。即Rp/SFmesh与Rs/SFmesh。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871132496592.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871137907426.png" alt="image.png"/>&nbsp;</p><p>同理,在【土钉类型】菜单中,确定土钉的各项强度及安全系数,将各强度允许值除以安全系数,作为验算标准:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871143792294.png" alt="image.png"/>&nbsp;</p><p>坡段,明确土钉的空间布置:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871150752283.png" alt="image.png"/>&nbsp;</p><p>这里的板指的是土钉下面的垫板,板宽度hw对受力计算没有影响,但是该尺寸可以明确垫板尺寸,板的长度lw参与钢筋网冲切计算,垫板长度越大越有利,但是不可能无限大。</p><p>最后,在【截面强度验算】菜单中,共进行四项验算:土钉受剪承载力验算、钢筋网受冲切承载力验算、钢筋网受剪承载力验算、土钉组合应变验算。此处需要设置是否考虑渗流,压力锥角度及土钉轴力。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871157498937.png" alt="image.png"/>&nbsp;</p><p>关于渗流的影响,在计算<a href="#b0">土钉剪力</a>和<a href="#b0">钢筋网剪力</a>时,可以考虑由风化层中水流引起的渗流力Fw。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871180520078.png" alt="image.png" width="244" height="167" style="width: 244px; height: 167px;"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871188734691.png" alt="image.png"/></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871195167347.png" alt="image.png"/></p><p>关于压力锥的角度确定了土钉轴力在风化层中的传递扩散角度,这对<a href="#b0">钢筋网剪力</a>的计算会产生影响。该角度使得作用在钢筋网上的各土钉轴力的水平间距减小了,同时也减小了单元土块的宽度。折减后的单元土块是一个梯形,可以等效为一个等面积的矩形,矩形的宽度为<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871226410181.png" alt="image.png"/>。压力锥角度θ通常在30°到80°之间。压力锥上部半径<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871234234264.png" alt="image.png"/>取板长度<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871240482384.png" alt="image.png"/>的一半。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871248496234.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871258694362.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871266114035.png" alt="image.png"/></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871278625209.png" alt="image.png"/>&nbsp;</p><p>关于土钉轴力,土钉轴力直接参与钢筋网抗冲切验算。轴力过大可能会导致钢筋网抗冲切不满足要求。</p><p><strong>1.土钉受剪承载力验算</strong></p><p>满足Fs≤Rs/SFmesh即可。</p><p>在土钉抗剪验算中,选择风化层底面作为滑面,土钉剪力Fs则由单根土钉分担的单元土块引起的剪力计算得到。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871286305546.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871292223883.png" alt="image.png"/>&nbsp;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871297560484.png" alt="image.png"/>&nbsp;</p><p>上面的公式看似复杂,其实就是土块重力W、土钉轴力Fnail及渗流力Fw延着的滑面分力减去摩擦力,</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871343798444.png" alt="image.png"/>为摩擦系数,土块重力W、土钉轴力Fnail垂直与滑面的分力乘以摩擦系数即为摩擦力,在国内规范中不考虑<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871356644646.png" alt="image.png"/>作用,可以设置c=0。</p><p><strong>2.钢筋网受冲切承载力验算</strong></p><p>满足Fnail≤Rp/SFmesh即可。Fnail为土钉轴力</p><p><strong>3.钢筋网受剪承载力验算</strong></p><p>满足Sd≤Rs/SFmesh即可。</p><p>软件自动计算由四根土钉包围的单元土块中两种类型滑面下的最大钢筋网剪力。<br/></p><p>直线滑面 - 在整个风化层厚度范围内自动找到使得钢筋网剪力最大的滑面。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871368624158.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">剪力 - 直线滑面</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871384898900.png" alt="image.png"/></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871390317928.png" alt="image.png"/>&nbsp;</p><p>分子很复杂,其实就是土块重力W、渗流力Fw延着的直线滑面分力减去摩擦力,这个力就是下图中的F<sub>分子</sub>,力的方向是沿滑面水平向下的。钢筋网所受的剪力跟此大小相等,方向相反。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871403659407.png" alt="image.png"/>&nbsp;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871447924111.png" alt="image.png"/></p><p>折线滑面 - 在整个风化层厚度范围内自动找到使得钢筋网剪力最大的土块底面倾角。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871457702470.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">剪力 - 折线滑面</p><p>当采用折线滑面计算时,两个滑块之间的作用力<strong><em>X</em></strong>按下式计算:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871463847549.png" alt="image.png"/>&nbsp;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871469563201.png" alt="image.png"/>&nbsp;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871478370190.png" alt="image.png"/>&nbsp;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871508843578.png" alt="image.png"/></p><p>公式的解析可以参考上面的直线滑面。</p><p>注意:考虑压力锥影响,<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871529978480.png" alt="image.png"/>替代上面的<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871536609743.png" alt="image.png"/>,影响单元土块的宽度,最终体现在公式里面的滑块重量。</p><p>4.&nbsp;<strong>土钉组合应变验算</strong></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584939794519661.png" alt="image.png"/></p><p><br/></p>

GEO5岩土工程有限元分析稳定渗流分析后无法计算地下水位

岩土工程库仑张崇波 回答了问题 • 2 人关注 • 1 个回答 • 76 次浏览 • 2020-03-17 14:39 • 来自相关话题

GEO5水位骤降边坡稳定性分析方法

岩土工程库仑张崇波 发表了文章 • 0 个评论 • 52 次浏览 • 2020-03-13 16:33 • 来自相关话题

       GEO5土坡模块可以分析考虑水位骤降下的边坡稳定性,但在实际的使用中,有工程师反映不知道该怎么使用,也有人说输入了地下水之后边坡安全系数并没有发生改变,十分困惑,所以本文将对GEO5中分析水位骤降的方法进行详细说明。1、注意事项       无论是分析水位骤降下边坡稳定性,还是一般情况下分析有地下水位的边坡稳定性,都需要注意的是在岩土材料输入的时候选择有效应力法进行计算,只有选择了有效应力法,软件才会考虑孔隙水压力对条块的作用。如果选择了总应力法或者总应力ccu,φcu,软件都不会考虑坡内地下水位对边坡的影响,但坡外水位的有利作用软件还是会考虑。有效应力法和总应力法不同选择的区别可以查看GEO5中有效应力法、总应力法,水土分算、水土合算的说明。2、传统分析方法       传统分析水位骤降的方法是通过设置初始地下水位和水位骤降后的地下水位面来分析,最简单的做法是认为坡内的水来不及排出,那么水位骤降后坡内的水位保持不变,只改变坡外的静水面,随着水位的下降,边坡安全系数将逐渐降低。       在GEO5土坡模块中,选择【地下水】中的类型为“水位骤降”,可以直接定义边坡的初始地下水位和骤降后的地下水位:       定义完成后,和一般的边坡计算一样直接进行分析即可。下图展示的是相同的初始地下水位,不同水位骤降情况的边坡安全系数。3、结合GEO5中的初始孔压折减系数分析       传统的考虑坡内水来不及排出的方法实际上是一种偏保守的方法,因为水位骤降其实也是有一个过程的,那么坡内的水或多或少都会渗出坡外,如果是对于渗透性较好的土体,那么坡内的水位还会有明显的下降,但是针对这个问题,再去使用非稳定流分析浸润线就会显得有点麻烦。所以,GEO5通过巧妙地设置初始孔压折减系数X这样一个值,使得我们可以去考虑有水排出的情况。       当我们在【地下水】中选择的地下水类型为“水位骤降”时,需要在【岩土材料】中输入初始孔压折减系数的值:这里X的取值范围为[0,1],当土体完全透水时X=1,完全不透水时X=0,其他情况介于0和1之间,X值的作用原理可查看GEO5的帮助文档,或者直接点击GEO5土坡模块中地下水类型。       这里需要对三种情况的取值进一步说明:(1)X=1       X=1意味着土体完全透水,它的实际意义是:不考虑骤降后的水位与初始水位之间土体的孔隙水压力,所以X=1时,坡内不同的地下水位面会得到不同的结果。(2)X=0       X=0意味着土体完全不透水,它的实际意义是:认为骤降后的水位与初始水位之间土体仍然处于饱和状态,所以X=0时,坡内不同的地下水位面会得到相同的结果。(3)0<X<1       0<X<1其实模拟的是真实的情况,即水位骤降后考虑部分水的排出,既不是完全透水也不是完全不透水,在相同水位条件下,边坡安全系数将位于X=0和X=1之间。       至于X如何取值,则需要根据实际岩土材料的渗透性以及水位骤降的速度和阶段综合选取。另外,通过以上分析,我们也不难发现,如果采用传统的通过控制坡内水位面不变化的方法来分析,那么X值无论设置为多少,对最终结果都没有影响。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5土坡模块可以分析考虑水位骤降下的边坡稳定性,但在实际的使用中,有工程师反映不知道该怎么使用,也有人说输入了地下水之后边坡安全系数并没有发生改变,十分困惑,所以本文将对GEO5中分析水位骤降的方法进行详细说明。</p><p><strong>1、注意事项</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;无论是分析水位骤降下边坡稳定性,还是一般情况下分析有地下水位的边坡稳定性,都需要注意的是在岩土材料输入的时候选择有效应力法进行计算,只有选择了有效应力法,软件才会考虑孔隙水压力对条块的作用。如果选择了总应力法或者总应力c<sub>cu</sub>,φ<sub>cu</sub>,软件都不会考虑坡内地下水位对边坡的影响,但坡外水位的有利作用软件还是会考虑。有效应力法和总应力法不同选择的区别可以查看<a href="http://www.wen.kulunsoft.com/a ... BGEO5中有效应力法、总应力法,水土分算、水土合算的说明</a>。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B alt="blob.png" width="435" height="415" style="width: 435px; height: 415px;"/></p><p><strong>2、传统分析方法</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;传统分析水位骤降的方法是通过设置初始地下水位和水位骤降后的地下水位面来分析,最简单的做法是认为坡内的水来不及排出,那么水位骤降后坡内的水位保持不变,只改变坡外的静水面,随着水位的下降,边坡安全系数将逐渐降低。</p><p style="text-align: left;">&nbsp; &nbsp; &nbsp; &nbsp;在GEO5土坡模块中,选择【地下水】中的类型为“水位骤降”,可以直接定义边坡的初始地下水位和骤降后的地下水位:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584080821926652.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;定义完成后,和一般的边坡计算一样直接进行分析即可。下图展示的是相同的初始地下水位,不同水位骤降情况的边坡安全系数。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584087011538512.png" alt="image.png"/></p><p><strong>3、结合GEO5中的初始孔压折减系数分析</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;传统的考虑坡内水来不及排出的方法实际上是一种偏保守的方法,因为水位骤降其实也是有一个过程的,那么坡内的水或多或少都会渗出坡外,如果是对于渗透性较好的土体,那么坡内的水位还会有明显的下降,但是针对这个问题,再去使用非稳定流分析浸润线就会显得有点麻烦。所以,GEO5通过巧妙地设置初始孔压折减系数X这样一个值,使得我们可以去考虑有水排出的情况。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;当我们在【地下水】中选择的地下水类型为“水位骤降”时,需要在【岩土材料】中输入初始孔压折减系数的值:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584083072289482.png" alt="image.png" width="368" height="63" style="width: 368px; height: 63px;"/></p><p>这里X的取值范围为[0,1],当土体完全透水时X=1,完全不透水时X=0,其他情况介于0和1之间,X值的作用原理可查看GEO5的帮助文档,或者直接点击<a href="http://www.wen.kulunsoft.com/a ... BGEO5土坡模块中地下水类型</a>。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;这里需要对三种情况的取值进一步说明:</p><p>(1)X=1</p><p>&nbsp; &nbsp; &nbsp; &nbsp;X=1意味着土体完全透水,它的实际意义是:不考虑骤降后的水位与初始水位之间土体的孔隙水压力,所以X=1时,坡内不同的地下水位面会得到不同的结果。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584085542948660.png" alt="image.png"/></p><p>(2)X=0</p><p>&nbsp; &nbsp; &nbsp; &nbsp;X=0意味着土体完全不透水,它的实际意义是:认为骤降后的水位与初始水位之间土体仍然处于饱和状态,所以X=0时,坡内不同的地下水位面会得到相同的结果。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584085619188002.png" alt="image.png"/></p><p>(3)0&lt;X&lt;1</p><p>&nbsp; &nbsp; &nbsp; &nbsp;0&lt;X&lt;1其实模拟的是真实的情况,即水位骤降后考虑部分水的排出,既不是完全透水也不是完全不透水,在相同水位条件下,边坡安全系数将位于X=0和X=1之间。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584086262289515.png" alt="image.png" width="346" height="211" style="width: 346px; height: 211px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;至于X如何取值,则需要根据实际岩土材料的渗透性以及水位骤降的速度和阶段综合选取。另外,通过以上分析,我们也不难发现,如果采用传统的通过控制坡内水位面不变化的方法来分析,那么X值无论设置为多少,对最终结果都没有影响。</p><p><br/></p>

GEO5深基坑预留土堤盆式开挖计算介绍

岩土工程库仑刘工 发表了文章 • 0 个评论 • 61 次浏览 • 2020-03-07 23:17 • 来自相关话题

概述:GEO5可以设计计算桩前预留土堤,进行盆式开挖的深基坑。有不少工程师朋友可能都试用过该功能,但是由于没有详细去了解软件对这种情况的计算原理,有时会出现一些与预期不太一样的结果。导致一些工程师朋友使用软件设计时,只是用软件做一个辅助验算,出一个计算书。针对这种情况,非常有必要对软件的计算原理做一个详细的说明。视频讲解部分:基坑盆式开挖设计计算1. 悬臂式结构土压力计算首先我们先看一下规范里面关于基坑支护结构的计算原理图。基坑外侧土压力计算采用,主动土压力(一般利用库仑土压力公式进行计算)。基坑内侧的土压力,不再使用被动土压力,而是利用竖向温克尔弹性地基梁进行迭代计算土反力。图1 悬臂式结构土反力p由弹簧刚度k和变形得到;弹簧刚度与水平反力系数m(K、c)和桩前土体埋深决定。岩土材料确定之后,m是个定值,当做常量考虑,弹簧刚度仅与埋深有关(z-h)。图2 基坑开挖示意图这里h为当前工况的基坑开挖深度,z为土层计算点到地面的距离,z-h即为桩前土体的埋深。随着开挖进行,开挖深度加深,弹簧刚度会变小,土反力调整,位移调整,结构内力调整。根据施工情况进行分步开挖分析,土反力就会随之调整,这也是规范里推荐使用增量法进行设计的原因所在。2. 土反力最大值图3 土体分步开挖主动土压力大小不变,随着开挖加深,弹簧范围和大小都在减小,弹簧为提供足够的抗力,需要有足够大的变形。但土体(弹簧)变形又不能无限增大,那么土体最大位移为多少时,土体会破坏?直接通过土体变形来判断土体是否能破坏,是很难实现的。那么我们应该怎么判断土体破坏呢?我们可以换一个思路——用土反力和极限土压力进行对比,来判断土体变形是否可控。岩土体是弹塑性的,土体变形到一定程度,就会进入塑形状态,这时候,变形继续增加,土反力却不会继续增大。土反力最大值不应大于被动土压力,大过被动土压力,土体就超出临界状态,会产生破坏。综上,由变形与弹簧刚度计算的土反力,最大值不应大于被动土压力。当土反力不大于被动土压力时,应取实际计算值;当土反力大于被动土压力时,即土体进入塑形变形区时,应对土反力进行调整。调整方法介绍如下。3. 土体塑形变形时土反力取值图4 土压力和位移(弹性)该图是深基坑分析模块分析结果图,绿色虚线代表经典土压力(极限土压力),蓝色实线代表土反力。相同条件下,作用在挡土构件上的土压力,被动土压力>静止土压力>主动土压力。同一深度下,最外侧绿线是被动土压力,最内侧绿线为主动土压力,中间绿线为静止土压力。蓝色的线为土反力,即真实土压力。真实土压力大小,应介于主动土压力与被动土压力之间。图5 土压力和位移(弹塑性)随着开挖深度加深,会导致计算土反力继续增大,土体进入塑形状态,这时按p=ky计算土压力,会导致计算土反力超过被动土压力,这不符合土体规律。软件在这个时候会有一个调整(如图红色线框标注位置)。软件比较计算土反力,与被动土压力的大小。当该单元的土反力大于被动土压力的时,会用该单元范围内的被动土压力代替土反力,进行下一次迭代,直到所有单元的土反力都不大于被动土压力为止。图中红框标注位置,被动土压力线与土压力线重合。4. 盆式开挖土压力计算图6 盆式开挖桩后土体依然使用土压力,桩前土体依然使用土弹簧计算,比较土弹簧与被动土压力的大小。难点在于预留土堤之后,土弹簧和被动土压力应该如何考虑,我们不妨先看一下桩前土体的被动土压力的变化。与水平开挖相比,如果盆式开挖范围在破裂面以外,那么不必考虑被动土压力变化;开挖范围在破裂面内时,则需要考虑被动土压力的减小。这里被动土压力计算,需要联合使用图解法和解析法,具体计算可以参考土力学教程中特殊土压力计算。预留土堤部分的土弹簧,依然按正常土体取值(土弹簧刚度与岩土材料和埋深有关)计算土反力。这时需要考虑的一个问题就是,预留土堤能否像水平土层那样提供那么大的土反力,如何判断,标准是什么。判断标准依然是土反力与被动土压力的大小。假如土反力小于被动土压力力,那么 计算土压力取土反力;假如土反力大于被动土压力,那么就将土反力调整为被动土压力。注意,这里提到的被动土压力是考虑了盆式开挖之后的被动土压力。这样就确保了预留土提部分的土反力计算是合理的。5. 盆式开挖预留土堤注意事项(1)假如预留土堤部分,计算出来大范围都进入塑性变形,即土反力与被动土压力线重合,那么需要考虑,是否开挖过大,或者预留土堤宽度过窄。(2)预留土堤部分,需验证边坡是否稳定,可以调用外部稳定性验算,用限制搜索,完成桩前边坡的验算。(3)当预留土堤宽开挖计算结果与未进行盆式开挖相比几乎没有变化时,说明预留土堤宽度已经足够大了。我们也可以通过调整预留土堤宽度,找到临界值。如果变形、塑性变形、土堤边坡稳定性都能满足要求时,我们可以认为预留土堤形状是合适的。(4)上海市基坑工程技术规范DGTJ08-61-2010对盆式开挖有一些要求,这里贴出来以供参考。 查看全部
<p>概述:GEO5可以设计计算桩前预留土堤,进行盆式开挖的深基坑。有不少工程师朋友可能都试用过该功能,但是由于没有详细去了解软件对这种情况的计算原理,有时会出现一些与预期不太一样的结果。导致一些工程师朋友使用软件设计时,只是用软件做一个辅助验算,出一个计算书。针对这种情况,非常有必要对软件的计算原理做一个详细的说明。</p><p>视频讲解部分:<a href="https://ke.qq.com/course/44008 ... ot%3B target="_self">基坑盆式开挖设计计算</a></p><p><strong>1. 悬臂式结构土压力计算</strong></p><p style="text-align: left;">首先我们先看一下规范里面关于基坑支护结构的计算原理图。基坑外侧土压力计算采用,主动土压力(一般利用库仑土压力公式进行计算)。基坑内侧的土压力,不再使用被动土压力,而是利用竖向温克尔弹性地基梁进行迭代计算土反力。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583593999275294.png" alt="image.png"/></p><p style="text-align: center;">图1 悬臂式结构</p><p>土反力p由弹簧刚度k和变形得到;弹簧刚度与水平反力系数m(K、c)和桩前土体埋深决定。岩土材料确定之后,m是个定值,当做常量考虑,弹簧刚度仅与埋深有关(z-h)。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583594012777267.png" alt="image.png"/></p><p style="text-align: center;">图2 基坑开挖示意图</p><p>这里h为当前工况的基坑开挖深度,z为土层计算点到地面的距离,z-h即为桩前土体的埋深。随着开挖进行,开挖深度加深,弹簧刚度会变小,土反力调整,位移调整,结构内力调整。根据施工情况进行分步开挖分析,土反力就会随之调整,这也是规范里推荐使用增量法进行设计的原因所在。</p><p><strong>2. 土反力最大值</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583594021815114.png" alt="image.png"/></p><p style="text-align: center;">图3 土体分步开挖</p><p>主动土压力大小不变,随着开挖加深,弹簧范围和大小都在减小,弹簧为提供足够的抗力,需要有足够大的变形。但土体(弹簧)变形又不能无限增大,那么土体最大位移为多少时,土体会破坏?</p><p>直接通过土体变形来判断土体是否能破坏,是很难实现的。那么我们应该怎么判断土体破坏呢?我们可以换一个思路——用土反力和极限土压力进行对比,来判断土体变形是否可控。岩土体是弹塑性的,土体变形到一定程度,就会进入塑形状态,这时候,变形继续增加,土反力却不会继续增大。土反力最大值不应大于被动土压力,大过被动土压力,土体就超出临界状态,会产生破坏。</p><p>综上,由变形与弹簧刚度计算的土反力,最大值不应大于被动土压力。当土反力不大于被动土压力时,应取实际计算值;当土反力大于被动土压力时,即土体进入塑形变形区时,应对土反力进行调整。调整方法介绍如下。</p><p><strong>3. 土体塑形变形时土反力取值</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583594031829210.png" alt="image.png"/></p><p style="text-align: center;">图4 土压力和位移(弹性)</p><p style="text-align: left;">该图是深基坑分析模块分析结果图,绿色虚线代表经典土压力(极限土压力),蓝色实线代表土反力。相同条件下,作用在挡土构件上的土压力,被动土压力>静止土压力>主动土压力。同一深度下,最外侧绿线是被动土压力,最内侧绿线为主动土压力,中间绿线为静止土压力。蓝色的线为土反力,即真实土压力。真实土压力大小,应介于主动土压力与被动土压力之间。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583594040287795.png" alt="image.png"/></p><p style="text-align: center;">图5 土压力和位移(弹塑性)</p><p>随着开挖深度加深,会导致计算土反力继续增大,土体进入塑形状态,这时按p=ky计算土压力,会导致计算土反力超过被动土压力,这不符合土体规律。软件在这个时候会有一个调整(如图红色线框标注位置)。软件比较计算土反力,与被动土压力的大小。当该单元的土反力大于被动土压力的时,会用该单元范围内的被动土压力代替土反力,进行下一次迭代,直到所有单元的土反力都不大于被动土压力为止。图中红框标注位置,被动土压力线与土压力线重合。</p><p><strong>4. 盆式开挖土压力计算</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583594050852632.png" alt="image.png"/></p><p style="text-align: center;">图6 盆式开挖</p><p>桩后土体依然使用土压力,桩前土体依然使用土弹簧计算,比较土弹簧与被动土压力的大小。难点在于预留土堤之后,土弹簧和被动土压力应该如何考虑,我们不妨先看一下桩前土体的被动土压力的变化。与水平开挖相比,如果盆式开挖范围在破裂面以外,那么不必考虑被动土压力变化;开挖范围在破裂面内时,则需要考虑被动土压力的减小。这里被动土压力计算,需要联合使用图解法和解析法,具体计算可以参考土力学教程中特殊土压力计算。预留土堤部分的土弹簧,依然按正常土体取值(土弹簧刚度与岩土材料和埋深有关)计算土反力。这时需要考虑的一个问题就是,预留土堤能否像水平土层那样提供那么大的土反力,如何判断,标准是什么。判断标准依然是土反力与被动土压力的大小。假如土反力小于被动土压力力,那么 计算土压力取土反力;假如土反力大于被动土压力,那么就将土反力调整为被动土压力。注意,这里提到的被动土压力是考虑了盆式开挖之后的被动土压力。这样就确保了预留土提部分的土反力计算是合理的。</p><p><strong>5. 盆式开挖预留土堤注意事项</strong></p><p>(1)假如预留土堤部分,计算出来大范围都进入塑性变形,即土反力与被动土压力线重合,那么需要考虑,是否开挖过大,或者预留土堤宽度过窄。</p><p>(2)预留土堤部分,需验证边坡是否稳定,可以调用外部稳定性验算,用限制搜索,完成桩前边坡的验算。</p><p>(3)当预留土堤宽开挖计算结果与未进行盆式开挖相比几乎没有变化时,说明预留土堤宽度已经足够大了。我们也可以通过调整预留土堤宽度,找到临界值。如果变形、塑性变形、土堤边坡稳定性都能满足要求时,我们可以认为预留土堤形状是合适的。</p><p>(4)上海市基坑工程技术规范DGTJ08-61-2010对盆式开挖有一些要求,这里贴出来以供参考。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583594059387079.png" alt="image.png"/></p><p><br/></p>

抗滑桩嵌固段的最大横向压应力的几何意义?

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 86 次浏览 • 2020-03-07 23:11 • 来自相关话题

GEO5有限元模块导出浸润面到土坡模块的方法

岩土工程库仑张崇波 发表了文章 • 0 个评论 • 49 次浏览 • 2020-03-05 21:22 • 来自相关话题

       GEO5有限元渗流分析得到的浸润面可以直接导入到GEO5土坡模块中使用,这对于计算有地下水位的边坡稳定性十分方便。本文将简述操作方法及注意事项。       首先,将我们绘制的DXF文件以多段线形式导入到土坡模块中建立边坡模型,编辑好模型尺寸和材料参数后,复制模型数据。       然后,在GEO5有限元模块中粘贴数据,建立和土坡模块相同的模型(尺寸相同、坐标不偏移),并在【分析设置】中选择分析类型为“稳定流”或“非稳定流”。       输入岩土材料的渗流参数,并生成网格。然后,在工况1当中定义线渗流边界条件,不同的线渗流边界的概念可查看http://www.wen.kulunsoft.com/dochelp/960。       下一步直接进行渗流分析,得到如下图所示的浸润面,然后点击界面右侧“GEO剪贴板”中的复制计算地下水位。       这样,浸润面就已经复制到了剪贴板当中。此时回到最初建好的土坡模块当中,在【地下水】中选择地下水类型为“地下水位”,并在右侧“GEO剪贴板”中粘贴地下水位。这样,有限元渗流分析得到的浸润面就直接导入到了土坡模块当中,接下来就可以进行有地下水位面的边坡稳定性分析。       需要注意的是,我们在有限元当中生成浸润面的时候,可能会出现下面这种奇怪的浸润面形态:       出现这种情况是因为下游水头高于了地形面,而整个坡面设置的线边界条件又都是溢出边界。由于溢出边界意味着该位置的孔隙水压力为0,所以在两个边界条件交接的位置会出现自相矛盾的情况。这个时候只需要根据下游的实际水位更改对应坡面的渗流边界条件即可。       解决方法是,在坡面对应位置添加一个自由点:然后重新生成网格,并将原来下部的溢出边界改为孔隙水压力边界:最后就可以得到正常的浸润面,如下所示: 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5有限元渗流分析得到的浸润面可以直接导入到GEO5土坡模块中使用,这对于计算有地下水位的边坡稳定性十分方便。本文将简述操作方法及注意事项。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;首先,将我们绘制的DXF文件以多段线形式导入到土坡模块中建立边坡模型,编辑好模型尺寸和材料参数后,复制模型数据。</p><p style="text-align:center"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583413604240387.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;然后,在GEO5有限元模块中粘贴数据,建立和土坡模块相同的模型(尺寸相同、坐标不偏移),并在【分析设置】中选择分析类型为“稳定流”或“非稳定流”。<br/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583413664681364.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;输入岩土材料的渗流参数,并生成网格。然后,在工况1当中定义线渗流边界条件,不同的线渗流边界的概念可查看<a href="http://www.wen.kulunsoft.com/d ... gt%3B。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583413924201413.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;下一步直接进行渗流分析,得到如下图所示的浸润面,然后点击界面右侧“GEO剪贴板”中的复制计算地下水位。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583413962314702.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;这样,浸润面就已经复制到了剪贴板当中。此时回到最初建好的土坡模块当中,在【地下水】中选择地下水类型为“地下水位”,并在右侧“GEO剪贴板”中粘贴地下水位。这样,有限元渗流分析得到的浸润面就直接导入到了土坡模块当中,接下来就可以进行有地下水位面的边坡稳定性分析。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583414017825248.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;需要注意的是,我们在有限元当中生成浸润面的时候,可能会出现下面这种奇怪的浸润面形态:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583414101693454.png" alt="image.png" width="416" height="196" style="width: 416px; height: 196px;"/><br/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;出现这种情况是因为下游水头高于了地形面,而整个坡面设置的线边界条件又都是溢出边界。由于溢出边界意味着该位置的孔隙水压力为0,所以在两个边界条件交接的位置会出现自相矛盾的情况。这个时候只需要根据下游的实际水位更改对应坡面的渗流边界条件即可。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;解决方法是,在坡面对应位置添加一个自由点:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583414221457587.png" alt="image.png"/></p><p>然后重新生成网格,并将原来下部的溢出边界改为孔隙水压力边界:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583414290646284.png" alt="image.png"/></p><p>最后就可以得到正常的浸润面,如下所示:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583414337737486.png" alt="image.png" width="412" height="210" style="width: 412px; height: 210px;"/></p><p><br/></p>

GEO5双排抗滑桩设计时,桩验算的时候无论怎么调整尺寸参数都显示结构不稳定该怎么办

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 98 次浏览 • 2020-02-25 15:33 • 来自相关话题

GEO5三维地质导入地层数据

库仑产品库仑吴汶垣 回答了问题 • 2 人关注 • 1 个回答 • 94 次浏览 • 2020-02-19 12:15 • 来自相关话题

GEO5三维地质导入形状不规则的项目

库仑产品库仑吴汶垣 回答了问题 • 2 人关注 • 2 个回答 • 81 次浏览 • 2020-02-19 12:12 • 来自相关话题

GEO5三维建模岩层产状怎么表现?若场地存在多个交互断层怎么表现呢?

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 69 次浏览 • 2020-02-17 17:45 • 来自相关话题

如何正确预估最大抗滑承载力Vu

库仑产品库仑沈工 发表了文章 • 0 个评论 • 180 次浏览 • 2020-02-15 23:26 • 来自相关话题

     首先应了解在【土质边坡稳定性分析】模块,抗滑桩的作用就是提供一个抗力,这个力对计算结果的影响主要在于它的大小和作用点位置。本文着重说明抗力大小的影响,不介绍力的作用点的影响。     抗滑桩支护结构是有桩间距的,并非连续结构。所以在整体稳定性安全系数的计算过程中,需要考虑桩间距的影响,抗滑桩对于边坡稳定性贡献的大小取决于它可以提供给边坡的每延米的最大抗力Vu,最大抗力是由「最大抗滑承载力」除以「桩间距」得到的,因此边坡稳定性安全系数计算结果和「最大抗滑承载力」、「桩间距」有关,此处和桩的截面尺寸无关,桩的截面参数只有在调用【抗滑桩设计】模块进一步分析的时候才起作用。     对于滑面确定的坡体而言,使用抗滑桩支护时,能够确定其嵌固段,在输入抗滑桩参数时,抗滑桩承载力沿桩身分布可选择均匀分布,施加在滑面上的抗滑力可以采用桩身最大承载力(抗剪力)Vc。为什么最大抗滑承载力要用受剪承载力公式来计算?因为用受剪承载力进行估算相对简单,好确定。而抗弯承载力计算复杂,桩的抗弯主要还是看配筋量,在截面纵向配筋没有明确的时候不好进行预估。真实的抗剪与抗弯验算在【抗滑桩设计】的【截面强度验算】里都需要进行。根据《混凝土结构设计规范GB50010-2010》6.3.4条,桩的受剪承载力计算公式如下:(6.3.4-2)     式中:混凝土提供的抗剪力,一般受弯构件,而是箍筋提供的抗剪承载力。     在没有分析桩身受力前,我们并不知道是否需要配置剪力筋,保守起见我们先拿也就是混凝土提供的抗剪力去估算,如果采用后计算的安全系数满足要求,可以调用【抗滑桩设计】进行进一步分析。如果不满足要求,我们可以反过来,适当放大Vu数值,一般桩都是有配剪力筋的,所以你在土坡模块里面填入的Vu数据可以稍微大一点,再去计算安全系数!软件对于输入的Vu会进行校核,如果说Vu预估的高了,在调用【抗滑桩设计】进行【截面强度验算】会有提醒。     注:只有安全系数满足要求以后,再调用抗滑桩模块去进一步设计,否则安全系数不满足要求,整个设计也是不满足要求的!     举例:桩截面尺寸1.8mX2m,采用C30的混凝土。ft=1.43N/mm2,fc=14.3N/mm2。Vc=0.7*1.43*1800*2000/1000=3603.6kN,通常我们建议还是按千数量级去预估Vu这里我们输入Vu=5000KN,如下图:      软件会对输入的Vu进行验算,如果满足要求,软件默认不提醒。当不满足时会有警告提示,如下图:      此时,我们在保证稳定性安全系数满足要求的前提下,可以去【土质边坡稳定性分析】模块里【抗滑桩】对话框中减小Vu的数值,或者在【抗滑桩设计】模块的【截面强度验算】一栏,增加剪力筋。提高抗滑桩抗剪承载力。     至此,你是否会有疑问,既然可以放大数值,那就按大的取!越大越好!这样的想法是不可取的!因为有的时候桩的位置不合理,或者其他一些原因,会导致抗力增加到一定程度之后,再增加对提高稳定性几乎没有作用。     其次,桩的抗剪承载力是有限值的,原因如下:1. 不可能无限制的去配置箍筋来增大抗剪承载力,所以Vcs有限值;2. 设计得按照《混凝土结构设计规范GB50010-2010》6.3.1条满足截面限制条件!V不得大于按下式计算出来的Vmax,具体如下: 查看全部
<p>&nbsp; &nbsp; &nbsp;首先应了解在【土质边坡稳定性分析】模块,抗滑桩的作用就是提供一个抗力,这个力对计算结果的影响主要在于它的大小和作用点位置。本文着重说明抗力大小的影响,不介绍力的作用点的影响。</p><p>&nbsp; &nbsp; &nbsp;抗滑桩支护结构是有桩间距的,并非连续结构。所以在整体稳定性安全系数的计算过程中,需要考虑桩间距的影响,抗滑桩对于边坡稳定性贡献的大小取决于它可以提供给边坡的每延米的最大抗力Vu,最大抗力是由「最大抗滑承载力」除以「桩间距」得到的,因此边坡稳定性安全系数计算结果和「最大抗滑承载力」、「桩间距」有关,此处和桩的截面尺寸无关,桩的截面参数只有在调用【抗滑桩设计】模块进一步分析的时候才起作用。</p><p>&nbsp; &nbsp; &nbsp;对于滑面确定的坡体而言,使用抗滑桩支护时,能够确定其嵌固段,在输入抗滑桩参数时,抗滑桩承载力沿桩身分布可选择均匀分布,施加在滑面上的抗滑力可以采用桩身最大承载力(抗剪力)Vc。为什么最大抗滑承载力要用受剪承载力公式来计算?因为用受剪承载力进行估算相对简单,好确定。而抗弯承载力计算复杂,桩的抗弯主要还是看配筋量,在截面纵向配筋没有明确的时候不好进行预估。真实的抗剪与抗弯验算在【抗滑桩设计】的【截面强度验算】里都需要进行。</p><p>根据《混凝土结构设计规范GB50010-2010》6.3.4条,桩的受剪承载力计算公式如下:</p><p></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780167785479.png" alt="image.png"/>(6.3.4-2)</p><p>&nbsp; &nbsp; &nbsp;式中:混凝土提供的抗剪力<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780190564916.png" alt="image.png"/>,一般受弯构件<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780213710807.png" alt="image.png"/>,而<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780243337081.png" alt="image.png"/>是箍筋提供的抗剪承载力。</p><p>&nbsp; &nbsp; &nbsp;在没有分析桩身受力前,我们并不知道是否需要配置剪力筋,保守起见我们先拿<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780276441282.png" alt="image.png"/>也就是混凝土提供的抗剪力去估算,如果采用<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780300162729.png" alt="image.png"/>后计算的安全系数满足要求,可以调用【抗滑桩设计】进行进一步分析。如果不满足要求,我们可以反过来,适当放大Vu数值,一般桩都是有配剪力筋的,所以你在土坡模块里面填入的Vu数据可以稍微大一点,再去计算安全系数!软件对于输入的Vu会进行校核,如果说Vu预估的高了,在调用【抗滑桩设计】进行【截面强度验算】会有提醒。</p><blockquote><p>&nbsp; &nbsp; &nbsp;注:只有安全系数满足要求以后,再调用抗滑桩模块去进一步设计,否则安全系数不满足要求,整个设计也是不满足要求的!</p></blockquote><p>&nbsp; &nbsp; &nbsp;举例:桩截面尺寸1.8mX2m,采用C30的混凝土。ft=1.43N/mm2,fc=14.3N/mm2。Vc=0.7*1.43*1800*2000/1000=3603.6kN,通常我们建议还是按千数量级去预估Vu这里我们输入Vu=5000KN,如下图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780340120645.png" alt="image.png"/>&nbsp;</p><p>&nbsp; &nbsp; &nbsp;软件会对输入的Vu进行验算,如果满足要求,软件默认不提醒。当不满足时会有警告提示,如下图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780358878441.png" alt="image.png"/>&nbsp;</p><p>&nbsp; &nbsp; &nbsp;此时,我们在保证稳定性安全系数满足要求的前提下,可以去【土质边坡稳定性分析】模块里【抗滑桩】对话框中减小Vu的数值,或者在【抗滑桩设计】模块的【截面强度验算】一栏,增加剪力筋。提高抗滑桩抗剪承载力。</p><p>&nbsp; &nbsp; &nbsp;至此,你是否会有疑问,既然可以放大数值,那就按大的取!越大越好!这样的想法是不可取的!</p><p>因为有的时候桩的位置不合理,或者其他一些原因,会导致抗力增加到一定程度之后,再增加对提高稳定性几乎没有作用。</p><p>&nbsp; &nbsp; &nbsp;其次,桩的抗剪承载力是有限值的,</p><p>原因如下:</p><p>1.&nbsp;不可能无限制的去配置箍筋来增大抗剪承载力,所以Vcs有限值;</p><p>2.&nbsp;设计得按照《混凝土结构设计规范GB50010-2010》6.3.1条满足截面限制条件!V不得大于按下式计算出来的Vmax,具体如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780103223616.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780083484855.png" alt="image.png"/></p><p><br/></p>

“模量”大荟萃——GEO5和G2常见模量参数简介

岩土工程库仑张崇波 发表了文章 • 0 个评论 • 124 次浏览 • 2020-02-13 09:43 • 来自相关话题

        在使用GEO5或G2进行计算分析的时候,我们经常会遇到要输入各种模量参数,很多用户不知道这些模量到底是什么意思,该怎么取值,所以本文做一个简单梳理,以便于各位用户更好的使用软件。        模量是指材料在受力状态下应力和应变的比值,量纲是L-1MT-2,常用单位是MPa和GPa。如果在应力和应变上加上限定条件和修饰词语,就会衍生出不同的模量,比如最常用的弹性模量E(或杨氏模量),是指材料在弹性变形阶段正应力与正应变的比值,如图1就是低碳钢拉伸过程的应力-应变曲线图,图中Oa段为弹性变形,该段的斜率值即为弹性模量。图1:低碳钢拉伸过程的应力-应变曲线图        在弹性变形阶段剪切应力与剪切应变的比值,则称为切变模量G(或剪切模量)。此外,还有一种体积模量K,指的是材料在弹性变形范围内,平均应力(某一点三个主应力的平均值)和体积应变的比值,与弹性模量的关系可表示为,其中μ为泊松比。        以上三个概念在弹性力学或线弹性材料当中应用比较广泛。除了弹性模量,切变模量和体积模量这两个模量在岩土分析当中则用的比较少。        实际上,我们在用软件分析岩土问题的时候,遇到最多的是弹性模量E、压缩模量Es和变形模量E0。弹性模量的概念在上文中已给出,而对于压缩模量和变形模量,笔者在查阅资料之前,认为二者的区别主要在于压缩模量是室内试验得到的结果,变形模量是野外原位测试的结果。然而这种认识是不准确的,实际上二者最大的区别在于试验条件是否完全侧限(即不允许侧向变形)。压缩模量是指土在完全侧限条件下,竖向正应力与相应的变形稳定情况下正应变的比值,一般通过室内固结试验测得。变形模量则是指土体在侧向自由膨胀条件下,正应力与相应正应变的比值,既可通过现场原位试验(比如平板载荷试验、扁铲侧胀试验、旁压试验等)测得,也可以通过室内三轴压缩试验获得。               与弹性模量不同,测量压缩模量和变形模量的应力-应变曲线是非线性的。如图2所示,在侧限压缩条件下,压缩模量随竖向应力的增加而增加;在常规三轴条件下,变形模量随偏差应力的增加而减小。由此可见压缩模量和变形模量都具有分段性,不同压力范围有不同的取值。因此也就衍生出不同取值方法下的模量参数,如图3展示的就是变形模量的不同取值,包括了切线模量和割线模量。      图2:两种室内试验的应力-应变关系曲线                       图3:变形模量的不同模量类型               典型的切线模量是初始切线模量(或叫初始弹性模量),是土体应力-应变曲线初始段切线斜率最大的部分,可以用来表征土体弹性变形阶段的模量。典型的割线模量是E50,对应土体峰值应力(破坏时的应力)一半时的应力与相应应变的比值,如图4。        从图4和图5可知,土体在荷载的作用下产生变形,在外荷载卸除后,土的应力-应变关系并没有回到原点,变形中有一部分是可以恢复的,而另一部分是不可恢复的,这个过程说明了土体材料典型的弹塑性。土体回弹和再加载过程一般可以用一个模量表示,即回弹模量Eur,假设能够回弹的变形都是弹性变形,那么回弹模量近似等于初始弹性模量,根据经验,土体初始弹性模量约为变形模量的3~5倍,所以当没有试验资料时,回弹模量一般按变形模量的3~5倍取值。这个经验十分有用,比如在使用GEO5有限元分析模块定义修正线弹性模型、Mohr-Coulomb弹塑性模型或者D-P模型时,以及使用G2定义HMC(硬化摩尔库仑)材料时,都需要输入材料的回弹模量。图4:割线模量E50图5:土的加载-卸载应力应变曲线        在假定相同起始状态的条件下,三轴压缩的变形模量E0和侧限压缩试验中的压缩模量Es可以通过广义胡克定律推导出二者的关系,公式如下:其中μ为泊松比。上式是基于线弹性假定的理论关系式,但土体并不是理想弹性体,所以按上述公式换算在大部分土体中都不太符合。在GEO5的帮助文档中也提到:实践经验表明由变形模量推导而来的压缩模量和由现场实测荷载沉降曲线得到的压缩模量往往会出现很大的不同,甚至处于不同的数量级。一般来说结构性较弱的软土比较符合这个公式。        此外,当使用G2分析,选择Tresca材料时,需要输入不排水变形模量Eu,该值可通过室内不排水三轴压缩试验或野外原位测试试验获得。另外,GEO5有限元分析模块进行应力应变分析时,允许用户定义随深度增加的材料刚度,即土体不同深度处具有不同的模量,如图6所示,可以输入弹性模量随深度的变化率,相关理论可参考http://www.wen.kulunsoft.com/question/865。图6:GEO5有限元模块岩土材料参数中定义随深度变化的弹性模量        综上所述,那么应该何时采用何种模量呢。本文建议,在一维沉降分析时,比如利用分层总和法计算沉降或者固结分析时,建议土体采用压缩模量进行分析;而在进行三维变形分析,比如边坡稳定性分析和基坑开挖分析时,土体则可以采用变形模量;而岩体和混凝土结构一般采用弹性模量进行分析。土体的初始弹性模量主要用于计算瞬时沉降。        以上介绍的各种模量都应当通过可靠的实验来测得,如果没有试验资料,可参考地区经验取值或参考GEO5帮助文档给出的建议值。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp; 在使用GEO5或G2进行计算分析的时候,我们经常会遇到要输入各种模量参数,很多用户不知道这些模量到底是什么意思,该怎么取值,所以本文做一个简单梳理,以便于各位用户更好的使用软件。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 模量是指材料在受力状态下应力和应变的比值,量纲是L<sup>-1</sup>MT<sup>-2</sup>,常用单位是MPa和GPa。如果在应力和应变上加上限定条件和修饰词语,就会衍生出不同的模量,比如最常用的弹性模量E(或杨氏模量),是指材料在弹性变形阶段正应力与正应变的比值,如图1就是低碳钢拉伸过程的应力-应变曲线图,图中Oa段为弹性变形,该段的斜率值即为弹性模量。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557109311427.png" alt="image.png" width="346" height="294" style="width: 346px; height: 294px;"/></p><p style="text-align: center;"><strong>图1:低碳钢拉伸过程的应力-应变曲线图</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 在弹性变形阶段剪切应力与剪切应变的比值,则称为切变模量G(或剪切模量)。此外,还有一种体积模量K,指的是材料在弹性变形范围内,平均应力(某一点三个主应力的平均值)和体积应变的比值,与弹性模量的关系可表示为<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557215789774.png" alt="image.png"/>,其中μ为泊松比。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 以上三个概念在弹性力学或线弹性材料当中应用比较广泛。除了弹性模量,切变模量和体积模量这两个模量在岩土分析当中则用的比较少。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 实际上,我们在用软件分析岩土问题的时候,遇到最多的是弹性模量E、压缩模量E<sub>s</sub>和变形模量E<sub>0</sub>。弹性模量的概念在上文中已给出,而对于压缩模量和变形模量,笔者在查阅资料之前,认为二者的区别主要在于压缩模量是室内试验得到的结果,变形模量是野外原位测试的结果。然而这种认识是不准确的,实际上二者最大的区别在于试验条件是否完全侧限(即不允许侧向变形)。压缩模量是指土在完全侧限条件下,竖向正应力与相应的变形稳定情况下正应变的比值,一般通过室内固结试验测得。变形模量则是指土体在侧向自由膨胀条件下,正应力与相应正应变的比值,既可通过现场原位试验(比如平板载荷试验、扁铲侧胀试验、旁压试验等)测得,也可以通过室内三轴压缩试验获得。&nbsp; &nbsp; &nbsp; &nbsp;</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 与弹性模量不同,测量压缩模量和变形模量的应力-应变曲线是非线性的。如图2所示,在侧限压缩条件下,压缩模量随竖向应力的增加而增加;在常规三轴条件下,变形模量随偏差应力的增加而减小。由此可见压缩模量和变形模量都具有分段性,不同压力范围有不同的取值。因此也就衍生出不同取值方法下的模量参数,如图3展示的就是变形模量的不同取值,包括了切线模量和割线模量。</p><p style="text-align: left;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557487410256.png" alt="image.png" width="302" height="279" style="width: 302px; height: 279px;"/>&nbsp; &nbsp;&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557505750853.png" alt="image.png" width="295" height="257" style="width: 295px; height: 257px;"/></p><p style="text-align: left;"><strong>&nbsp; 图2:两种室内试验的应力-应变关系曲线&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>图3:变形模量的不同模量类型</strong> &nbsp; &nbsp; &nbsp;&nbsp;</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 典型的切线模量是初始切线模量(或叫初始弹性模量),是土体应力-应变曲线初始段切线斜率最大的部分,可以用来表征土体弹性变形阶段的模量。典型的割线模量是E<sub>50</sub>,对应土体峰值应力(破坏时的应力)一半时的应力与相应应变的比值,如图4。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 从图4和图5可知,土体在荷载的作用下产生变形,在外荷载卸除后,土的应力-应变关系并没有回到原点,变形中有一部分是可以恢复的,而另一部分是不可恢复的,这个过程说明了土体材料典型的弹塑性。土体回弹和再加载过程一般可以用一个模量表示,即回弹模量E<sub>ur</sub>,假设能够回弹的变形都是弹性变形,那么回弹模量近似等于初始弹性模量,根据经验,土体初始弹性模量约为变形模量的3~5倍,所以当没有试验资料时,回弹模量一般按变形模量的3~5倍取值。这个经验十分有用,比如在使用GEO5有限元分析模块定义修正线弹性模型、Mohr-Coulomb弹塑性模型或者D-P模型时,以及使用G2定义HMC(硬化摩尔库仑)材料时,都需要输入材料的回弹模量。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557620968014.png" alt="image.png"/></p><p style="text-align: center;"><strong>图4:割线模量E<sub>50</sub></strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557723957844.png" alt="image.png"/></p><p style="text-align: center;"><strong>图5:土的加载-卸载应力应变曲线</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 在假定相同起始状态的条件下,三轴压缩的变形模量E<sub>0</sub>和侧限压缩试验中的压缩模量E<sub>s</sub>可以通过广义胡克定律推导出二者的关系,公式如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557766519790.png" alt="image.png"/></p><p>其中μ为泊松比。上式是基于线弹性假定的理论关系式,但土体并不是理想弹性体,所以按上述公式换算在大部分土体中都不太符合。在GEO5的帮助文档中也提到:实践经验表明由变形模量推导而来的压缩模量和由现场实测荷载沉降曲线得到的压缩模量往往会出现很大的不同,甚至处于不同的数量级。一般来说结构性较弱的软土比较符合这个公式。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 此外,当使用G2分析,选择Tresca材料时,需要输入不排水变形模量E<sub>u</sub>,该值可通过室内不排水三轴压缩试验或野外原位测试试验获得。另外,GEO5有限元分析模块进行应力应变分析时,允许用户定义随深度增加的材料刚度,即土体不同深度处具有不同的模量,如图6所示,可以输入弹性模量随深度的变化率,相关理论可参考<a href="http://www.wen.kulunsoft.com/q ... gt%3B。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557821740421.png" alt="image.png"/></p><p style="text-align: center;"><strong>图6:GEO5有限元模块岩土材料参数中定义随深度变化的弹性模量</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 综上所述,那么应该何时采用何种模量呢。本文建议,在一维沉降分析时,比如利用分层总和法计算沉降或者固结分析时,建议土体采用压缩模量进行分析;而在进行三维变形分析,比如边坡稳定性分析和基坑开挖分析时,土体则可以采用变形模量;而岩体和混凝土结构一般采用弹性模量进行分析。土体的初始弹性模量主要用于计算瞬时沉降。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 以上介绍的各种模量都应当通过可靠的实验来测得,如果没有试验资料,可参考地区经验取值或参考GEO5帮助文档给出的建议值。</p>

EVS三维地质模型导入GEO5进行岩土设计

库仑产品库仑刘工 发表了文章 • 0 个评论 • 98 次浏览 • 2020-02-10 09:38 • 来自相关话题

EVS是一款功能强大的三维地质建模软件,能够快速准确地建立用户期望的三维地质模型并对模型进行多方位的展示和应用。随着三维地质模型应用需求的发展,如何将地质模型应用于岩土工程实际设计,成为很多岩土从业者关注、探索的方向。基于此,本文重点介绍如何将EVS生成的地质模型导入GEO5岩土设计软件进行设计分析。整个应用流程首先基于EVS建立目标模型,然后利用GEO5 2020版新增【多段线】功能读取EVS模型中的层面数据并重构三维地质模型,最终利用GEO5三维地质建模和其他模块的调用和数据共享能力进行岩土设计分析。下面我们就做一个详细地图文介绍:1 EVS地质建模基于地形和勘察数据在EVS中快速生成三维地质模型。图1 EVS生成地质模型2 GEO5重构地质模型GEO5 2020版三维地质建模模块新增【多段线】功能,能够通过dxf、txt等格式文件读取其他专业建模软件生成的地层面(图2)。我们利用此项功能将EVS模型中的地层面分层导出,再读入GEO5中即可快速准确重构三维地质模型(图3)。图2 GEO5软件读取dxf格式的地层面数据图3 GEO5软件根据导入的EVS地层面重新生成地质模型3 GEO5地质模型应用于岩土设计GEO5生成地质模型后,在目标位置截取二维剖面(图4、图5),生成地质剖面围栅图。生成的二维剖面具有真实的几何信息、岩土材料参数信息。图4 在三维模型上切割生成的二维剖面图5 地质剖面围栅图 将生成的剖面1-1’复制粘贴到地基固结沉降模型进行分析(图6)。GEO5各个模块之间能够实现几何信息、岩土参数信息的快速对接。本文中用地基固结沉降分析模块为例进行说明,如果需要进行其他分析,如边坡稳定性、基坑等,只需把生成的二维剖面复制粘贴到相应的分析模块中即可,相关操作均相同。 图6 复制二维剖面至对应的分析模块4 岩土设计成果展示4.1 地基固结沉降分析在工况1阶段,分析初始地应力;工况2阶段,在地层表面添加超载,计算沉降情况。其结果如图7、图8所示。图7 工况1分析结果图8工况2分析结果4.2 生成计算书图9 打印计算书5 总结本篇技术贴介绍了EVS软件生成的三维地质模型快速对接GEO5三维建模和岩土设计的过程。三维地质模型,并不仅仅局限于三维可视化的展示功能,也可以用于岩土设计。本文为各位工程师提供一个思路,希望能起到抛砖引玉的效果。 查看全部
<p>EVS是一款功能强大的三维地质建模软件,能够快速准确地建立用户期望的三维地质模型并对模型进行多方位的展示和应用。随着三维地质模型应用需求的发展,如何将地质模型应用于岩土工程实际设计,成为很多岩土从业者关注、探索的方向。基于此,本文重点介绍如何将EVS生成的地质模型导入GEO5岩土设计软件进行设计分析。</p><p>整个应用流程首先基于EVS建立目标模型,然后利用GEO5 2020版新增【多段线】功能读取EVS模型中的层面数据并重构三维地质模型,最终利用GEO5三维地质建模和其他模块的调用和数据共享能力进行岩土设计分析。下面我们就做一个详细地图文介绍:</p><p><strong>1 EVS</strong><strong>地质建模</strong></p><p>基于地形和勘察数据在EVS中快速生成三维地质模型。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298319310396.png" alt="image.png"/></p><p style="text-align: center;"><strong>图1 EVS生成地质模型</strong></p><p><strong>2 GEO5</strong><strong>重构地质模型</strong></p><p>GEO5 2020版三维地质建模模块新增【多段线】功能,能够通过dxf、txt等格式文件读取其他专业建模软件生成的地层面(图2)。我们利用此项功能将EVS模型中的地层面分层导出,再读入GEO5中即可快速准确重构三维地质模型(图3)。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298337236636.png" alt="image.png"/></p><p style="text-align: center;"><strong>图2 GEO5软件读取dxf格式的地层面数据</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298348812743.png" alt="image.png"/></p><p style="text-align: center;"><strong>图3 GEO5软件根据导入的EVS地层面重新生成地质模型</strong></p><p><strong>3 GEO5</strong><strong>地质模型应用于岩土设计</strong></p><p>GEO5生成地质模型后,在目标位置截取二维剖面(图4、图5),生成地质剖面围栅图。生成的二维剖面具有真实的几何信息、岩土材料参数信息。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298362376616.png" alt="image.png"/></p><p style="text-align: center;"><strong>图4 在三维模型上切割生成的二维剖面</strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298368530815.png" alt="image.png"/></p><p style="text-align: center;"><strong>图5 地质剖面围栅图</strong></p><p>&nbsp;</p><p>将生成的剖面1-1’复制粘贴到地基固结沉降模型进行分析(图6)。GEO5各个模块之间能够实现几何信息、岩土参数信息的快速对接。本文中用地基固结沉降分析模块为例进行说明,如果需要进行其他分析,如边坡稳定性、基坑等,只需把生成的二维剖面复制粘贴到相应的分析模块中即可,相关操作均相同。</p><p style="text-align: right;"><strong>&nbsp;</strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298378399136.png" alt="image.png" style="text-align: center;"/></p><p style="text-align: center;"><strong>图6 复制二维剖面至对应的分析模块</strong></p><p><strong>4 </strong><strong>岩土设计成果展示</strong></p><p><strong>4.1 </strong><strong>地基固结沉降分析</strong></p><p>在工况1阶段,分析初始地应力;工况2阶段,在地层表面添加超载,计算沉降情况。其结果如图7、图8所示。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298384693803.png" alt="image.png"/></p><p style="text-align: center;"><strong>图7 工况1分析结果</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298391986847.png" alt="image.png"/></p><p style="text-align: center;"><strong>图8工况2分析结果</strong></p><p><strong>4.2 </strong><strong>生成计算书</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298397350841.png" alt="image.png"/></p><p style="text-align: center;"><strong>图9 打印计算书</strong></p><p><strong>5 </strong><strong>总结</strong></p><p>本篇技术贴介绍了EVS软件生成的三维地质模型快速对接GEO5三维建模和岩土设计的过程。三维地质模型,并不仅仅局限于三维可视化的展示功能,也可以用于岩土设计。本文为各位工程师提供一个思路,希望能起到抛砖引玉的效果。</p><p><br/></p>

GEO5安装总是失败

库仑产品库仑赵 回答了问题 • 3 人关注 • 2 个回答 • 116 次浏览 • 2020-02-03 15:59 • 来自相关话题

GEO5三维建模视屏教程有吗?中文版的,想学习下

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 109 次浏览 • 2020-02-03 11:23 • 来自相关话题

设置材料为线弹性体,是否会发生屈曲?

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 177 次浏览 • 2019-12-30 08:49 • 来自相关话题

为什么我在边坡坡脚设置了抗滑桩,搜索边坡稳定系数时候潜在滑动面还会从桩中间位置滑出、

岩土工程李宏伟 回答了问题 • 4 人关注 • 5 个回答 • 374 次浏览 • 2019-12-26 10:20 • 来自相关话题

条新动态, 点击查看
激活教程请查看这里:个人版激活教程激活后可以打印计算书。
激活教程请查看这里:个人版激活教程激活后可以打印计算书。

如何获取GEO5 2018新增模块许可证?

库仑产品库仑吴汶垣 发表了文章 • 0 个评论 • 1808 次浏览 • 2018-01-30 21:32 • 来自相关话题

注:本说明仅适用于GEO5年费版(个人版)客户,购买了GEO5企业版的客户请与您的客户经理联系。GEO5 2018版新增「三维地质建模」,「扩展基础静探标贯分析」,「Redi-Rock挡土墙」等三个模块。个人版已购客户或正在免费试用软件的客户可以通过GEO5在线更新功能直接升级到2018版,但是升级后无法使用新增的3个模块,下面介绍获取新增模块许可证的方法。1. 更新软件在开始菜单的「GEO5 CHN」文件夹下找到「更新GEO5 CHN」并点击,更新软件至最新版,然后测试新增模块是否能正常使用。对于可以正常使用的情况,略过后续步骤。注:2018年1月31日之后获得个人版激活码的客户可以直接使用新增模块,略过后面的步骤。2. 生成本地最新许可证信息 - c2v文件下载获取当前许可证信息工具GEO5个人版激活工具-RUS.rar,并解压到桌面,如下图。注:该版本为中文版与英文版功能完全一致。双击并启动RUS工具“GEO5个人版激活工具-RUS.exe”,如下图。选择“更新现有保护锁”,并点击“收集信息”按钮,保存生成的C2V文件到本地。如果C2V文件生成成功,RUS主窗口中会显示“已获取到指纹”。3. 发送生成的c2v文件至库仑技术支持邮箱(support@kulunsoft.com)将第一步中生成的c2v文件发送至support@kulunsoft.com邮箱,邮件请按如下格式填写,以方便我们及时与您对接:邮件名:2018许可更新-姓名-单位邮件正文:联系方式、是否已购买GEO5、购买内容等信息。接下来请注意查收我们的回复邮件,邮件中我们会附上您的新许可证 - v2c文件。4. 应用新的V2C文件,更新许可证完成双击启动第一步中下载的RUS工具,并切换到「应用许可证文件」。在更新文件中导入邮件中您收到的v2c文件,并点击「应用更新」。应用更新成功后,RUS主窗口中会显示如下信息。至此,您的GEO5 2018版已可以使用新增模块,若仍然无法使用,请直接回复给您发送v2c文件的邮箱。注:如果RUS应用V2C文件不成功,点击这里 查看全部
<blockquote><p>注:本说明仅适用于GEO5年费版(个人版)客户,购买了GEO5企业版的客户请与您的客户经理联系。</p></blockquote><p>GEO5 2018版新增「三维地质建模」,「扩展基础静探标贯分析」,「Redi-Rock挡土墙」等三个模块。个人版已购客户或正在免费试用软件的客户可以通过GEO5在线更新功能直接升级到2018版,但是升级后无法使用新增的3个模块,下面介绍获取新增模块许可证的方法。</p><p><strong>1. 更新软件</strong></p><p>在开始菜单的「GEO5 CHN」文件夹下找到「更新GEO5 CHN」并点击,更新软件至最新版,然后测试新增模块是否能正常使用。对于可以正常使用的情况,略过后续步骤。</p><blockquote><p>注:2018年1月31日之后获得个人版激活码的客户可以直接使用新增模块,略过后面的步骤。</p></blockquote><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1517318148134737.png" alt="blob.png"/></p><p><strong>2. 生成本地最新许可证信息 - c2v文件</strong></p><p>下载获取当前许可证信息工具<img src="http://www.wen.kulunsoft.com/s ... ot%3B style="max-width: 650px; white-space: normal; box-sizing: border-box; border: 0px; vertical-align: middle; margin: 10px 2px 10px 0px;"/><a href="http://www.wen.kulunsoft.com/u ... BGEO5个人版激活工具-RUS.rar</a>,并解压到桌面,如下图。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1512112451495184.png" alt="blob.png" style="box-sizing: border-box; border: 0px; vertical-align: middle; max-width: 650px; margin: 10px 0px;"/></p><blockquote><p>注:该版本为中文版与英文版功能完全一致。</p></blockquote><p>双击并启动RUS工具“GEO5个人版激活工具-RUS.exe”,如下图。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1517319201248147.png" alt="143857vk4hy9uk3p1wip3g.png"/></p><p>选择“更新现有保护锁”,并点击“收集信息”按钮,保存生成的C2V文件到本地。如果C2V文件生成成功,RUS主窗口中会显示“已获取到指纹”。</p><p><strong>3. 发送生成的c2v文件至库仑技术支持邮箱(support@kulunsoft.com)</strong></p><p>将第一步中生成的c2v文件发送至support@kulunsoft.com邮箱,邮件请按如下格式填写,以方便我们及时与您对接:</p><blockquote><p>邮件名:2018许可更新-姓名-单位</p><p>邮件正文:联系方式、是否已购买GEO5、购买内容等信息。</p></blockquote><p>接下来请注意查收我们的回复邮件,邮件中我们会附上您的新许可证 - v2c文件。</p><p><strong>4. 应用新的V2C文件,更新许可证完成</strong></p><p>双击启动第一步中下载的RUS工具,并切换到「应用许可证文件」。在更新文件中导入邮件中您收到的v2c文件,并点击「应用更新」。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1517319336993076.png" alt="143912j0h0am1nz4n94zje.png"/></p><p>应用更新成功后,RUS主窗口中会显示如下信息。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1517319371749171.png" alt="143916esx6cimp336mstrx.png"/></p><p>至此,您的GEO5 2018版已可以使用新增模块,若仍然无法使用,请直接回复给您发送v2c文件的邮箱。</p><blockquote><p>注:如果RUS应用V2C文件不成功,点击<a href="/dochelp/150" target="_blank">这里</a></p></blockquote>

如何使用GEO5设计桩板式挡墙

库仑产品库仑戚工 发表了文章 • 0 个评论 • 2902 次浏览 • 2017-09-08 16:23 • 来自相关话题

  本文主要说明采用桩板墙支挡边坡时GEO5中的设计流程。情况一  根据现场勘察情况,已探明有明显滑动面或软弱面,此时很容易判断边坡破坏模式为滑坡滑动破坏,则采用GEO5“土质边坡稳定分析”模块和“抗滑桩设计”模块进行设计。此时桩板墙受力模式为滑面以上桩后受滑坡剩余下滑力,滑面以上桩前受剩余抗滑力,滑面以下为嵌固段,桩土之间采用土弹簧模拟,如下图所示。  此时,只要按照抗滑桩设计流程进行设计即可,或者采用“土质边坡稳定分析”模块计算得到桩后滑坡推力和桩前滑体抗力后再采用“抗滑桩设计”模块进行设计即可。关于抗滑桩的设计流程,请参考《GEO5工程设计手册》中的:第十章:抗滑桩设计。  “抗滑桩设计”模块可以完成桩的变形、内力和配筋计算,关于板的计算,将在本文章的后面部分介绍。情况二  现场勘测不到滑动面,此时需要用GEO5“土质边坡稳定分析”模块、“深基坑支护结构分析”模块、“土压力计算”模块和“抗滑桩设计”模块分别考虑两种不同的破坏模式,即滑坡破坏模式或基坑破坏模式,比较二者计算结果,选择最不利的一种情况作为后续配筋验算指标。滑坡破坏模式的计算和情况一相同,基坑破坏模式则按照基坑进行计算,其受力模式如下图所示。  此时,采用“深基坑支护结构分析”模块按照基坑设计的流程进行设计即可。关于基坑的设计流程,请参考《GEO5工程设计手册》中的:第六章:单支点锚拉式排桩基坑支护分析  关于滑坡破坏模式和基坑破坏模式,其在配筋上有一点不同,需要注意:  滑坡破坏模式中采用剩余下滑力作为荷载,而剩余下滑力是在设计安全系数下计算得到的,也就是说剩余下滑力是荷载的设计值。例如设计安全系数取1.3,那么得到的剩余下滑力是已经考虑了安全系数1.3的设计值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为设计值,无需再单独考虑内力的分项系数。  基坑破坏模式中采用土压力作为荷载,土压力计算时并没有单独考虑安全系数,相当于安全系数为1,也就是说土压力是荷载的标准值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为标准值,需要单独考虑内力的分项系数。基坑规范中要求此分项系数不小于1.25。板的设计  桩板式挡墙采用的大部分均为预制板,通常情况下可不用单独验算,如果需要计算,按照下述方式手算即可。注:板的验算会在后续的GEO5“抗滑桩设计”和“深基坑支护结构分析”模块的更新中加入。(当前版本为GEO5 2017)  对于同一种类型的板,选择一跨内最低端的板下边缘水平荷载(土压力或剩余下滑力)作为该类型板上的荷载,如下图所示。根据铁路路基支挡结构规范(TB10025-2006),该荷载可以乘以0.7~0.8的折减系数。  确定作用在板上的荷载后,对于前置板(即板和桩采用钢筋链接),板和桩的连接处按照刚接处理,对于后置板(后插的预制板),板和钢筋的连接处按照铰接处理,如下图所示。  对于后置板,其最大弯矩和剪力计算如下(其中l为一跨的板长或桩的净距。):  对于前置板,其最大弯矩和剪力计算如下:  得到最大弯矩和剪力后,按照混凝土结构设计规范进行配筋验算即可。 查看全部
<p>  本文主要说明采用桩板墙支挡边坡时GEO5中的设计流程。</p><p><strong>情况一</strong></p><p>  根据现场勘察情况,已探明有明显滑动面或软弱面,此时很容易判断边坡破坏模式为滑坡滑动破坏,则采用GEO5“土质边坡稳定分析”模块和“抗滑桩设计”模块进行设计。此时桩板墙受力模式为滑面以上桩后受滑坡剩余下滑力,滑面以上桩前受剩余抗滑力,滑面以下为嵌固段,桩土之间采用土弹簧模拟,如下图所示。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504858793758890.png" alt="blob.png"/></p><p>  此时,只要按照抗滑桩设计流程进行设计即可,或者采用“土质边坡稳定分析”模块计算得到桩后滑坡推力和桩前滑体抗力后再采用“抗滑桩设计”模块进行设计即可。关于抗滑桩的设计流程,请参考《GEO5工程设计手册》中的:<a href="/dochelp/1649" target="_blank" textvalue="第十章:抗滑桩设计">第十章:抗滑桩设计</a>。</p><p>  “抗滑桩设计”模块可以完成桩的变形、内力和配筋计算,关于板的计算,将在本文章的后面部分介绍。</p><p><strong>情况二</strong></p><p>  现场勘测不到滑动面,此时需要用GEO5“土质边坡稳定分析”模块、“深基坑支护结构分析”模块、“土压力计算”模块和“抗滑桩设计”模块分别考虑两种不同的破坏模式,即滑坡破坏模式或基坑破坏模式,比较二者计算结果,选择最不利的一种情况作为后续配筋验算指标。滑坡破坏模式的计算和情况一相同,基坑破坏模式则按照基坑进行计算,其受力模式如下图所示。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504858813205417.png" alt="blob.png"/></p><p>  此时,采用“深基坑支护结构分析”模块按照基坑设计的流程进行设计即可。关于基坑的设计流程,请参考《GEO5工程设计手册》中的:<a href="/dochelp/80" target="_blank" textvalue="第六章:单支点锚拉式排桩基坑支护分析">第六章:单支点锚拉式排桩基坑支护分析</a></p><p>  关于滑坡破坏模式和基坑破坏模式,其在配筋上有一点不同,需要注意:</p><p>  滑坡破坏模式中采用剩余下滑力作为荷载,而剩余下滑力是在设计安全系数下计算得到的,也就是说剩余下滑力是荷载的设计值。例如设计安全系数取1.3,那么得到的剩余下滑力是已经考虑了安全系数1.3的设计值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为设计值,无需再单独考虑内力的分项系数。</p><p>  基坑破坏模式中采用土压力作为荷载,土压力计算时并没有单独考虑安全系数,相当于安全系数为1,也就是说土压力是荷载的标准值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为标准值,需要单独考虑内力的分项系数。基坑规范中要求此分项系数不小于1.25。</p><p><strong>板的设计</strong></p><p>  桩板式挡墙采用的大部分均为预制板,通常情况下可不用单独验算,如果需要计算,按照下述方式手算即可。</p><blockquote><p>注:板的验算会在后续的GEO5“抗滑桩设计”和“深基坑支护结构分析”模块的更新中加入。(当前版本为GEO5&nbsp;2017)</p></blockquote><p>  对于同一种类型的板,选择一跨内最低端的板下边缘水平荷载(土压力或剩余下滑力)作为该类型板上的荷载,如下图所示。根据铁路路基支挡结构规范(TB10025-2006),该荷载可以乘以0.7~0.8的折减系数。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504858836361793.png" alt="blob.png"/></p><p>  确定作用在板上的荷载后,对于前置板(即板和桩采用钢筋链接),板和桩的连接处按照刚接处理,对于后置板(后插的预制板),板和钢筋的连接处按照铰接处理,如下图所示。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504858852323806.png" alt="blob.png"/></p><p>  对于后置板,其最大弯矩和剪力计算如下(其中<em>l</em>为一跨的板长或桩的净距。):</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504858882237047.png" alt="blob.png"/></p><p>  对于前置板,其最大弯矩和剪力计算如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504858893584952.png" alt="blob.png"/></p><p>  得到最大弯矩和剪力后,按照混凝土结构设计规范进行配筋验算即可。</p><p><br/></p>

GEO5快速入门指南

库仑产品库仑戚工 发表了文章 • 0 个评论 • 4194 次浏览 • 2017-03-01 14:52 • 来自相关话题

GEO5是一款非常容易学习和掌握的岩土设计软件,我们根据软件特点、学习和教学经验,建议大家采用下面的顺序和思路进行GEO5软件学习,多数用户反馈可以在1个小时内掌握GEO5的基本操作和目标模块的使用。第一步: GEO5基础功能学习内容:学习GEO5所有模块通用的基础功能。库仑问答地址:《GEO5入门课程》第一节《基本操作—窗口布局与基本操作》腾讯课堂地址:GEO5初级培训课程百度云下载地址:https://pan.baidu.com/s/1zfytVc9LKdgLXsTSkeXNHA 密码:s3ce第二步:根据项目需要,在岩土问题九大解决方案中选择具体解决方案对应的软件模块进行基础学习。内容:针对岩土解决方案(边坡稳定分析、挡土墙设计、基坑设计、浅基础设计、深基础设计、固结沉降分析、隧道设计、三维地质建模、有限元分析),学习相应软件模块的基本操作。库仑问答地址:《GEO5入门课程》第十节《边坡稳定分析》腾讯课堂地址:GEO5初级培训课程百度云下载地址:https://pan.baidu.com/s/1zfytVc9LKdgLXsTSkeXNHA 密码:s3ce至此便可以基本掌握GEO5软件的使用操作。如果想进一步提高对计算理论的理解和灵活使用GEO5的水平,可以进行第三步学习。第三步:GEO5高级课程学习内容:学习GEO5各解决方案下各个模块的计算原理,各个参数的取值方法,以及在实际岩土工程设计项目中需要注意的一些问题和使用技巧。库仑问答地址:《GEO5高级课程》第一节《基坑设计—土压力计算和基坑设计模块原理》腾讯课堂地址:https://ke.qq.com/course/269426百度云下载地址:https://pan.baidu.com/s/1VOdf8KrUsMUPPmiSr5UO8g 密码:ykx3文档学习资料此外,对喜欢阅读文档教程进行软件学习的朋友,我们提供了设计和用户手册,大家可以根据自己的需要选择学习。GEO5工程设计手册:点击这里GEO5工程实例手册:点击这里GEO5用户手册:即GEO5自带帮助文档,关于帮助文档的使用请访问:GEO5入门课程-帮助文档。在线地址:GEO5在线帮助。库仑问答GEO5话题:可以在库仑问答的「话题」页面中选择感兴趣的话题文章和问答进行学习。地址:GEO5话题广场最后,在任何时候都可以通过F1键获取GEO5软件的自带帮助,而且帮助文档会根据当前所在的软件窗口自动定位到相应的帮助部分。同时,也可以在库仑问答平台中发布问题,我们的技术人员、专家或者工程师都会为您即时解答。对于已经购买了GEO5的客户,您还可以向我们的销售工程师申请VIP通道权限:库仑VIP通道简介。 查看全部
<p>GEO5是一款非常容易学习和掌握的岩土设计软件,我们根据软件特点、学习和教学经验,建议大家采用下面的顺序和思路进行GEO5软件学习,多数用户反馈可以在1个小时内掌握GEO5的基本操作和目标模块的使用。</p><p><span style="color: #FF0000;"><strong>第一步: GEO5基础功能学习</strong></span></p><p>内容:学习GEO5所有模块通用的基础功能。</p><p>库仑问答地址:<a href="/dochelp/12" target="_blank" style="line-height: 1.5em;">《GEO5入门课程》第一节《基本操作—窗口布局与基本操作》</a></p><p><span style="line-height: 1.5em;">腾讯课堂地址:<a href="https://ke.qq.com/course/26736 ... ot%3B target="_blank">GEO5初级培训课程</a></span></p><p>百度云下载地址:<a href="https://pan.baidu.com/s/1zfytV ... ot%3B target="_blank">https://pan.baidu.com/s/1zfytV ... gt%3B 密码:s3ce</p><p><span style="color: #FF0000;"><strong>第二步:根据项目需要,在岩土问题九大解决方案中选择具体解决方案对应的软件模块进行基础学习。</strong></span></p><p><span style="line-height: 1.5em;">内容:针对岩土解决方案(边坡稳定分析、挡土墙设计、基坑设计、浅基础设计、深基础设计、固结沉降分析、隧道设计、三维地质<span style="line-height: 1.5em;">建模、有限元分析),</span>学习相应软件模块的基本操作。</span><br/></p><p><span style="line-height: 1.5em;">库仑问答地址:</span><a href="/dochelp/22" target="_blank" style="line-height: 1.5em;">《GEO5入门课程》第十节《边坡稳定分析》</a></p><p>腾讯课堂地址:<a href="https://ke.qq.com/course/26736 ... BGEO5初级培训课程</a></p><p>百度云下载地址:<a href="https://pan.baidu.com/s/1zfytV ... sp%3B密码:s3ce<span style="line-height: 1.5em;"></span></p><p>至此便可以基本掌握GEO5软件的使用操作。如果想进一步提高对计算理论的理解和灵活使用GEO5的水平,可以进行第三步学习。</p><p><span style="color: #FF0000;"><strong>第三步:GEO5高级课程学习</strong></span></p><p>内容:学习GEO5各解决方案下各个模块的计算原理,各个参数的取值方法,以及在实际岩土工程设计项目中需要注意的一些问题和使用技巧。</p><p>库仑问答地址:<a href="http://wen.kulunsoft.com/dochelp/51" target="_blank" textvalue="《GEO5高级课程》第一节《基坑设计—土压力计算和基坑设计模块原理》" style="line-height: 1.5em;">《GEO5高级课程》第一节《基坑设计—土压力计算和基坑设计模块原理》</a></p><p>腾讯课堂地址:<a href="https://ke.qq.com/course/269426" target="_blank">https://ke.qq.com/course/26942 ... gt%3B百度云下载地址:<a href="https://pan.baidu.com/s/1VOdf8 ... ot%3B target="_blank">https://pan.baidu.com/s/1VOdf8 ... gt%3B 密码:ykx3<span style="line-height: 1.5em;"></span></p><p><span style="color: #FF0000;"><strong>文档学习资料</strong></span></p><p>此外,对喜欢阅读文档教程进行软件学习的朋友,我们提供了设计和用户手册,大家可以根据自己的需要选择学习。</p><ul class=" list-paddingleft-2" style="list-style-type: disc;"><li><p><strong>GEO5工程设计手册:</strong><a href="/dochelp/65" target="_blank" style="line-height: 1.5em;">点击这里</a></p></li><li><p><strong>GEO5工程实例手册:</strong><a href="/dochelp/69" target="_blank" title="工程实例手册">点击这里</a></p></li><li><p><strong>GEO5用户手册:</strong>即GEO5自带帮助文档,关于帮助文档的使用请访问:<a href="/dochelp/178" target="_blank">GEO5入门课程-帮助文档</a>。在线地址:<a href="/dochelp/1" target="_blank">GEO5在线帮助</a>。</p></li><li><p><strong>库仑问答GEO5话题:</strong>可以在库仑问答的「话题」页面中选择感兴趣的话题文章和问答进行学习。地址:<a href="http://www.wen.kulunsoft.com/t ... ot%3B target="_blank">GEO5话题广场</a></p></li></ul><p><span style="line-height: 1.5em;">最后,在任何时候都可以通过F1键获取GEO5软件的自带帮助,而且帮助文档会根据当前所在的软件窗口自动定位到相应的帮助部分。同时,也可以在库仑问答平台中发布问题,我们的技术人员、专家或者工程师都会为您即时解答。</span></p><p><span style="line-height: 1.5em;">对于已经购买了GEO5的客户,您还可以向我们的销售工程师申请VIP通道权限:<a href="/article/259" target="_blank">库仑VIP通道简介</a>。</span></p>

竖井设计点击截面强度验算会报错

回答

库仑产品库仑吴汶垣 回答了问题 • 2 人关注 • 1 个回答 • 43 次浏览 • 5 天前 • 来自相关话题

GEO5岩土工程有限元分析稳定渗流分析后无法计算地下水位

回答

岩土工程库仑张崇波 回答了问题 • 2 人关注 • 1 个回答 • 76 次浏览 • 2020-03-17 14:39 • 来自相关话题

抗滑桩嵌固段的最大横向压应力的几何意义?

回答

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 86 次浏览 • 2020-03-07 23:11 • 来自相关话题

GEO5双排抗滑桩设计时,桩验算的时候无论怎么调整尺寸参数都显示结构不稳定该怎么办

回答

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 98 次浏览 • 2020-02-25 15:33 • 来自相关话题

GEO5三维建模岩层产状怎么表现?若场地存在多个交互断层怎么表现呢?

回答

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 69 次浏览 • 2020-02-17 17:45 • 来自相关话题

GEO5安装总是失败

回答

库仑产品库仑赵 回答了问题 • 3 人关注 • 2 个回答 • 116 次浏览 • 2020-02-03 15:59 • 来自相关话题

GEO5三维建模视屏教程有吗?中文版的,想学习下

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 109 次浏览 • 2020-02-03 11:23 • 来自相关话题

同一滑面同一位置抗滑桩输入最大抗滑承载力后推力和抗力改变很大?

回答

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 157 次浏览 • 2019-12-24 10:17 • 来自相关话题

GEO5个人试用版怎么才能激活?条件是什么?激活后计算书能打印吗?

回答

库仑产品库仑吴汶垣 回答了问题 • 3 人关注 • 2 个回答 • 284 次浏览 • 2019-12-14 00:16 • 来自相关话题

geo5锚索抗滑桩中如何考虑锚索与抗滑桩协调变形的

回答

岩土工程库仑赵 回答了问题 • 2 人关注 • 1 个回答 • 179 次浏览 • 2019-12-02 09:55 • 来自相关话题

GEO5深基坑分析中在添加内支撑的的工况轴力很小和前一个工况弯矩、剪力基本无变化,这个怎么解释?

回答

岩土工程库仑沈工 回答了问题 • 2 人关注 • 1 个回答 • 172 次浏览 • 2019-11-14 09:45 • 来自相关话题

请问下土质边坡稳定性计算里面如何加挡墙?

回答

库仑产品库仑沈工 回答了问题 • 2 人关注 • 1 个回答 • 422 次浏览 • 2019-08-23 11:28 • 来自相关话题

排桩计算内不稳定问题

回答

库仑产品库仑赵 回答了问题 • 2 人关注 • 1 个回答 • 282 次浏览 • 2019-08-18 18:42 • 来自相关话题

关于自动搜索潜在滑移面的问题

回答

岩土工程huillcn 回答了问题 • 5 人关注 • 2 个回答 • 825 次浏览 • 2019-08-09 08:54 • 来自相关话题

GEO5抗滑桩最大承载力确定方法技术贴中的疑问

回答

库仑产品ES 回答了问题 • 2 人关注 • 2 个回答 • 358 次浏览 • 2019-08-07 09:22 • 来自相关话题

添加岩土材料时的参数选取

回答

库仑产品qiushili 回答了问题 • 5 人关注 • 4 个回答 • 973 次浏览 • 2019-07-29 10:12 • 来自相关话题

水库库岸边坡分析问题

回答

库仑产品waxal123 回答了问题 • 2 人关注 • 2 个回答 • 337 次浏览 • 2019-07-29 10:12 • 来自相关话题

施工图的插件GEO5Plot的运用

回答

库仑产品库仑孔工 回答了问题 • 2 人关注 • 1 个回答 • 321 次浏览 • 2019-07-09 13:35 • 来自相关话题

GEO5抗滑桩嵌固段设计与理正的异同

库仑产品库仑沈工 发表了文章 • 0 个评论 • 41 次浏览 • 4 天前 • 来自相关话题

最近,有GEO5用户反馈,采用同样的设计参数,理正抗滑桩设计中设置很小的岩石单轴极限抗压强度能计算通过,GEO5的抗滑桩设计模块却显示嵌岩段“岩石横向承载力不满足要求”。其实理正抗滑桩设计并没有严格的按照规范对嵌岩段的承载力进行验算,即使嵌岩段岩石横向承载力小于计算的岩石反力时,软件也不会给出提示的。下面我们将结合案例,针对两款软件在抗滑桩嵌固段(嵌岩段及嵌土段)计算的异同做详细说明。1. 嵌固段计算模型理正抗滑桩的帮助文档介绍内力、位移采用弹性法计算。嵌固段并没有区分嵌岩和嵌土,分析模型为桩前有弹簧支座。但是从计算结果看嵌土时土反力不会大于桩前被动土压力,嵌岩时岩石反力不会大于岩石的横向承载力。 理正抗滑桩计算模型简图GEO5抗滑桩的内力、位移采用弹塑性共同变形法计算,并考虑了嵌岩跟嵌土计算模型上的差异。嵌土时,桩前及桩后相当于土弹簧作用,土体按弹塑性材料考虑,最大应力不能大于被动土压力,最小应力不能小于主动土压力。嵌岩段,桩身一侧有弹簧作用(位置由桩身位移决定),岩体按弹性材料考虑,分析时岩石反力可以达到任意值,最终验算最大应力是否大于岩石的横向承载力。 GEO5抗滑桩计算模型简图具体可参考:抗滑桩计算中土体嵌固段和岩石嵌固段的区别2. 抗滑桩嵌岩段设计2.1 嵌岩段承载力验算抗滑桩设计应满足嵌固段承载力要求。依据《铁路路基支挡结构设计规范TB10025-2006(2009局部修订版)》,针对嵌岩段应当满足规范第10.2.10.1条规定,具体内容如下:1 地层为岩层时,桩的最大横向压应力 σmax应小于或等于地基的横向容许承载力。地基的横向容许承载力与岩石单轴抗压极限强度的对应关系可按本规范附录表B.0.1采用。当桩为矩形截面时,地基的横向容许承载力可按下式计算:                (10.2.10- 1)式中:--在水平方向的换算系数,根据岩石的完整程度、层理或片理产状、层间的股结物与胶结程度、节理裂隙的密度和充填物,可采用 0.5-1.0;--折减系数,根据岩层的裂隙、风化及软化程度,可采用 0.3-0.45;--岩石单轴抗压极限强度 (kPa)。GEO5软件严格按照上述规范验算,当不满足规范中的10.2.10-1公式时,软件会给出“岩石地基横向承载力 不满足要求”提示,如下图: 而理正软件目前只有「抗滑桩综合治理」模块可以进行嵌岩段设计。理正「抗滑桩综合治理」模块仅在桩的计算结果-->内力计算结果-->土反力图形上用红色线条表示的允许值。而关于它的设计值,也就是土反力由白色线条表示。 理正土反力结果图依据理正土反力结果图,「抗滑桩综合治理」模块似乎也对嵌岩段进行了验算,但其实这里的验算与规范要求是不相同。下面举例说明,当嵌岩段设置如下:  计算模型其他参数保持不变,仅设置单轴极限抗压强度R为变量,R分别取值1MPa,2MPa,2.5Mpa,5Mpa,10Mpa。在滑面上受滑坡推力的作用下(理正的第1种情况:滑坡推力),内力计算结果如下: 单轴极限抗压强度R=1Mpa 单轴极限抗压强度R=2Mpa 单轴极限抗压强度R=2.5Mpa 单轴极限抗压强度R=5Mpa 单轴极限抗压强度R=10Mpa对比1MPa,2MPa,2.5Mpa的计算结果,我们发现软件的岩石反力取值是不会大于横向允许承载力的。当岩石反力(=位移*岩石水平反力系数)>横向允许承载力时,取横向允许承载力值。即岩石反力=min{弹簧刚度K*位移X,横向允许承载力},理正软件将岩石视为弹塑性材料。软件没有且不会出现“岩石横向承载力不满足要求”。2.2 理正嵌岩段设计的正确性校验为进一步验证,我们缩短嵌固段,嵌岩段设置为1m,单轴极限抗压强度R=5MPa。此时对应的岩石地基横向容许承载力Rd=5000*0.3*0.5=750kPa,在此参数下进行对比分析。GEO5抗滑桩软件计算会提示地基横向承载力不满足要求(岩石当成弹性材料考虑)。如下图: 抗滑桩嵌岩段1m,R=5Mpa,允许反力=750kPa若将岩石当成弹塑性材料考虑,我们用两款软件对比计算。注:在GEO5中,我们用c足够大的弹塑性土体,来模拟理正模型中的弹塑性岩石,只要GEO5的允许反力(计算的被动土压力)与理正R=5MPa所能提供的岩石地基横向容许承载力Rd相当即可。GEO5计算出在允许反力≈780kPa时,结构不稳定,此时无法给出内力及位移详细计算结果。此时减小允许反力值,结构会更不稳,所以在允许反力=750kPa时,GEO5计算结构是会不稳定的。如下图:  弹塑性的土体模拟岩体,嵌岩1m深,允许反力≈780kPa理正岩石允许反力=750kPa时,分析仍能给出内力及位移结果。虽然结果明显错误但有结果给出说明计算是收敛。如下图: 嵌岩1m深,R=5Mpa,允许反力=750kPa如果岩石当成弹塑性材料考虑,那么当计算出的岩石反力>横向承载力的时候,计算出的岩石反力会进行调整然后进行二次迭代,而当变形足够大,势必会出现计算不收敛的情况,不收敛是计算不出结果的,此时结构不稳定,正如上面GEO5软件的提示。但我们发现无论理正中嵌岩段的岩石反力多小,软件都能计算出内力及位移。2.3结论理正抗滑桩软件岩石是当成弹塑性材料考虑的,岩石反力=min{弹簧刚度K*位移X,横向允许承载力},软件没有且不会出现“岩石横向承载力不满足要求”。软件并没有严格按照规范要求去验算嵌岩段。若岩石按弹塑性材料考虑,理正软件在嵌固段明显不满足要求,结构不稳定的时候,仍能输出内力及位移计算结果。GEO5抗滑桩软件岩石按弹性考虑,岩石反力=弹簧刚度K*位移X,分析时岩石反力可以达到任意值,最终验算最大应力是否大于岩石的横向承载力。验算是严格按照规范要求。3. 抗滑桩嵌土段设计3.1 嵌土段承载力验算针对嵌土段,规范10.2.10-2和10.2.10-3给出了横向允许承载力计算公式,可以按公式计算,此外规范10.2.10的条文说明对于规范正文也做了进一步说明,具体内容如下:10.2.10 对于较完整的岩质岩层及半岩质岩层的地基,桩身作用于围岩的侧向压应力,一般不应大于容许强度。桩周围岩的侧向允许抗压强度,必要时可直接在现场试验取得,一般按岩石的完整程度、层理或片理产状、层间的胶结物与胶结程度、节理裂隙的密度和充填物、各种构造裂面的性质和产状及其贯通程度等情况,分别采用垂直允许抗压强度的0.5 ~ 1.0倍。当围岩为密实土或砂层时,其值为0.5倍,较完整的半岩质岩层为0.60~0.75倍,块状或厚层少裂隙的岩层为 0.75~ 1.0倍。对于一般土层或风化成土、砂砾状的岩层地基,抗滑桩在侧向荷载作用下发生转动变位时,桩前的土体产生被动土压力,而在桩后的土体产生主动土压力。桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。在工程设计中,要使锚固段完全满足要求,有时会很困难,所以根据多年的工程经验,满足滑动面以下深度 h2/3 和h2(滑动面以下桩长)处的横向压应力应小于或等于被动土压力与主动士压力之差即可。此时滑动面以下h2/3深度范围内进入塑性区。依据GEO5抗滑桩计算理论,GEO5土体按弹塑性材料考虑,采用弹塑性共同变形法,嵌土段桩前及桩后都有土弹簧作用,结构受力由下式计算:针对GEO5抗滑桩的嵌土段,作用在变形结构上的土压力最大不能大于被动土压力,最小不能小于主动土压力。即桩前计算土压力≤桩前被动土压力,桩后计算土压力≥桩后主动土压力。那么-桩后计算土压力≤-桩后主动土压力。据此可推导得到,桩前计算土压力-桩后计算土压力≤桩前被动土压力-桩后主动土压力恒成立。而GEO5的土反力是桩前桩后计算土压力的合力。也就是GEO5抗滑桩的计算土反力≤桩前被动土压力-桩后主动土压力,依据GEO5的计算理论,如果软件计算结果收敛,无结构不稳定的提示,那么计算结果将严格满足规范第10.2.10的条文说明的“桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。”此外,我们可以依据GEO5分析结果的“土压力+位移”图示很容易判断被动区土体的塑性区的范围。 理正土体也是按弹塑性材料考虑,由于计算模型的不同,理正软件的计算土反力特指滑坡面以下桩的土抗力,由下式计算:在桩的计算结果-->内力计算结果-->土反力图形上用红色线条表示的被动土压力数值。理正软件计算的土反力不会大于被动土压力,同样也可以根据图形来判断被动区塑性区范围。 首先,理正软件是没有按照规范正文要求去进行计算允许横向承载力计算,其次,因为没有考虑桩后主动土压力,所以也不能按规范条文说明去验算嵌土段是否满足滑动面以下深度 h2/3 和h2(滑动面以下桩长)处土反力是否小于等于被动土压力与主动土压力之差。综上,理正抗滑桩的嵌土段并没有按照规范要求进行验算。3.2 理正嵌土段设计的正确性校验举例用两款软件分析下列抗滑桩: 计算简图两款软件的计算结果: 理正计算最大位移= -73.28(mm) GEO5计算最大位移= -26.9(mm)两款软件位移计算结果相差太多,下面我们用有限元分析软件OptumG2进行复核。将抗滑桩桩后嵌固段以上9m以上的土折算成超载施加在模型里,同时将理正计算出来的滑坡推力的水平和竖直分布力施加在模型中。选择弹塑性分析方法,具体如下: 初始地应力分析弹塑性分析分析结果: Optumn G2的计算结果(位移28.02mm)相比较理正的70.28mm的水平位移,Optumn G2的计算结果(位移28.02mm)与GEO5(位移26.9mm)的更接近。3.3结论理正跟GEO5两款抗滑桩软件,均可以依据结果图示判断被动区塑性区范围,但是两款软件土反力计算公式不相同,由于理正嵌固段不考虑桩后土弹簧作用,所以计算结果只考虑桩前土抗力。嵌土段没有考虑桩后主动土压力,所以无法按照规范正文或条文说明的要求去验算。而GEO5软件只要计算结果收敛,没有结构不稳定的提示,那么计算结果将严格满足规范第10.2.10的条文说明的“桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。” 查看全部
<p>最近,有GEO5用户反馈,采用同样的设计参数,理正抗滑桩设计中设置很小的岩石单轴极限抗压强度能计算通过,GEO5的抗滑桩设计模块却显示嵌岩段“岩石横向承载力不满足要求”。其实理正抗滑桩设计并没有严格的按照规范对嵌岩段的承载力进行验算,即使嵌岩段岩石横向承载力小于计算的岩石反力时,软件也不会给出提示的。</p><p>下面我们将结合案例,针对两款软件在抗滑桩嵌固段(嵌岩段及嵌土段)计算的异同做详细说明。</p><p><strong>1.</strong><strong>&nbsp;</strong><strong>嵌固段计算模型</strong></p><p>理正抗滑桩的帮助文档介绍内力、位移采用<strong>弹性法</strong>计算。嵌固段并没有区分嵌岩和嵌土,分析模型为桩前有弹簧支座。但是从计算结果看嵌土时土反力不会大于桩前被动土压力,嵌岩时岩石反力不会大于岩石的横向承载力。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015226813015.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">理正抗滑桩计算模型简图</p><p>GEO5抗滑桩的内力、位移采用<strong>弹塑性共同变形法</strong>计算,并考虑了嵌岩跟嵌土计算模型上的差异。嵌土时,桩前及桩后相当于土弹簧作用,<strong>土体按弹塑性材料</strong>考虑,最大应力不能大于被动土压力,最小应力不能小于主动土压力。嵌岩段,桩身一侧有弹簧作用(位置由桩身位移决定),<strong>岩体按弹性材料考虑</strong>,分析时岩石反力可以达到任意值,最终验算最大应力是否大于岩石的横向承载力。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015252891365.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">GEO5抗滑桩计算模型简图</p><p>具体可参考:<a href="http://www.wen.kulunsoft.com/article/15">抗滑桩计算中土体嵌固段和岩石嵌固段的区别</a></p><p><strong>2.</strong><strong>&nbsp;</strong><strong>抗滑桩嵌岩段设计</strong></p><p><strong>2.1 嵌岩段承载力验算</strong></p><p>抗滑桩设计应满足嵌固段承载力要求。依据《铁路路基支挡结构设计规范TB10025-2006(2009局部修订版)》,针对<strong>嵌岩段</strong>应当满足规范第10.2.10.1条规定,具体内容如下:</p><p>1 地层为岩层时,桩的最大横向压应力 σmax应小于或等于地基的横向容许承载力。地基的横向容许承载力与岩石单轴抗压极限强度的对应关系可按本规范附录表B.0.1采用。当桩为矩形截面时,地基的横向容许承载力可按下式计算:</p><p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015281209620.png" alt="image.png"/>&nbsp; &nbsp; (10.2.10- 1)</p><p>式中:<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015304989700.png" alt="image.png"/>--在水平方向的换算系数,根据岩石的完整程度、层理或片理产状、层间的股结物与胶结程度、节理裂隙的密度和充填物,可采用 0.5-1.0;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015320609237.png" alt="image.png"/>--折减系数,根据岩层的裂隙、风化及软化程度,可采用 0.3-0.45;</p><p><img width="17" height="18" src="http://www.wen.kulunsoft.com/s ... ot%3B word_img="file:///C:\Users\南京库~1\AppData\Local\Temp\ksohtml25044\wps46.png" style="background:url(http://www.wen.kulunsoft.com/s ... rd.gif) no-repeat center center;border:1px solid #ddd"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015340476762.png" alt="image.png"/>--岩石单轴抗压极限强度 (kPa)。</p><p>GEO5软件严格按照上述规范验算,当不满足规范中的10.2.10-1公式时,软件会给出“<span style="color: #FF0000;">岩石地基横向承载力 不满足要求</span>”提示,如下图:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015374641698.png" alt="image.png"/>&nbsp;</p><p>而理正软件目前只有「抗滑桩综合治理」模块可以进行嵌岩段设计。理正「抗滑桩综合治理」模块仅在桩的计算结果--&gt;内力计算结果--&gt;土反力图形上用红色线条表示的允许值。而关于它的设计值,也就是土反力由白色线条表示。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015383130771.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">理正土反力结果图</p><p>依据理正土反力结果图,「抗滑桩综合治理」模块似乎也对嵌岩段进行了验算,但其实这里的验算与规范要求是不相同。下面举例说明,当嵌岩段设置如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015396193099.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015403873002.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">计算模型</p><p>其他参数保持不变,仅设置单轴极限抗压强度R为变量,R分别取值1MPa,2MPa,2.5Mpa,5Mpa,10Mpa。在滑面上受滑坡推力的作用下(理正的第1种情况:滑坡推力),内力计算结果如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015415950534.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">单轴极限抗压强度R=1Mpa</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015420507471.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">单轴极限抗压强度R=2Mpa</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015428632221.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">单轴极限抗压强度R=2.5Mpa</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015434899048.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">单轴极限抗压强度R=5Mpa</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015442785177.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">单轴极限抗压强度R=10Mpa</p><p>对比1MPa,2MPa,2.5Mpa的计算结果,我们发现软件的岩石反力取值是不会大于横向允许承载力的。当岩石反力(=位移*岩石水平反力系数)>横向允许承载力时,取横向允许承载力值。即岩石反力=min{弹簧刚度K*位移X,横向允许承载力},理正软件将岩石视为弹塑性材料。软件没有且不会出现“岩石横向承载力不满足要求”。</p><p><strong>2.2 理正嵌岩段设计的正确性</strong><strong>校验</strong></p><p>为进一步验证,我们缩短嵌固段,嵌岩段设置为1m,单轴极限抗压强度R=5MPa。此时对应的岩石地基横向容许承载力Rd=5000*0.3*0.5=750kPa,在此参数下进行对比分析。</p><p>GEO5抗滑桩软件计算会提示地基横向承载力不满足要求(岩石当成弹性材料考虑)。如下图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015467678427.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">抗滑桩嵌岩段1m,R=5Mpa,允许反力=750kPa</p><p>若将岩石当成弹塑性材料考虑,我们用两款软件对比计算。</p><blockquote><p>注:在GEO5中,我们用c足够大的弹塑性土体,来模拟理正模型中的弹塑性岩石,只要GEO5的允许反力(计算的被动土压力)与理正R=5MPa所能提供的岩石地基横向容许承载力Rd相当即可。</p></blockquote><p>GEO5计算出在允许反力≈780kPa时,结构不稳定,此时无法给出内力及位移详细计算结果。此时减小允许反力值,结构会更不稳,所以在允许反力=750kPa时,GEO5计算结构是会不稳定的。如下图:</p><p>&nbsp;</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015486618818.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">弹塑性的土体模拟岩体,嵌岩1m深,允许反力≈780kPa</p><p>理正岩石允许反力=750kPa时,分析仍能给出内力及位移结果。虽然结果明显错误但有结果给出说明计算是收敛。如下图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015498184013.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">嵌岩1m深,R=5Mpa,允许反力=750kPa</p><p>如果岩石当成弹塑性材料考虑,那么当计算出的岩石反力>横向承载力的时候,计算出的岩石反力会进行调整然后进行二次迭代,而当变形足够大,势必会出现计算不收敛的情况,不收敛是计算不出结果的,此时结构不稳定,正如上面GEO5软件的提示。但我们发现无论理正中嵌岩段的岩石反力多小,软件都能计算出内力及位移。</p><p><strong>2.3结论</strong></p><p>理正抗滑桩软件岩石是当成弹塑性材料考虑的,岩石反力=min{弹簧刚度K*位移X,横向允许承载力},软件没有且不会出现“岩石横向承载力不满足要求”。软件并没有严格按照规范要求去验算嵌岩段。若岩石按弹塑性材料考虑,理正软件在嵌固段明显不满足要求,结构不稳定的时候,仍能输出内力及位移计算结果。GEO5抗滑桩软件岩石按弹性考虑,岩石反力=弹簧刚度K*位移X,分析时岩石反力可以达到任意值,最终验算最大应力是否大于岩石的横向承载力。验算是严格按照规范要求。</p><p><strong>3.</strong><strong>&nbsp;</strong><strong>抗滑桩嵌土段设计</strong></p><p><strong>3.1 嵌土段承载力验算</strong></p><p>针对<strong>嵌土段,规范10.2.10-2和10.2.10-3给出了横向允许承载力计算公式,可以按公式计算,此外规范</strong>10.2.10的条文说明对于规范正文也做了进一步说明,具体内容如下:</p><p>10.2.10 对于较完整的岩质岩层及半岩质岩层的地基,桩身作用于围岩的侧向压应力,一般不应大于容许强度。桩周围岩的侧向允许抗压强度,必要时可直接在现场试验取得,一般按岩石的完整程度、层理或片理产状、层间的胶结物与胶结程度、节理裂隙的密度和充填物、各种构造裂面的性质和产状及其贯通程度等情况,分别采用垂直允许抗压强度的0.5 ~ 1.0倍。当围岩为密实土或砂层时,其值为0.5倍,较完整的半岩质岩层为0.60~0.75倍,块状或厚层少裂隙的岩层为 0.75~ 1.0倍。对于一般土层或风化成土、砂砾状的岩层地基,<strong>抗滑桩在侧向荷载作用下发生转动变位时,桩前的土体产生被动土压力,而在桩后的土体产生主动土压力。桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。在工程设计中,要使锚固段完全满足要求,有时会很困难,所以根据多年的工程经验,满足滑动面以下深度 h<sub>2</sub>/3 和h<sub>2</sub>(滑动面以下桩长)处的横向压应力应小于或等于被动土压力与主动士压力之差即可。</strong>此时滑动面以下h2/3深度范围内进入塑性区。</p><p>依据GEO5抗滑桩计算理论,GEO5土体按弹塑性材料考虑,采用弹塑性共同变形法,嵌土段桩前及桩后都有土弹簧作用,结构受力由下式计算:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015529673204.png" alt="image.png"/></p><p>针对GEO5抗滑桩的嵌土段,作用在变形结构上的土压力最大不能大于被动土压力,最小不能小于主动土压力。即桩前计算土压力≤桩前被动土压力,桩后计算土压力≥桩后主动土压力。那么-桩后计算土压力≤-桩后主动土压力。据此可推导得到,桩前计算土压力-桩后计算土压力≤桩前被动土压力-桩后主动土压力恒成立。而GEO5的土反力是桩前桩后计算土压力的合力。也就是GEO5抗滑桩的计算土反力≤桩前被动土压力-桩后主动土压力,依据GEO5的计算理论,如果软件计算结果收敛,无结构不稳定的提示,那么计算结果将严格满足规范第10.2.10的条文说明的“<strong>桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。</strong>”</p><p>此外,我们可以依据GEO5分析结果的“土压力+位移”图示很容易判断被动区土体的塑性区的范围。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015561456784.png" alt="image.png"/>&nbsp;</p><p>理正<strong>土体也是按弹塑性材料</strong>考虑,由于计算模型的不同,理正软件的计算土反力特指滑坡面以下桩的土抗力,由下式计算:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015578780627.png" alt="image.png"/></p><p>在桩的计算结果--&gt;内力计算结果--&gt;土反力图形上用红色线条表示的被动土压力数值。理正软件计算的土反力不会大于被动土压力,同样也可以根据图形来判断被动区塑性区范围。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015588409095.png" alt="image.png"/>&nbsp;</p><p>首先,理正软件是没有按照规范正文要求去进行计算允许横向承载力计算,其次,因为没有考虑桩后主动土压力,所以也不能按规范条文说明去验算嵌土段是否满足滑动面以下深度 h2/3 和h2(滑动面以下桩长)处土反力是否小于等于被动土压力与主动土压力之差。综上,理正抗滑桩的嵌土段并没有按照规范要求进行验算。</p><p><strong>3.2 理正嵌土段设计的正确性</strong><strong>校验</strong></p><p>举例用两款软件分析下列抗滑桩:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015602169359.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">计算简图</p><p>两款软件的计算结果:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015624596342.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">理正计算最大位移= -73.28(mm)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015631100298.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">GEO5计算最大位移= -26.9(mm)</p><p>两款软件位移计算结果相差太多,下面我们用有限元分析软件OptumG2进行复核。将抗滑桩桩后嵌固段以上9m以上的土折算成超载施加在模型里,同时将理正计算出来的滑坡推力的水平和竖直分布力施加在模型中。选择弹塑性分析方法,具体如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015644374963.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">初始地应力分析</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015665247033.png" alt="image.png"/></p><p style="text-align: center;">弹塑性分析</p><p>分析结果:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1585015690771650.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">Optumn G2的计算结果(位移28.02mm)</p><p>相比较理正的70.28mm的水平位移,Optumn G2的计算结果(位移28.02mm)与GEO5(位移26.9mm)的更接近。</p><p><strong>3.3结论</strong></p><p>理正跟GEO5两款抗滑桩软件,均可以依据结果图示判断被动区塑性区范围,但是两款软件土反力计算公式不相同,由于理正嵌固段不考虑桩后土弹簧作用,所以计算结果只考虑桩前土抗力。嵌土段没有考虑桩后主动土压力,所以无法按照规范正文或条文说明的要求去验算。而GEO5软件只要计算结果收敛,没有结构不稳定的提示,那么计算结果将严格满足规范第10.2.10的条文说明的“<strong>桩身对地基土体的侧向压应力一般不应大于被动土压力与主动土压力之差。</strong>”</p><p><br/></p>

指定边坡滑面参数说明

库仑产品库仑刘工 发表了文章 • 0 个评论 • 29 次浏览 • 5 天前 • 来自相关话题

GEO5不需要单独输入滑面参数,软件会自动读取岩土材料参数。软件的使用思路是,首先创建所要分析边坡的剖面地层线,然后为地层指定岩土材料,最后在建立的模型上分析各类滑面。图1 滑面类型在分析边坡稳定性时,根据边坡滑面是否确定,可以大致分为有软弱滑面与无软弱滑面(如图)。有软弱滑面(即滑面固定,不用自动搜索)的情况可以分为两种:一个是土石交接的情况,滑面参数取上层岩土材料的参数;一个是有软弱滑带,滑面参数取滑带土参数。无软弱滑面(即勘察报告中没提供滑面位置)需要使用自动搜索功能。这里主要介绍有软弱滑面边坡的滑面参数赋值操作说明。1. 有软弱滑面——土石交接边坡下部为岩石,上部为土层或者破碎岩石的情况,滑面确定为土石交界位置处。这种情况我们只需绘制滑面,软件会读取滑面经过岩土材料的参数。操作步骤如下:(1)使用“导入”功能里的“将DXF文件以模板导入”,将滑面导入到软件中。图2 以模板导入滑面(2)在“分析”选项下,选择折线滑面,输入滑面。输入方式是点击“输入”,然后在图形界面捕捉读入的滑面点。图3 输入滑面图4 图形交互输入滑面这里需要注意的是,用捕捉点的方法绘制滑面时,需保证绘制滑面与导入滑面保持一致,不要出现滑面越过下层滑面的情况。下面这种情况,软件读取岩土材料参数时会读到下面的岩土材料来。图5 滑面错误的输入方式(3)分析并查看计算书指定滑面之后,可以点击左侧的开始分析按钮。分析完成之后可以在计算书中找到每一土的详细信息。软件会读取,滑面经过土层的岩土材料内摩擦角、粘聚力、容重等信息。土石交接处读取的是上层岩土材料的参数。在计算书的详细结果中会给出每个土体的详细信息。图6 滑面每个土条的详细信息2. 有软弱滑面——滑带土石交接滑面取的岩土材料参数是上层岩土材料的参数,对于一些有滑带的情况其滑面参数不是使用上层土层,而是滑带土的参数。这里就需要我们定义一层滑带,为滑带指定岩土材料,最后将滑面指定到滑带位置。有两种操作方式,一是在CAD中,使用偏移命令,在CAD中绘制一层薄滑带;二是在GEO5中,利用复制多段线命令进行绘制。2.1. CAD中绘制滑带(1)CAD中选择要偏移的线段(2)英文输入法下输入快捷键“o”,回车或空格确定(3)输入偏移距离,如0.1,回车确定(4)在选择线段的上方或下方点击左键,软件即可完成偏移操作(5)进行延长、修剪,将图形修整为符合软件读取的图形,读入软件图7 CAD中进行偏移操作图8 修剪生成的地层线2.2. GEO5中绘制GEO5中也可以进行简单偏移操作(GEO5偏移操作,不能有多段线交叉;有交叉的情况,最好在CAD中做好)。GEO5中偏移操作如下:(1)在“多段线”菜单下,选择要复制(偏移)的多段线,复制选择的多段线,然后粘贴。图9 GEO5中进行多段线偏移(2)粘贴之后可以选择偏移距离,“+”为向上偏移;“-”为向下偏移。这里输入0.1m,使多段线向上偏移0.1m。点击粘贴即可在原多段线的上方0.1m处复制一条新的多段线,这时就生成的了一层较薄的滑带土。将新生成的地层指定为滑带土的岩土材料即可。图10 偏移方向说明图11 生成滑带后指定岩土材料接下来,将滑面的CAD图形以模板读入,用“输入”功能在滑带土上输入滑面即可。图12 以模板输入滑面3. 无软弱滑面无软弱滑面只需任意指定一个初始滑面,点击自动搜索即可。同样,软件也会读取滑面经过岩土材料的参数。对于圆弧型滑面,软件会自动划分成20个条块。简化毕肖普法、瑞典条分法等方法,对条间里进行简化,并不是土条划分得越细精度就越高。工程上土条一般取10~20,软件里取20。图13 自动搜索图  查看全部
<p>GEO5不需要单独输入滑面参数,软件会自动读取岩土材料参数。软件的使用思路是,首先创建所要分析边坡的剖面地层线,然后为地层指定岩土材料,最后在建立的模型上分析各类滑面。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924631872894.png" alt="image.png"/></p><p style="text-align: center;">图1 滑面类型</p><p>在分析边坡稳定性时,根据边坡滑面是否确定,可以大致分为有软弱滑面与无软弱滑面(如图)。有软弱滑面(即滑面固定,不用自动搜索)的情况可以分为两种:一个是土石交接的情况,滑面参数取上层岩土材料的参数;一个是有软弱滑带,滑面参数取滑带土参数。无软弱滑面(即勘察报告中没提供滑面位置)需要使用自动搜索功能。这里主要介绍有软弱滑面边坡的滑面参数赋值操作说明。</p><p><strong>1. 有软弱滑面——土石交接</strong></p><p>边坡下部为岩石,上部为土层或者破碎岩石的情况,滑面确定为土石交界位置处。这种情况我们只需绘制滑面,软件会读取滑面经过岩土材料的参数。操作步骤如下:</p><p>(1)使用“导入”功能里的“将DXF文件以模板导入”,将滑面导入到软件中。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924650683733.png" alt="image.png"/></p><p style="text-align: center;">图2 以模板导入滑面</p><p>(2)在“分析”选项下,选择折线滑面,输入滑面。输入方式是点击“输入”,然后在图形界面捕捉读入的滑面点。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924663973741.png" alt="image.png"/></p><p style="text-align: center;">图3 输入滑面</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924675553197.png" alt="image.png"/></p><p style="text-align: center;">图4 图形交互输入滑面</p><p>这里需要注意的是,用捕捉点的方法绘制滑面时,需保证绘制滑面与导入滑面保持一致,不要出现滑面越过下层滑面的情况。下面这种情况,软件读取岩土材料参数时会读到下面的岩土材料来。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924688190615.png" alt="image.png"/></p><p style="text-align: center;">图5 滑面错误的输入方式</p><p>(3)分析并查看计算书</p><p>指定滑面之后,可以点击左侧的开始分析按钮。分析完成之后可以在计算书中找到每一土的详细信息。软件会读取,滑面经过土层的岩土材料内摩擦角、粘聚力、容重等信息。土石交接处读取的是上层岩土材料的参数。在计算书的详细结果中会给出每个土体的详细信息。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924700460905.png" alt="image.png"/></p><p style="text-align: center;">图6 滑面每个土条的详细信息</p><p><strong>2. 有软弱滑面——滑带</strong></p><p>土石交接滑面取的岩土材料参数是上层岩土材料的参数,对于一些有滑带的情况其滑面参数不是使用上层土层,而是滑带土的参数。这里就需要我们定义一层滑带,为滑带指定岩土材料,最后将滑面指定到滑带位置。有两种操作方式,一是在CAD中,使用偏移命令,在CAD中绘制一层薄滑带;二是在GEO5中,利用复制多段线命令进行绘制。</p><p>2.1. CAD中绘制滑带</p><p>(1)CAD中选择要偏移的线段</p><p>(2)英文输入法下输入快捷键“o”,回车或空格确定</p><p>(3)输入偏移距离,如0.1,回车确定</p><p>(4)在选择线段的上方或下方点击左键,软件即可完成偏移操作</p><p>(5)进行延长、修剪,将图形修整为符合软件读取的图形,读入软件</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924714517681.png" alt="image.png"/></p><p style="text-align: center;">图7 CAD中进行偏移操作</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924745293577.png" alt="image.png"/></p><p style="text-align: center;">图8 修剪生成的地层线</p><p>2.2. GEO5中绘制</p><p>GEO5中也可以进行简单偏移操作(GEO5偏移操作,不能有多段线交叉;有交叉的情况,最好在CAD中做好)。GEO5中偏移操作如下:</p><p>(1)在“多段线”菜单下,选择要复制(偏移)的多段线,复制选择的多段线,然后粘贴。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924775867115.png" alt="image.png"/></p><p style="text-align: center;">图9 GEO5中进行多段线偏移</p><p>(2)粘贴之后可以选择偏移距离,“+”为向上偏移;“-”为向下偏移。这里输入0.1m,使多段线向上偏移0.1m。点击粘贴即可在原多段线的上方0.1m处复制一条新的多段线,这时就生成的了一层较薄的滑带土。将新生成的地层指定为滑带土的岩土材料即可。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924797578233.png" alt="image.png"/></p><p style="text-align: center;">图10 偏移方向说明</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924807871671.png" alt="image.png"/></p><p style="text-align: center;">图11 生成滑带后指定岩土材料</p><p>接下来,将滑面的CAD图形以模板读入,用“输入”功能在滑带土上输入滑面即可。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924819953231.png" alt="image.png"/></p><p style="text-align: center;">图12 以模板输入滑面</p><p><strong>3. 无软弱滑面</strong></p><p style="text-align: center;">无软弱滑面只需任意指定一个初始滑面,点击自动搜索即可。同样,软件也会读取滑面经过岩土材料的参数。对于圆弧型滑面,软件会自动划分成20个条块。简化毕肖普法、瑞典条分法等方法,对条间里进行简化,并不是土条划分得越细精度就越高。工程上土条一般取10~20,软件里取20。<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584924842387730.png" alt="image.png"/></p><p style="text-align: center;">图13 自动搜索图</p><p>&nbsp;</p><p><br/></p>

土钉边坡支护钢筋网片面层截面强度验算理论解析

库仑产品库仑沈工 发表了文章 • 0 个评论 • 32 次浏览 • 6 天前 • 来自相关话题

在【尺寸】菜单内,面层类型有两种选择,一是混凝土面层,二是钢筋网,本文着重介绍钢筋网的计算原理。当选择钢筋网面层时,要注意此时土钉的位置是交错布置的。这里还需要设置风化层的厚度和岩土材料参数。风化层的厚度和岩土材料参数直接影响到土钉和钢筋网的受力。在【钢筋网类型】菜单中,确定钢筋网的各项承载力及安全系数,最后在进行钢筋网的冲切和受剪力验算,需要将承载力除以安全系数作为验算标准。即Rp/SFmesh与Rs/SFmesh。  同理,在【土钉类型】菜单中,确定土钉的各项强度及安全系数,将各强度允许值除以安全系数,作为验算标准: 坡段,明确土钉的空间布置: 这里的板指的是土钉下面的垫板,板宽度hw对受力计算没有影响,但是该尺寸可以明确垫板尺寸,板的长度lw参与钢筋网冲切计算,垫板长度越大越有利,但是不可能无限大。最后,在【截面强度验算】菜单中,共进行四项验算:土钉受剪承载力验算、钢筋网受冲切承载力验算、钢筋网受剪承载力验算、土钉组合应变验算。此处需要设置是否考虑渗流,压力锥角度及土钉轴力。 关于渗流的影响,在计算土钉剪力和钢筋网剪力时,可以考虑由风化层中水流引起的渗流力Fw。关于压力锥的角度确定了土钉轴力在风化层中的传递扩散角度,这对钢筋网剪力的计算会产生影响。该角度使得作用在钢筋网上的各土钉轴力的水平间距减小了,同时也减小了单元土块的宽度。折减后的单元土块是一个梯形,可以等效为一个等面积的矩形,矩形的宽度为。压力锥角度θ通常在30°到80°之间。压力锥上部半径取板长度的一半。   关于土钉轴力,土钉轴力直接参与钢筋网抗冲切验算。轴力过大可能会导致钢筋网抗冲切不满足要求。1.土钉受剪承载力验算满足Fs≤Rs/SFmesh即可。在土钉抗剪验算中,选择风化层底面作为滑面,土钉剪力Fs则由单根土钉分担的单元土块引起的剪力计算得到。   上面的公式看似复杂,其实就是土块重力W、土钉轴力Fnail及渗流力Fw延着的滑面分力减去摩擦力,为摩擦系数,土块重力W、土钉轴力Fnail垂直与滑面的分力乘以摩擦系数即为摩擦力,在国内规范中不考虑作用,可以设置c=0。2.钢筋网受冲切承载力验算满足Fnail≤Rp/SFmesh即可。Fnail为土钉轴力3.钢筋网受剪承载力验算满足Sd≤Rs/SFmesh即可。软件自动计算由四根土钉包围的单元土块中两种类型滑面下的最大钢筋网剪力。直线滑面 - 在整个风化层厚度范围内自动找到使得钢筋网剪力最大的滑面。 剪力 - 直线滑面 分子很复杂,其实就是土块重力W、渗流力Fw延着的直线滑面分力减去摩擦力,这个力就是下图中的F分子,力的方向是沿滑面水平向下的。钢筋网所受的剪力跟此大小相等,方向相反。 折线滑面 - 在整个风化层厚度范围内自动找到使得钢筋网剪力最大的土块底面倾角。 剪力 - 折线滑面当采用折线滑面计算时,两个滑块之间的作用力X按下式计算:   公式的解析可以参考上面的直线滑面。注意:考虑压力锥影响,替代上面的,影响单元土块的宽度,最终体现在公式里面的滑块重量。4. 土钉组合应变验算 查看全部
<p>在【尺寸】菜单内,面层类型有两种选择,一是混凝土面层,二是钢筋网,本文着重介绍钢筋网的计算原理。</p><p>当选择钢筋网面层时,要注意此时土钉的位置是交错布置的。这里还需要设置风化层的厚度和岩土材料参数。风化层的厚度和岩土材料参数直接影响到土钉和钢筋网的受力。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871124644646.png" alt="image.png"/></p><p>在【钢筋网类型】菜单中,确定钢筋网的各项承载力及安全系数,最后在进行钢筋网的冲切和受剪力验算,需要将承载力除以安全系数作为验算标准。即Rp/SFmesh与Rs/SFmesh。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871132496592.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871137907426.png" alt="image.png"/>&nbsp;</p><p>同理,在【土钉类型】菜单中,确定土钉的各项强度及安全系数,将各强度允许值除以安全系数,作为验算标准:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871143792294.png" alt="image.png"/>&nbsp;</p><p>坡段,明确土钉的空间布置:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871150752283.png" alt="image.png"/>&nbsp;</p><p>这里的板指的是土钉下面的垫板,板宽度hw对受力计算没有影响,但是该尺寸可以明确垫板尺寸,板的长度lw参与钢筋网冲切计算,垫板长度越大越有利,但是不可能无限大。</p><p>最后,在【截面强度验算】菜单中,共进行四项验算:土钉受剪承载力验算、钢筋网受冲切承载力验算、钢筋网受剪承载力验算、土钉组合应变验算。此处需要设置是否考虑渗流,压力锥角度及土钉轴力。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871157498937.png" alt="image.png"/>&nbsp;</p><p>关于渗流的影响,在计算<a href="#b0">土钉剪力</a>和<a href="#b0">钢筋网剪力</a>时,可以考虑由风化层中水流引起的渗流力Fw。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871180520078.png" alt="image.png" width="244" height="167" style="width: 244px; height: 167px;"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871188734691.png" alt="image.png"/></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871195167347.png" alt="image.png"/></p><p>关于压力锥的角度确定了土钉轴力在风化层中的传递扩散角度,这对<a href="#b0">钢筋网剪力</a>的计算会产生影响。该角度使得作用在钢筋网上的各土钉轴力的水平间距减小了,同时也减小了单元土块的宽度。折减后的单元土块是一个梯形,可以等效为一个等面积的矩形,矩形的宽度为<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871226410181.png" alt="image.png"/>。压力锥角度θ通常在30°到80°之间。压力锥上部半径<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871234234264.png" alt="image.png"/>取板长度<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871240482384.png" alt="image.png"/>的一半。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871248496234.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871258694362.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871266114035.png" alt="image.png"/></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871278625209.png" alt="image.png"/>&nbsp;</p><p>关于土钉轴力,土钉轴力直接参与钢筋网抗冲切验算。轴力过大可能会导致钢筋网抗冲切不满足要求。</p><p><strong>1.土钉受剪承载力验算</strong></p><p>满足Fs≤Rs/SFmesh即可。</p><p>在土钉抗剪验算中,选择风化层底面作为滑面,土钉剪力Fs则由单根土钉分担的单元土块引起的剪力计算得到。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871286305546.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871292223883.png" alt="image.png"/>&nbsp;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871297560484.png" alt="image.png"/>&nbsp;</p><p>上面的公式看似复杂,其实就是土块重力W、土钉轴力Fnail及渗流力Fw延着的滑面分力减去摩擦力,</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871343798444.png" alt="image.png"/>为摩擦系数,土块重力W、土钉轴力Fnail垂直与滑面的分力乘以摩擦系数即为摩擦力,在国内规范中不考虑<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871356644646.png" alt="image.png"/>作用,可以设置c=0。</p><p><strong>2.钢筋网受冲切承载力验算</strong></p><p>满足Fnail≤Rp/SFmesh即可。Fnail为土钉轴力</p><p><strong>3.钢筋网受剪承载力验算</strong></p><p>满足Sd≤Rs/SFmesh即可。</p><p>软件自动计算由四根土钉包围的单元土块中两种类型滑面下的最大钢筋网剪力。<br/></p><p>直线滑面 - 在整个风化层厚度范围内自动找到使得钢筋网剪力最大的滑面。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871368624158.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">剪力 - 直线滑面</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871384898900.png" alt="image.png"/></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871390317928.png" alt="image.png"/>&nbsp;</p><p>分子很复杂,其实就是土块重力W、渗流力Fw延着的直线滑面分力减去摩擦力,这个力就是下图中的F<sub>分子</sub>,力的方向是沿滑面水平向下的。钢筋网所受的剪力跟此大小相等,方向相反。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871403659407.png" alt="image.png"/>&nbsp;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871447924111.png" alt="image.png"/></p><p>折线滑面 - 在整个风化层厚度范围内自动找到使得钢筋网剪力最大的土块底面倾角。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871457702470.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">剪力 - 折线滑面</p><p>当采用折线滑面计算时,两个滑块之间的作用力<strong><em>X</em></strong>按下式计算:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871463847549.png" alt="image.png"/>&nbsp;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871469563201.png" alt="image.png"/>&nbsp;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871478370190.png" alt="image.png"/>&nbsp;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871508843578.png" alt="image.png"/></p><p>公式的解析可以参考上面的直线滑面。</p><p>注意:考虑压力锥影响,<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871529978480.png" alt="image.png"/>替代上面的<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584871536609743.png" alt="image.png"/>,影响单元土块的宽度,最终体现在公式里面的滑块重量。</p><p>4.&nbsp;<strong>土钉组合应变验算</strong></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584939794519661.png" alt="image.png"/></p><p><br/></p>

GEO5深基坑预留土堤盆式开挖计算介绍

岩土工程库仑刘工 发表了文章 • 0 个评论 • 61 次浏览 • 2020-03-07 23:17 • 来自相关话题

概述:GEO5可以设计计算桩前预留土堤,进行盆式开挖的深基坑。有不少工程师朋友可能都试用过该功能,但是由于没有详细去了解软件对这种情况的计算原理,有时会出现一些与预期不太一样的结果。导致一些工程师朋友使用软件设计时,只是用软件做一个辅助验算,出一个计算书。针对这种情况,非常有必要对软件的计算原理做一个详细的说明。视频讲解部分:基坑盆式开挖设计计算1. 悬臂式结构土压力计算首先我们先看一下规范里面关于基坑支护结构的计算原理图。基坑外侧土压力计算采用,主动土压力(一般利用库仑土压力公式进行计算)。基坑内侧的土压力,不再使用被动土压力,而是利用竖向温克尔弹性地基梁进行迭代计算土反力。图1 悬臂式结构土反力p由弹簧刚度k和变形得到;弹簧刚度与水平反力系数m(K、c)和桩前土体埋深决定。岩土材料确定之后,m是个定值,当做常量考虑,弹簧刚度仅与埋深有关(z-h)。图2 基坑开挖示意图这里h为当前工况的基坑开挖深度,z为土层计算点到地面的距离,z-h即为桩前土体的埋深。随着开挖进行,开挖深度加深,弹簧刚度会变小,土反力调整,位移调整,结构内力调整。根据施工情况进行分步开挖分析,土反力就会随之调整,这也是规范里推荐使用增量法进行设计的原因所在。2. 土反力最大值图3 土体分步开挖主动土压力大小不变,随着开挖加深,弹簧范围和大小都在减小,弹簧为提供足够的抗力,需要有足够大的变形。但土体(弹簧)变形又不能无限增大,那么土体最大位移为多少时,土体会破坏?直接通过土体变形来判断土体是否能破坏,是很难实现的。那么我们应该怎么判断土体破坏呢?我们可以换一个思路——用土反力和极限土压力进行对比,来判断土体变形是否可控。岩土体是弹塑性的,土体变形到一定程度,就会进入塑形状态,这时候,变形继续增加,土反力却不会继续增大。土反力最大值不应大于被动土压力,大过被动土压力,土体就超出临界状态,会产生破坏。综上,由变形与弹簧刚度计算的土反力,最大值不应大于被动土压力。当土反力不大于被动土压力时,应取实际计算值;当土反力大于被动土压力时,即土体进入塑形变形区时,应对土反力进行调整。调整方法介绍如下。3. 土体塑形变形时土反力取值图4 土压力和位移(弹性)该图是深基坑分析模块分析结果图,绿色虚线代表经典土压力(极限土压力),蓝色实线代表土反力。相同条件下,作用在挡土构件上的土压力,被动土压力>静止土压力>主动土压力。同一深度下,最外侧绿线是被动土压力,最内侧绿线为主动土压力,中间绿线为静止土压力。蓝色的线为土反力,即真实土压力。真实土压力大小,应介于主动土压力与被动土压力之间。图5 土压力和位移(弹塑性)随着开挖深度加深,会导致计算土反力继续增大,土体进入塑形状态,这时按p=ky计算土压力,会导致计算土反力超过被动土压力,这不符合土体规律。软件在这个时候会有一个调整(如图红色线框标注位置)。软件比较计算土反力,与被动土压力的大小。当该单元的土反力大于被动土压力的时,会用该单元范围内的被动土压力代替土反力,进行下一次迭代,直到所有单元的土反力都不大于被动土压力为止。图中红框标注位置,被动土压力线与土压力线重合。4. 盆式开挖土压力计算图6 盆式开挖桩后土体依然使用土压力,桩前土体依然使用土弹簧计算,比较土弹簧与被动土压力的大小。难点在于预留土堤之后,土弹簧和被动土压力应该如何考虑,我们不妨先看一下桩前土体的被动土压力的变化。与水平开挖相比,如果盆式开挖范围在破裂面以外,那么不必考虑被动土压力变化;开挖范围在破裂面内时,则需要考虑被动土压力的减小。这里被动土压力计算,需要联合使用图解法和解析法,具体计算可以参考土力学教程中特殊土压力计算。预留土堤部分的土弹簧,依然按正常土体取值(土弹簧刚度与岩土材料和埋深有关)计算土反力。这时需要考虑的一个问题就是,预留土堤能否像水平土层那样提供那么大的土反力,如何判断,标准是什么。判断标准依然是土反力与被动土压力的大小。假如土反力小于被动土压力力,那么 计算土压力取土反力;假如土反力大于被动土压力,那么就将土反力调整为被动土压力。注意,这里提到的被动土压力是考虑了盆式开挖之后的被动土压力。这样就确保了预留土提部分的土反力计算是合理的。5. 盆式开挖预留土堤注意事项(1)假如预留土堤部分,计算出来大范围都进入塑性变形,即土反力与被动土压力线重合,那么需要考虑,是否开挖过大,或者预留土堤宽度过窄。(2)预留土堤部分,需验证边坡是否稳定,可以调用外部稳定性验算,用限制搜索,完成桩前边坡的验算。(3)当预留土堤宽开挖计算结果与未进行盆式开挖相比几乎没有变化时,说明预留土堤宽度已经足够大了。我们也可以通过调整预留土堤宽度,找到临界值。如果变形、塑性变形、土堤边坡稳定性都能满足要求时,我们可以认为预留土堤形状是合适的。(4)上海市基坑工程技术规范DGTJ08-61-2010对盆式开挖有一些要求,这里贴出来以供参考。 查看全部
<p>概述:GEO5可以设计计算桩前预留土堤,进行盆式开挖的深基坑。有不少工程师朋友可能都试用过该功能,但是由于没有详细去了解软件对这种情况的计算原理,有时会出现一些与预期不太一样的结果。导致一些工程师朋友使用软件设计时,只是用软件做一个辅助验算,出一个计算书。针对这种情况,非常有必要对软件的计算原理做一个详细的说明。</p><p>视频讲解部分:<a href="https://ke.qq.com/course/44008 ... ot%3B target="_self">基坑盆式开挖设计计算</a></p><p><strong>1. 悬臂式结构土压力计算</strong></p><p style="text-align: left;">首先我们先看一下规范里面关于基坑支护结构的计算原理图。基坑外侧土压力计算采用,主动土压力(一般利用库仑土压力公式进行计算)。基坑内侧的土压力,不再使用被动土压力,而是利用竖向温克尔弹性地基梁进行迭代计算土反力。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583593999275294.png" alt="image.png"/></p><p style="text-align: center;">图1 悬臂式结构</p><p>土反力p由弹簧刚度k和变形得到;弹簧刚度与水平反力系数m(K、c)和桩前土体埋深决定。岩土材料确定之后,m是个定值,当做常量考虑,弹簧刚度仅与埋深有关(z-h)。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583594012777267.png" alt="image.png"/></p><p style="text-align: center;">图2 基坑开挖示意图</p><p>这里h为当前工况的基坑开挖深度,z为土层计算点到地面的距离,z-h即为桩前土体的埋深。随着开挖进行,开挖深度加深,弹簧刚度会变小,土反力调整,位移调整,结构内力调整。根据施工情况进行分步开挖分析,土反力就会随之调整,这也是规范里推荐使用增量法进行设计的原因所在。</p><p><strong>2. 土反力最大值</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583594021815114.png" alt="image.png"/></p><p style="text-align: center;">图3 土体分步开挖</p><p>主动土压力大小不变,随着开挖加深,弹簧范围和大小都在减小,弹簧为提供足够的抗力,需要有足够大的变形。但土体(弹簧)变形又不能无限增大,那么土体最大位移为多少时,土体会破坏?</p><p>直接通过土体变形来判断土体是否能破坏,是很难实现的。那么我们应该怎么判断土体破坏呢?我们可以换一个思路——用土反力和极限土压力进行对比,来判断土体变形是否可控。岩土体是弹塑性的,土体变形到一定程度,就会进入塑形状态,这时候,变形继续增加,土反力却不会继续增大。土反力最大值不应大于被动土压力,大过被动土压力,土体就超出临界状态,会产生破坏。</p><p>综上,由变形与弹簧刚度计算的土反力,最大值不应大于被动土压力。当土反力不大于被动土压力时,应取实际计算值;当土反力大于被动土压力时,即土体进入塑形变形区时,应对土反力进行调整。调整方法介绍如下。</p><p><strong>3. 土体塑形变形时土反力取值</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583594031829210.png" alt="image.png"/></p><p style="text-align: center;">图4 土压力和位移(弹性)</p><p style="text-align: left;">该图是深基坑分析模块分析结果图,绿色虚线代表经典土压力(极限土压力),蓝色实线代表土反力。相同条件下,作用在挡土构件上的土压力,被动土压力>静止土压力>主动土压力。同一深度下,最外侧绿线是被动土压力,最内侧绿线为主动土压力,中间绿线为静止土压力。蓝色的线为土反力,即真实土压力。真实土压力大小,应介于主动土压力与被动土压力之间。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583594040287795.png" alt="image.png"/></p><p style="text-align: center;">图5 土压力和位移(弹塑性)</p><p>随着开挖深度加深,会导致计算土反力继续增大,土体进入塑形状态,这时按p=ky计算土压力,会导致计算土反力超过被动土压力,这不符合土体规律。软件在这个时候会有一个调整(如图红色线框标注位置)。软件比较计算土反力,与被动土压力的大小。当该单元的土反力大于被动土压力的时,会用该单元范围内的被动土压力代替土反力,进行下一次迭代,直到所有单元的土反力都不大于被动土压力为止。图中红框标注位置,被动土压力线与土压力线重合。</p><p><strong>4. 盆式开挖土压力计算</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583594050852632.png" alt="image.png"/></p><p style="text-align: center;">图6 盆式开挖</p><p>桩后土体依然使用土压力,桩前土体依然使用土弹簧计算,比较土弹簧与被动土压力的大小。难点在于预留土堤之后,土弹簧和被动土压力应该如何考虑,我们不妨先看一下桩前土体的被动土压力的变化。与水平开挖相比,如果盆式开挖范围在破裂面以外,那么不必考虑被动土压力变化;开挖范围在破裂面内时,则需要考虑被动土压力的减小。这里被动土压力计算,需要联合使用图解法和解析法,具体计算可以参考土力学教程中特殊土压力计算。预留土堤部分的土弹簧,依然按正常土体取值(土弹簧刚度与岩土材料和埋深有关)计算土反力。这时需要考虑的一个问题就是,预留土堤能否像水平土层那样提供那么大的土反力,如何判断,标准是什么。判断标准依然是土反力与被动土压力的大小。假如土反力小于被动土压力力,那么 计算土压力取土反力;假如土反力大于被动土压力,那么就将土反力调整为被动土压力。注意,这里提到的被动土压力是考虑了盆式开挖之后的被动土压力。这样就确保了预留土提部分的土反力计算是合理的。</p><p><strong>5. 盆式开挖预留土堤注意事项</strong></p><p>(1)假如预留土堤部分,计算出来大范围都进入塑性变形,即土反力与被动土压力线重合,那么需要考虑,是否开挖过大,或者预留土堤宽度过窄。</p><p>(2)预留土堤部分,需验证边坡是否稳定,可以调用外部稳定性验算,用限制搜索,完成桩前边坡的验算。</p><p>(3)当预留土堤宽开挖计算结果与未进行盆式开挖相比几乎没有变化时,说明预留土堤宽度已经足够大了。我们也可以通过调整预留土堤宽度,找到临界值。如果变形、塑性变形、土堤边坡稳定性都能满足要求时,我们可以认为预留土堤形状是合适的。</p><p>(4)上海市基坑工程技术规范DGTJ08-61-2010对盆式开挖有一些要求,这里贴出来以供参考。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1583594059387079.png" alt="image.png"/></p><p><br/></p>

如何正确预估最大抗滑承载力Vu

库仑产品库仑沈工 发表了文章 • 0 个评论 • 180 次浏览 • 2020-02-15 23:26 • 来自相关话题

     首先应了解在【土质边坡稳定性分析】模块,抗滑桩的作用就是提供一个抗力,这个力对计算结果的影响主要在于它的大小和作用点位置。本文着重说明抗力大小的影响,不介绍力的作用点的影响。     抗滑桩支护结构是有桩间距的,并非连续结构。所以在整体稳定性安全系数的计算过程中,需要考虑桩间距的影响,抗滑桩对于边坡稳定性贡献的大小取决于它可以提供给边坡的每延米的最大抗力Vu,最大抗力是由「最大抗滑承载力」除以「桩间距」得到的,因此边坡稳定性安全系数计算结果和「最大抗滑承载力」、「桩间距」有关,此处和桩的截面尺寸无关,桩的截面参数只有在调用【抗滑桩设计】模块进一步分析的时候才起作用。     对于滑面确定的坡体而言,使用抗滑桩支护时,能够确定其嵌固段,在输入抗滑桩参数时,抗滑桩承载力沿桩身分布可选择均匀分布,施加在滑面上的抗滑力可以采用桩身最大承载力(抗剪力)Vc。为什么最大抗滑承载力要用受剪承载力公式来计算?因为用受剪承载力进行估算相对简单,好确定。而抗弯承载力计算复杂,桩的抗弯主要还是看配筋量,在截面纵向配筋没有明确的时候不好进行预估。真实的抗剪与抗弯验算在【抗滑桩设计】的【截面强度验算】里都需要进行。根据《混凝土结构设计规范GB50010-2010》6.3.4条,桩的受剪承载力计算公式如下:(6.3.4-2)     式中:混凝土提供的抗剪力,一般受弯构件,而是箍筋提供的抗剪承载力。     在没有分析桩身受力前,我们并不知道是否需要配置剪力筋,保守起见我们先拿也就是混凝土提供的抗剪力去估算,如果采用后计算的安全系数满足要求,可以调用【抗滑桩设计】进行进一步分析。如果不满足要求,我们可以反过来,适当放大Vu数值,一般桩都是有配剪力筋的,所以你在土坡模块里面填入的Vu数据可以稍微大一点,再去计算安全系数!软件对于输入的Vu会进行校核,如果说Vu预估的高了,在调用【抗滑桩设计】进行【截面强度验算】会有提醒。     注:只有安全系数满足要求以后,再调用抗滑桩模块去进一步设计,否则安全系数不满足要求,整个设计也是不满足要求的!     举例:桩截面尺寸1.8mX2m,采用C30的混凝土。ft=1.43N/mm2,fc=14.3N/mm2。Vc=0.7*1.43*1800*2000/1000=3603.6kN,通常我们建议还是按千数量级去预估Vu这里我们输入Vu=5000KN,如下图:      软件会对输入的Vu进行验算,如果满足要求,软件默认不提醒。当不满足时会有警告提示,如下图:      此时,我们在保证稳定性安全系数满足要求的前提下,可以去【土质边坡稳定性分析】模块里【抗滑桩】对话框中减小Vu的数值,或者在【抗滑桩设计】模块的【截面强度验算】一栏,增加剪力筋。提高抗滑桩抗剪承载力。     至此,你是否会有疑问,既然可以放大数值,那就按大的取!越大越好!这样的想法是不可取的!因为有的时候桩的位置不合理,或者其他一些原因,会导致抗力增加到一定程度之后,再增加对提高稳定性几乎没有作用。     其次,桩的抗剪承载力是有限值的,原因如下:1. 不可能无限制的去配置箍筋来增大抗剪承载力,所以Vcs有限值;2. 设计得按照《混凝土结构设计规范GB50010-2010》6.3.1条满足截面限制条件!V不得大于按下式计算出来的Vmax,具体如下: 查看全部
<p>&nbsp; &nbsp; &nbsp;首先应了解在【土质边坡稳定性分析】模块,抗滑桩的作用就是提供一个抗力,这个力对计算结果的影响主要在于它的大小和作用点位置。本文着重说明抗力大小的影响,不介绍力的作用点的影响。</p><p>&nbsp; &nbsp; &nbsp;抗滑桩支护结构是有桩间距的,并非连续结构。所以在整体稳定性安全系数的计算过程中,需要考虑桩间距的影响,抗滑桩对于边坡稳定性贡献的大小取决于它可以提供给边坡的每延米的最大抗力Vu,最大抗力是由「最大抗滑承载力」除以「桩间距」得到的,因此边坡稳定性安全系数计算结果和「最大抗滑承载力」、「桩间距」有关,此处和桩的截面尺寸无关,桩的截面参数只有在调用【抗滑桩设计】模块进一步分析的时候才起作用。</p><p>&nbsp; &nbsp; &nbsp;对于滑面确定的坡体而言,使用抗滑桩支护时,能够确定其嵌固段,在输入抗滑桩参数时,抗滑桩承载力沿桩身分布可选择均匀分布,施加在滑面上的抗滑力可以采用桩身最大承载力(抗剪力)Vc。为什么最大抗滑承载力要用受剪承载力公式来计算?因为用受剪承载力进行估算相对简单,好确定。而抗弯承载力计算复杂,桩的抗弯主要还是看配筋量,在截面纵向配筋没有明确的时候不好进行预估。真实的抗剪与抗弯验算在【抗滑桩设计】的【截面强度验算】里都需要进行。</p><p>根据《混凝土结构设计规范GB50010-2010》6.3.4条,桩的受剪承载力计算公式如下:</p><p></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780167785479.png" alt="image.png"/>(6.3.4-2)</p><p>&nbsp; &nbsp; &nbsp;式中:混凝土提供的抗剪力<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780190564916.png" alt="image.png"/>,一般受弯构件<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780213710807.png" alt="image.png"/>,而<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780243337081.png" alt="image.png"/>是箍筋提供的抗剪承载力。</p><p>&nbsp; &nbsp; &nbsp;在没有分析桩身受力前,我们并不知道是否需要配置剪力筋,保守起见我们先拿<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780276441282.png" alt="image.png"/>也就是混凝土提供的抗剪力去估算,如果采用<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780300162729.png" alt="image.png"/>后计算的安全系数满足要求,可以调用【抗滑桩设计】进行进一步分析。如果不满足要求,我们可以反过来,适当放大Vu数值,一般桩都是有配剪力筋的,所以你在土坡模块里面填入的Vu数据可以稍微大一点,再去计算安全系数!软件对于输入的Vu会进行校核,如果说Vu预估的高了,在调用【抗滑桩设计】进行【截面强度验算】会有提醒。</p><blockquote><p>&nbsp; &nbsp; &nbsp;注:只有安全系数满足要求以后,再调用抗滑桩模块去进一步设计,否则安全系数不满足要求,整个设计也是不满足要求的!</p></blockquote><p>&nbsp; &nbsp; &nbsp;举例:桩截面尺寸1.8mX2m,采用C30的混凝土。ft=1.43N/mm2,fc=14.3N/mm2。Vc=0.7*1.43*1800*2000/1000=3603.6kN,通常我们建议还是按千数量级去预估Vu这里我们输入Vu=5000KN,如下图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780340120645.png" alt="image.png"/>&nbsp;</p><p>&nbsp; &nbsp; &nbsp;软件会对输入的Vu进行验算,如果满足要求,软件默认不提醒。当不满足时会有警告提示,如下图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780358878441.png" alt="image.png"/>&nbsp;</p><p>&nbsp; &nbsp; &nbsp;此时,我们在保证稳定性安全系数满足要求的前提下,可以去【土质边坡稳定性分析】模块里【抗滑桩】对话框中减小Vu的数值,或者在【抗滑桩设计】模块的【截面强度验算】一栏,增加剪力筋。提高抗滑桩抗剪承载力。</p><p>&nbsp; &nbsp; &nbsp;至此,你是否会有疑问,既然可以放大数值,那就按大的取!越大越好!这样的想法是不可取的!</p><p>因为有的时候桩的位置不合理,或者其他一些原因,会导致抗力增加到一定程度之后,再增加对提高稳定性几乎没有作用。</p><p>&nbsp; &nbsp; &nbsp;其次,桩的抗剪承载力是有限值的,</p><p>原因如下:</p><p>1.&nbsp;不可能无限制的去配置箍筋来增大抗剪承载力,所以Vcs有限值;</p><p>2.&nbsp;设计得按照《混凝土结构设计规范GB50010-2010》6.3.1条满足截面限制条件!V不得大于按下式计算出来的Vmax,具体如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780103223616.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581780083484855.png" alt="image.png"/></p><p><br/></p>

EVS三维地质模型导入GEO5进行岩土设计

库仑产品库仑刘工 发表了文章 • 0 个评论 • 98 次浏览 • 2020-02-10 09:38 • 来自相关话题

EVS是一款功能强大的三维地质建模软件,能够快速准确地建立用户期望的三维地质模型并对模型进行多方位的展示和应用。随着三维地质模型应用需求的发展,如何将地质模型应用于岩土工程实际设计,成为很多岩土从业者关注、探索的方向。基于此,本文重点介绍如何将EVS生成的地质模型导入GEO5岩土设计软件进行设计分析。整个应用流程首先基于EVS建立目标模型,然后利用GEO5 2020版新增【多段线】功能读取EVS模型中的层面数据并重构三维地质模型,最终利用GEO5三维地质建模和其他模块的调用和数据共享能力进行岩土设计分析。下面我们就做一个详细地图文介绍:1 EVS地质建模基于地形和勘察数据在EVS中快速生成三维地质模型。图1 EVS生成地质模型2 GEO5重构地质模型GEO5 2020版三维地质建模模块新增【多段线】功能,能够通过dxf、txt等格式文件读取其他专业建模软件生成的地层面(图2)。我们利用此项功能将EVS模型中的地层面分层导出,再读入GEO5中即可快速准确重构三维地质模型(图3)。图2 GEO5软件读取dxf格式的地层面数据图3 GEO5软件根据导入的EVS地层面重新生成地质模型3 GEO5地质模型应用于岩土设计GEO5生成地质模型后,在目标位置截取二维剖面(图4、图5),生成地质剖面围栅图。生成的二维剖面具有真实的几何信息、岩土材料参数信息。图4 在三维模型上切割生成的二维剖面图5 地质剖面围栅图 将生成的剖面1-1’复制粘贴到地基固结沉降模型进行分析(图6)。GEO5各个模块之间能够实现几何信息、岩土参数信息的快速对接。本文中用地基固结沉降分析模块为例进行说明,如果需要进行其他分析,如边坡稳定性、基坑等,只需把生成的二维剖面复制粘贴到相应的分析模块中即可,相关操作均相同。 图6 复制二维剖面至对应的分析模块4 岩土设计成果展示4.1 地基固结沉降分析在工况1阶段,分析初始地应力;工况2阶段,在地层表面添加超载,计算沉降情况。其结果如图7、图8所示。图7 工况1分析结果图8工况2分析结果4.2 生成计算书图9 打印计算书5 总结本篇技术贴介绍了EVS软件生成的三维地质模型快速对接GEO5三维建模和岩土设计的过程。三维地质模型,并不仅仅局限于三维可视化的展示功能,也可以用于岩土设计。本文为各位工程师提供一个思路,希望能起到抛砖引玉的效果。 查看全部
<p>EVS是一款功能强大的三维地质建模软件,能够快速准确地建立用户期望的三维地质模型并对模型进行多方位的展示和应用。随着三维地质模型应用需求的发展,如何将地质模型应用于岩土工程实际设计,成为很多岩土从业者关注、探索的方向。基于此,本文重点介绍如何将EVS生成的地质模型导入GEO5岩土设计软件进行设计分析。</p><p>整个应用流程首先基于EVS建立目标模型,然后利用GEO5 2020版新增【多段线】功能读取EVS模型中的层面数据并重构三维地质模型,最终利用GEO5三维地质建模和其他模块的调用和数据共享能力进行岩土设计分析。下面我们就做一个详细地图文介绍:</p><p><strong>1 EVS</strong><strong>地质建模</strong></p><p>基于地形和勘察数据在EVS中快速生成三维地质模型。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298319310396.png" alt="image.png"/></p><p style="text-align: center;"><strong>图1 EVS生成地质模型</strong></p><p><strong>2 GEO5</strong><strong>重构地质模型</strong></p><p>GEO5 2020版三维地质建模模块新增【多段线】功能,能够通过dxf、txt等格式文件读取其他专业建模软件生成的地层面(图2)。我们利用此项功能将EVS模型中的地层面分层导出,再读入GEO5中即可快速准确重构三维地质模型(图3)。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298337236636.png" alt="image.png"/></p><p style="text-align: center;"><strong>图2 GEO5软件读取dxf格式的地层面数据</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298348812743.png" alt="image.png"/></p><p style="text-align: center;"><strong>图3 GEO5软件根据导入的EVS地层面重新生成地质模型</strong></p><p><strong>3 GEO5</strong><strong>地质模型应用于岩土设计</strong></p><p>GEO5生成地质模型后,在目标位置截取二维剖面(图4、图5),生成地质剖面围栅图。生成的二维剖面具有真实的几何信息、岩土材料参数信息。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298362376616.png" alt="image.png"/></p><p style="text-align: center;"><strong>图4 在三维模型上切割生成的二维剖面</strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298368530815.png" alt="image.png"/></p><p style="text-align: center;"><strong>图5 地质剖面围栅图</strong></p><p>&nbsp;</p><p>将生成的剖面1-1’复制粘贴到地基固结沉降模型进行分析(图6)。GEO5各个模块之间能够实现几何信息、岩土参数信息的快速对接。本文中用地基固结沉降分析模块为例进行说明,如果需要进行其他分析,如边坡稳定性、基坑等,只需把生成的二维剖面复制粘贴到相应的分析模块中即可,相关操作均相同。</p><p style="text-align: right;"><strong>&nbsp;</strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298378399136.png" alt="image.png" style="text-align: center;"/></p><p style="text-align: center;"><strong>图6 复制二维剖面至对应的分析模块</strong></p><p><strong>4 </strong><strong>岩土设计成果展示</strong></p><p><strong>4.1 </strong><strong>地基固结沉降分析</strong></p><p>在工况1阶段,分析初始地应力;工况2阶段,在地层表面添加超载,计算沉降情况。其结果如图7、图8所示。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298384693803.png" alt="image.png"/></p><p style="text-align: center;"><strong>图7 工况1分析结果</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298391986847.png" alt="image.png"/></p><p style="text-align: center;"><strong>图8工况2分析结果</strong></p><p><strong>4.2 </strong><strong>生成计算书</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581298397350841.png" alt="image.png"/></p><p style="text-align: center;"><strong>图9 打印计算书</strong></p><p><strong>5 </strong><strong>总结</strong></p><p>本篇技术贴介绍了EVS软件生成的三维地质模型快速对接GEO5三维建模和岩土设计的过程。三维地质模型,并不仅仅局限于三维可视化的展示功能,也可以用于岩土设计。本文为各位工程师提供一个思路,希望能起到抛砖引玉的效果。</p><p><br/></p>

抗滑桩模块,桩身嵌岩,由等效内摩擦角换算地基横向承载力特征值

岩土工程库仑刘工 发表了文章 • 0 个评论 • 193 次浏览 • 2019-12-26 10:15 • 来自相关话题

在抗滑桩模块,当选择桩身嵌岩时,需输入岩石的天然单轴极限抗压强度标准值,来计算岩石地基横向容许承载力。计算公式如下:具体参数说明可以查看:桩身嵌岩水平方向换算系数K及折减系数v说明假若,没有岩石天然单轴极限抗压强度参数,也可以根据建筑边坡工程技术规范GB50330-2013中板桩式挡土墙章节的换算公式,利用等效内摩擦角进行换算。规范内容摘录如下:嵌入土层或风化层土、砂砾状岩层时,滑动面以下或桩嵌入稳定岩土层内深度为h2/3和h2(滑动面以下或嵌入稳定岩土层内桩长)处的横向压应力不应大于地基横向承载力特征值。悬臂抗滑桩(图13.2.8)地基横向承载力特征值可按下列公式计算:1)当设桩处沿滑动方向地面坡度小于8°时地基y点的横向承载力特征值可按下式计算:图13.2.8悬臂抗滑桩土质地基横向承载力特征值计算简图1一桩顶地面;2一滑面;3一抗滑桩;4一滑动方向;5一被动土压力分布图;6一主动土压力分布图2)当设桩处沿滑动方向地面坡度i≥8°且i≤φ0时,地基y点的横向承载力特征值可按下式计算:软件里面需要输入岩石单轴抗压极限强度,需要把横向承载力特征值换算成标准值。frk = fH/kv 查看全部
<ol class=" list-paddingleft-2" style="list-style-type: decimal;"><li><p>在抗滑桩模块,当选择桩身嵌岩时,需输入岩石的天然单轴极限抗压强度标准值,来计算岩石地基横向容许承载力。计算公式如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1577326431133246.png" alt="image.png" width="124" height="37" style="width: 124px; height: 37px;"/></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1577326563494841.png" alt="image.png" width="449" height="122" style="width: 449px; height: 122px;"/></p><p>具体参数说明可以查看:<a href="http://www.wen.kulunsoft.com/question/1086" target="_self">桩身嵌岩水平方向换算系数K及折减系数v说明</a></p></li><li><p>假若,没有岩石天然单轴极限抗压强度参数,也可以根据建筑边坡工程技术规范GB50330-2013中板桩式挡土墙章节的换算公式,利用等效内摩擦角进行换算。规范内容摘录如下:</p></li></ol><p>嵌入土层或风化层土、砂砾状岩层时,滑动面以下或桩嵌入稳定岩土层内深度为h2/3和h2(滑动面以下或嵌入稳定岩土层内桩长)处的横向压应力不应大于地基横向承载力特征值。<span style="color: #FF0000;">悬臂抗滑桩</span>(图13.2.8)地基横向承载力特征值可按下列公式计算:</p><p>1)当设桩处沿滑动方向地面坡度小于8°时地基y点的横向承载力特征值可按下式计算:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1577325990917368.png" alt="image.png" width="414" height="83" style="width: 414px; height: 83px;"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1577326160411430.png" alt="image.png" width="330" height="92" style="width: 330px; height: 92px;"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1577326024193043.png" alt="image.png"/></p><p style="text-align: center;">图13.2.8悬臂抗滑桩土质地基横向承载力特征值计算简图</p><p>1一桩顶地面;2一滑面;3一抗滑桩;4一滑动方向;5一被动土压力分布图;6一主动土压力分布图</p><p>2)当设桩处沿滑动方向地面坡度i≥8°<span style="color: #FF0000;">且</span>i≤φ<sub>0</sub>时,地基y点的横向承载力特征值可按下式计算:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1577326307264616.png" alt="image.png" width="437" height="124" style="width: 437px; height: 124px;"/></p><p>软件里面需要输入岩石单轴抗压极限强度,需要把横向承载力特征值换算成标准值。</p><p style="text-align: center;">f<sub>rk</sub> = f<sub>H</sub>/kv</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1577326764872569.png" alt="image.png"/></p>

GEO5分析设置的功能介绍

库仑产品库仑沈工 发表了文章 • 0 个评论 • 164 次浏览 • 2019-10-12 16:13 • 来自相关话题

在使用GEO5进行设计时,首先应该查看「分析设置」中默认设置是否满足项目要求,点击「分析设置」→,查看详细内容,包括所选规范及各种系数值等,如果满足,可直接进入设计,如果不满足要求,用户可以选择其他的分析设置或者修改当前分析设置。1.分析设置管理器在「分析设置管理器」中,可以看到软件自带的全部设计规范,这里规范种类繁多,用户可以通过勾选【可见】设置,使设计过程中可能涉及到的规范,显示在「选择分析设置」界面内,不勾选【可见】规范将不会在「选择分析设置」界面显示。用户还可以将经常用到的规范设置成【默认】。打开软件就会默认选此规范。1.1导入分析设置软件支持自定义分析设置,自定义的分析设置同时还支持“导入”和“导出”,用于不同用户之间共享分析设置。点击,选择后缀为.gxc导入文本即可。1.2导出分析设置点击,选择需要导出的自定义的分析设置,点击导出即可。1.3自定义分析设置如果软件自带分析设置不满足要求,用户可进行自定义分析设置。对于经常使用到的分析设置可在此处设置,设置完成后,下次可以直接调用,自定义的方法有两种:方法1:在「分析设置管理器」中,选择已有的某一相近的规范,然后点击,首先修改名称,再按需设置,最后点击,自定义的分析设置就完成了。方法2:在分析设置截面,点击「选择分析设置」,选择已有的某一相近的规范,然后点击「编辑当前分析设置,按需设置,再点击「添加到规范管理器」,输入名称,最后点击。如果只是偶尔用到的分析设置,可以不添加到规范管理器里。2.选择分析设置点击「分析设置」→点击「选择分析设置」,选择合适的规范。3.编辑当前分析设置点击「分析设置」→点击「编辑当前分析设置」,可以查看所选设置的具体内容,也可对内容进行修改,如需保存修改后的分析设置,参考1.3节方法2。 查看全部
<p>在使用GEO5进行设计时,首先应该查看「分析设置」中默认设置是否满足项目要求,点击「分析设置」→<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1570867926992799.png" alt="image.png"/>,查看详细内容,包括所选规范及各种系数值等,如果满足,可直接进入设计,如果不满足要求,用户可以选择其他的分析设置或者修改当前分析设置。</p><h2><strong>1.分析设置管理器</strong></h2><p>在「分析设置管理器」中,可以看到软件自带的全部设计规范,这里规范种类繁多,用户可以通过勾选【可见】设置,使设计过程中可能涉及到的规范,显示在「选择分析设置」界面内,不勾选【可见】规范将不会在「选择分析设置」界面显示。用户还可以将经常用到的规范设置成【默认】。打开软件就会默认选此规范。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1570867980124110.png" alt="image.png"/></p><p><strong>1.1导入分析设置</strong><br/></p><p>软件支持自定义分析设置,自定义的分析设置同时还支持“导入”和“导出”,用于不同用户之间共享分析设置。</p><p>点击<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1570867989461978.png" alt="image.png"/>,选择后缀为.gxc导入文本即可。</p><h3><strong>1.2导出分析设置</strong></h3><p>点击<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1570867995723626.png" alt="image.png"/>,选择需要导出的自定义的分析设置,点击导出即可。</p><h3><strong>1.3自定义分析设置</strong></h3><p>如果软件自带分析设置不满足要求,用户可进行自定义分析设置。对于经常使用到的分析设置可在此处设置,设置完成后,下次可以直接调用,自定义的方法有两种:</p><p>方法1:在「分析设置管理器」中,选择已有的某一相近的规范,然后点击<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1570868001719991.png" alt="image.png"/>,首先修改名称,再按需设置,最后点击<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1570868005864648.png" alt="image.png"/>,自定义的分析设置就完成了。</p><p>方法2:在分析设置截面,点击「选择分析设置」,选择已有的某一相近的规范,然后点击「编辑当前分析设置,按需设置,再点击「添加到规范管理器」,输入名称,最后点击<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1570868010346840.png" alt="image.png"/>。</p><p>如果只是偶尔用到的分析设置,可以不添加到规范管理器里。</p><h2><strong>2.选择分析设置</strong></h2><p>点击「分析设置」→点击「选择分析设置」,选择合适的规范。</p><h2><strong>3.编辑当前分析设置</strong></h2><p>点击「分析设置」→点击「编辑当前分析设置」,可以查看所选设置的具体内容,也可对内容进行修改,如需保存修改后的分析设置,参考1.3节方法2。</p><p><br/></p>

地铁基坑降水案例

库仑产品库仑刘工 发表了文章 • 0 个评论 • 431 次浏览 • 2019-08-20 09:18 • 来自相关话题

概述基坑采用帷幕内降水方案,非完整井,帷幕围到隔水层。主要模拟:(1)当前降水模式下基坑的渗流情况和坑内外水位的变化情况。(2)如果减少降水井的深度至帷幕深度以内,也就是降水井井深没有帷幕深度深的情况下的渗流情况和坑内外水位的变化情况。(3)在满足基坑内最高水位在坑底以下1m情况下,降水井的最小降深。降水井能否分析思路通过对降水井设置点渗流边界条件,来分析基坑底部水位情况。利用车站主体围护结构2-2横剖面图的地层,建立模型,进行渗流分析。按降水井剖面图设置止水帷幕、抽水井等模型。基坑底一下水位线至少应降至标高377m以下,即离地面29m。案例源文件:地铁基坑降水2-2剖面源文件-(终稿).zip2. 参数说明止水帷幕按28m长设置,基坑宽度按27.2m设置,降水井深按45m设置。3. 分析结果本次分析分四个工况进行分析,反向推算最小降深。工况1井点处将水头降至离地面45m处;工况2井点处将水头降至离地面40m处;工况3井点处将水头降至离地面35m处;工况4井点处将水头降至离地面30m处。由于最小降深需满足离地面29m,故不再对30m之上降深进行分析。 工况1分析结果图(45m)工况2分析结果图(40m)工况3分析结果图(35m)工况4分析结果图(30m)4工况结果汇总表井点处水位离地面高度(m)井点涌水量(m3/天/m)工况14532.3工况24030工况33526.7工况43022.54. 结论:1.基坑渗流情况见矢量图,最终水位如上。详细信息见计算书。2.降水井内的水位深度可以降,降水井的深度,根据抽水量等信息进行调整。降水井的水位深度可以降至离地面30m,即高程376m的位置;此时单个井点,每延米,一天的抽水量至少为22.5m3.相关案例:降水分析——某国外项目相关视频:基坑降水和降水沉降相关帖子:GEO5有限元模拟基坑降水的几点疑惑工程降水常用方法对比及常见问题应急措施 查看全部
<p>概述</p><p>基坑采用帷幕内降水方案,非完整井,帷幕围到隔水层。主要模拟:</p><p>(1)当前降水模式下基坑的渗流情况和坑内外水位的变化情况。</p><p>(2)如果减少降水井的深度至帷幕深度以内,也就是降水井井深没有帷幕深度深的情况下的渗流情况和坑内外水位的变化情况。</p><p>(3)在满足基坑内最高水位在坑底以下1m情况下,降水井的最小降深。降水井能否</p><ol class=" list-paddingleft-2" style="list-style-type: decimal;"><li><p>分析思路<br/></p></li></ol><p>通过对降水井设置点渗流边界条件,来分析基坑底部水位情况。利用车站主体围护结构2-2横剖面图的地层,建立模型,进行渗流分析。按降水井剖面图设置止水帷幕、抽水井等模型。基坑底一下水位线至少应降至标高377m以下,即离地面29m。</p><p>案例源文件:<img src="http://www.wen.kulunsoft.com/s ... ot%3B style="vertical-align: middle; margin-right: 2px;"/><a href="http://www.wen.kulunsoft.com/u ... ot%3B title="地铁基坑降水2-2剖面源文件-(终稿).zip" style="font-size: 12px; color: rgb(0, 102, 204);">地铁基坑降水2-2剖面源文件-(终稿).zip</a></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566263675891135.png" alt="image.png"/></p><p>2. 参数说明</p><p>止水帷幕按28m长设置,基坑宽度按27.2m设置,降水井深按45m设置。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566263681591001.png" alt="image.png"/></p><p>3. 分析结果</p><p>本次分析分四个工况进行分析,反向推算最小降深。工况1井点处将水头降至离地面45m处;工况2井点处将水头降至离地面40m处;工况3井点处将水头降至离地面35m处;工况4井点处将水头降至离地面30m处。由于最小降深需满足离地面29m,故不再对30m之上降深进行分析。</p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566263689257789.png" alt="image.png"/></p><p>工况1分析结果图(45m)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566263694837261.png" alt="image.png"/></p><p>工况2分析结果图(40m)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566263700974117.png" alt="image.png"/></p><p>工况3分析结果图(35m)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566263705743181.png" alt="image.png"/></p><p>工况4分析结果图(30m)</p><p style="text-align: center;">4工况结果汇总表</p><table><tbody><tr class="firstRow"><td><br/></td><td><p style="text-align: center;">井点处水位离地面高度(m)</p></td><td><p style="text-align: center;">井点涌水量(m3/天/m)</p></td></tr><tr><td><p style="text-align: center;">工况1</p></td><td><p style="text-align: center;">45</p></td><td><p style="text-align: center;">32.3</p></td></tr><tr><td><p style="text-align: center;">工况2</p></td><td><p style="text-align: center;">40</p></td><td><p style="text-align: center;">30</p></td></tr><tr><td><p style="text-align: center;">工况3</p></td><td><p style="text-align: center;">35</p></td><td><p style="text-align: center;">26.7</p></td></tr><tr><td><p style="text-align: center;">工况4</p></td><td><p style="text-align: center;">30</p></td><td><p style="text-align: center;">22.5</p></td></tr></tbody></table><p style="text-align: left;">4. 结论:</p><p>1.基坑渗流情况见矢量图,最终水位如上。详细信息见计算书。</p><p>2.降水井内的水位深度可以降,降水井的深度,根据抽水量等信息进行调整。降水井的水位深度可以降至离地面30m,即高程376m的位置;此时单个井点,每延米,一天的抽水量至少为22.5m3.</p><p>相关案例:<a href="http://www.wen.kulunsoft.com/article/223" target="_self">降水分析——某国外项目</a></p><p>相关视频:<a href="http://www.wen.kulunsoft.com/dochelp/90" target="_self">基坑降水和降水沉降</a></p><p>相关帖子:</p><p><a href="http://www.wen.kulunsoft.com/question/1124" target="_self">GEO5有限元模拟基坑降水的几点疑惑</a></p><p><a href="http://www.wen.kulunsoft.com/article/69" target="_self">工程降水常用方法对比及常见问题应急措施</a></p>

筏基有限元计算预应力锚索格构梁

库仑产品库仑刘工 发表了文章 • 0 个评论 • 531 次浏览 • 2019-08-19 18:01 • 来自相关话题

概述格构的主要作用是将边坡坡体的剩余下滑力或土压力、岩石压力分配给格构结点处的锚杆或锚索,然后通过锚索传递给稳定地层,从而使边坡坡体在由锚杆或锚索提供的锚固力的作用下处于稳定状态。因此就格构本身来讲仅仅是一种传力结构,而加固的抗滑力主要由格构结点处的锚杆或锚索提供。边坡整体稳定性分析中,主要计算锚杆(索)锚固力。格构梁的计算主要是验算梁身弯、剪是否满足要求。设计好锚杆之后,可以分两阶段进行验算格构梁。锚拉阶段和工作阶段。锚拉阶段:读取锚杆的锚固力,在筏基有限元模块将锚杆锚固力沿垂直格构梁的分力计算出来,等效成点荷载进行计算。工作阶段:将纵梁、横梁交接处设为铰支座,将主动土压力或不平衡推力法传递下来的推力当作外荷载作用在格构梁上。20190823锚杆格构梁PPT和源文件.zip视频讲解地址:筏基有限元计算预应力锚索格构梁2. 主要参数信息格构梁截面0.3 X 0.3m,选用C30混凝土,锚杆锚固力为100kN,间距和排距都为3m,方向垂直边坡,这里对应-100kN的点荷载。3. 分析步骤3.1. 导入建模所需的点导入dxf格式的点文件在CAD软件中画出锚杆的平面位置,并导入到GEO5筏基有限元模块3.2. 添加点使用图形交互系统添加点,也可以使用坐标交互添加图 1图形交互法添加点3.3. 添加线将生成的点连接,生成线,为之后生成格构做准备。图 2图形交互生成线3.4. 生成板板的设置方法是,拾取闭合图形,进行指定。图 3生成板单元板单元材料类型有混凝土、钢材和其他。3.5. 生成网格模型建好之后,使用网格生成工具,对网格进行生成,也可以进行点、线加密。图 4生成网格3.6. 定义地基图 5定义地基将之前定义的板,指定为地基,并通过输入土层变形模量,泊松比和变形计算深度来反算地基参数。3.7. 定义荷载工况图 6定义荷载工况3.8. 添加荷载图 7荷载添加在梁各个交点处施加100kN的力。注意,方向向下的力为负。3.9. 添加荷载组合图 8生成荷载组合有承载能力荷载组合和正常使用荷载组合两种。3.10. 分析图 9分析结果可以查看弯矩、剪力、沉降等结果。3.11. 配筋图 10选择钢筋选则钢筋型号,计算配筋面积。3.12. 再次分析图 11分析结果图3.13. 查看配筋面积选取一直线,查看配筋信息图 12配筋面积查看实际设计中,锚杆格构梁也可以拆分成横梁和纵梁进行分别计算。分别简化成简支梁和连续梁,用弹性地基梁进行计算。可以查看:预应力锚索格构梁内力计算方法 查看全部
<ol class=" list-paddingleft-2" style="list-style-type: decimal;"><li><p>概述</p></li></ol><p>格构的主要作用是将边坡坡体的剩余下滑力或土压力、岩石压力分配给格构结点处的锚杆或锚索,然后通过锚索传递给稳定地层,从而使边坡坡体在由锚杆或锚索提供的锚固力的作用下处于稳定状态。因此就格构本身来讲仅仅是一种传力结构,而加固的抗滑力主要由格构结点处的锚杆或锚索提供。</p><p>边坡整体稳定性分析中,主要计算锚杆(索)锚固力。格构梁的计算主要是验算梁身弯、剪是否满足要求。设计好锚杆之后,可以分两阶段进行验算格构梁。锚拉阶段和工作阶段。</p><p>锚拉阶段:</p><p>读取锚杆的锚固力,在筏基有限元模块将锚杆锚固力沿垂直格构梁的分力计算出来,等效成点荷载进行计算。</p><p>工作阶段:</p><p>将纵梁、横梁交接处设为铰支座,将主动土压力或不平衡推力法传递下来的推力当作外荷载作用在格构梁上。</p><p style="line-height: 16px;"><img style="vertical-align: middle; margin-right: 2px;" src="http://www.wen.kulunsoft.com/s ... t%3Ba style="font-size:12px; color:#0066cc;" href="http://www.wen.kulunsoft.com/u ... ot%3B title="20190823锚杆格构梁PPT和源文件.zip">20190823锚杆格构梁PPT和源文件.zip</a></p><p style="line-height: 16px;">视频讲解地址:<a href="https://ke.qq.com/webcourse/in ... ot%3B target="_self">筏基有限元计算预应力锚索格构梁</a></p><p>2. 主要参数信息</p><p>格构梁截面0.3 X 0.3m,选用C30混凝土,</p><p>锚杆锚固力为100kN,间距和排距都为3m,方向垂直边坡,这里对应-100kN的点荷载。</p><p>3. 分析步骤</p><p>3.1. 导入建模所需的点</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566870974805077.png" alt="image.png"/></p><p style="text-align: center;">导入dxf格式的点文件</p><p style="text-align: center;">在CAD软件中画出锚杆的平面位置,并导入到GEO5筏基有限元模块</p><p>3.2. 添加点</p><p>使用图形交互系统添加点,也可以使用坐标交互添加</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566871020927367.png" alt="image.png"/></p><p style="text-align: center;">图 1图形交互法添加点</p><p>3.3. 添加线</p><p>将生成的点连接,生成线,为之后生成格构做准备。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566871074299234.png" alt="image.png"/></p><p style="text-align: center;">图 2图形交互生成线</p><p>3.4. 生成板</p><p>板的设置方法是,拾取闭合图形,进行指定。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566871097395252.png" alt="image.png"/></p><p style="text-align: center;">图 3生成板单元</p><p>板单元材料类型有混凝土、钢材和其他。</p><p>3.5. 生成网格</p><p>模型建好之后,使用网格生成工具,对网格进行生成,也可以进行点、线加密。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566871112417952.png" alt="image.png"/></p><p style="text-align: center;">图 4生成网格</p><p>3.6. 定义地基</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566871136739114.png" alt="image.png"/></p><p style="text-align: center;">图 5定义地基</p><p>将之前定义的板,指定为地基,并通过输入土层变形模量,泊松比和变形计算深度来反算地基参数。</p><p>3.7. 定义荷载工况</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566208586854472.png" alt="image.png"/></p><p style="text-align: center;">图 6定义荷载工况</p><p>3.8. 添加荷载</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566871175859031.png" alt="image.png"/></p><p style="text-align: center;">图 7荷载添加</p><p>在梁各个交点处施加100kN的力。注意,方向向下的力为负。</p><p>3.9. 添加荷载组合</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566208599181867.png" alt="image.png"/></p><p style="text-align: center;">图 8生成荷载组合</p><p>有承载能力荷载组合和正常使用荷载组合两种。</p><p>3.10. 分析</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566871251100227.png" alt="image.png"/></p><p style="text-align: center;">图 9分析结果</p><p>可以查看弯矩、剪力、沉降等结果。</p><p>3.11. 配筋</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566871270260841.png" alt="image.png"/></p><p style="text-align: center;">图 10选择钢筋</p><p>选则钢筋型号,计算配筋面积。</p><p>3.12. 再次分析</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566871301575734.png" alt="image.png"/></p><p style="text-align: center;">图 11分析结果图</p><p>3.13. 查看配筋面积</p><p>选取一直线,查看配筋信息</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1566871316446720.png" alt="image.png"/></p><p style="text-align: center;">图 12配筋面积查看</p><p>实际设计中,锚杆格构梁也可以拆分成横梁和纵梁进行分别计算。分别简化成简支梁和连续梁,用弹性地基梁进行计算。可以查看:<a href="http://www.wen.kulunsoft.com/article/154" target="_self">预应力锚索格构梁内力计算方法</a></p><p><br/></p>

GEO5三维地质建模导入勘察数据模板

库仑产品库仑刘工 发表了文章 • 0 个评论 • 538 次浏览 • 2019-06-05 11:37 • 来自相关话题

GEO5地质建模模块,勘察数据模板,可以点击下载GEO5三维地质建模勘察数据表.zip包含各个试验数据的模板,和一个汇总的模板,以汇总模板为例,说明导入数据的流程。可以导入单个钻孔数据,也有把Excel钻孔数据拆分,然后一次导入多个钻孔数据。操作过程如下:一、单个钻孔导入二、一次导入多组试验数据操作与前面相同,只不过导入Excel或txt数据时,一次勾选多组Excel文件。操作如下:然后为每个表格执行导入操作,完成后会出现如下界面,确定即可。至此,数据就一次导入进来了 查看全部
<p>GEO5地质建模模块,勘察数据模板,可以点击下载<img src="http://www.wen.kulunsoft.com/s ... ot%3B style="vertical-align: middle; margin-right: 2px;"/><a href="http://www.wen.kulunsoft.com/u ... ot%3B title="GEO5三维地质建模勘察数据表.zip" style="font-size: 12px; color: rgb(0, 102, 204);">GEO5三维地质建模勘察数据表.zip</a></p><p>包含各个试验数据的模板,和一个汇总的模板,以汇总模板为例,说明导入数据的流程。可以导入单个钻孔数据,也有把Excel钻孔数据拆分,然后一次导入多个钻孔数据。操作过程如下:</p><p>一、单个钻孔导入</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1559705189596989.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1559705330614908.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1559705407380210.png" alt="image.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1559705460517788.png" alt="image.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1559705521535525.png" alt="image.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1559705643275486.png" alt="image.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1559705690798198.png" alt="image.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1559705708193300.png" alt="image.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1559705790718338.png" alt="image.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1559705809468540.png" alt="image.png"/></p><p>二、一次导入多组试验数据</p><p>操作与前面相同,只不过导入Excel或txt数据时,一次勾选多组Excel文件。操作如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584592051859780.png" alt="image.png"/></p><p>然后为每个表格执行导入操作,完成后会出现如下界面,确定即可。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584592198635250.png" alt="image.png"/></p><p>至此,数据就一次导入进来了<br/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1584592307302759.png" alt="image.png"/></p>

修改计算书字体:解决计算书排版和英文计算书不显示中文字符的问题

库仑产品库仑刘工 发表了文章 • 0 个评论 • 425 次浏览 • 2019-04-15 18:12 • 来自相关话题

当打开并编辑计算书时,Word版的计算书有时会出现排版问题,输出英文计算书时会中文字符显式会出问题。原因是文字的格式不合适,在页面设置里选择合适的设置会解决此类问题。当使用软件默认字体Arial时,单位可能出现下列问题:解决方法:一、在页面设置选项,字体选项里选择宋体,再打印并编辑就可以了。二、保存宋体为默认字体,在默认选项里。这样再次打印并编辑,默认字体就是宋体了。三、英文计算书中文字符显式出错,可以在字体选项选宋体或微软雅黑等。 查看全部
<p>当打开并编辑计算书时,Word版的计算书有时会出现排版问题,输出英文计算书时会中文字符显式会出问题。<br/></p><p>原因是文字的格式不合适,在页面设置里选择合适的设置会解决此类问题。</p><p>当使用软件默认字体Arial时,单位可能出现下列问题:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1555322451570921.png" alt="image.png"/></p><p>解决方法:</p><p>一、在页面设置选项,字体选项里选择宋体,再打印并编辑就可以了。<br/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1555322914356665.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1555322667230361.png" alt="image.png"/></p><p>二、保存宋体为默认字体,在默认选项里。这样再次打印并编辑,默认字体就是宋体了。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1555322992110916.png" alt="image.png"/></p><p>三、英文计算书中文字符显式出错,可以在字体选项选宋体或微软雅黑等。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1555323133997698.png" alt="image.png"/></p>

边坡稳定性分析模块自带例题电算与手算的对比

库仑产品库仑刘工 发表了文章 • 0 个评论 • 1012 次浏览 • 2019-03-29 14:48 • 来自相关话题

模块:  土质边坡稳定性分析文件:  Demo_vm_en_03.gst本手册中,对边坡的稳定性验算进行手算,并将手算结果与GEO5计算结果作对比。工程概况:如图1所示,边坡高度 H=10.0 m ,坡比1:1.5。坡顶超载f=20 kN / m2 。边坡岩土体为砂质粘土,其参数(有效值)已在表1中给出。计算分两种工况,工况1计算土质边坡稳定性,工况2计算锚固边坡稳定性。计算方法采用瑞典条分法。图1 边坡尺寸表1 岩土参数-有效值 1.  瑞典条分法验算边坡稳定性滑面是指定的,圆心O(13.5279,18.9443),半径R=15m,点Zsp和点Ksp代表滑面的开始和终止点。滑面被竖直分成20个宽度bi=1.0m的小滑块。图2 竖直滑块图3 小滑块静力学分析       计算各个滑块的重量,以13号小滑块为例来计算土块自重,各个滑块的计算结果放在表2中。定义水位线以上的的区域为A,水位线以下区域为B        每块土体的自重:13号土块的自重:           表2 土块自重和施加的荷载       确定每个滑块滑面的倾角和孔压。为简化计算,圆弧滑面被直滑面代替,滑面的倾角由滑面和水平面的夹角决定。为了计算孔压,必须确定地下水位的高度,地下水位线hi被看作土块的分界线。水的容重γw =10.00 kN / m3, 为了计算孔隙水压力的水平力,必须确定滑块左侧和右侧的地下水位高度。以13号土块为例进行计算,其他土块结果放入表3。滑面倾角:滑面长:地下水位线倾角:地下水位线高度:地下水位换算高度【参考:土工原理与计算,钱家欢】:计算孔隙应力:计算土条两侧渗透水压力:左侧:右侧:表3 滑面和孔压的倾角和长度 表4 孔压的水平渗透应力       滑动力矩计算。每个土条的重力包括超载作用在从土条中轴到O的水平力矩臂上。从初始滑移面开始计算力矩( Z sp  = [x, z]= [8.00; 5.00])。还是以13号土条为例进行计算,其他的结果放在表5。计算力矩臂:计算滑动力矩:表5 滑动力矩一览表 总力矩:GEO5土质边坡模块的计算结果:下滑力:GEO5土质边坡模块的计算结果:Fa = 696 .53 kN / m 抗滑力矩的计算。每个土条的法向力N i垂直于滑面。以13号土条为例计算,其他的结果放在表6中。计算安全系数FS:计算法向力: 计算抗滑力矩:表6 法向力和抗滑力矩抗滑力矩:GEO5计算结果:M p  = 14936 .16 kNm / m抗滑力:GEO5计算结果:Fp  = 995.74 kN / m安全系数计算:GEO5计算结果:FS = 1.43 查看全部
<p>模块:&nbsp; 土质边坡稳定性分析<br/></p><p>文件:&nbsp; Demo_vm_en_03.gst</p><p>本手册中,对边坡的稳定性验算进行手算,并将手算结果与GEO5计算结果作对比。</p><p>工程概况:</p><p>如图1所示,边坡高度 H=10.0 m ,坡比1:1.5。坡顶超载f=20 kN / m<sup>2</sup> 。边坡岩土体为砂质粘土,其参数(有效值)已在表1中给出。计算分两种工况,工况1计算土质边坡稳定性,工况2计算锚固边坡稳定性。计算方法采用瑞典条分法。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841131795892.png" alt="image.png"/></p><p style="text-align: center;">图1 边坡尺寸</p><p style="text-align: center;">表1 岩土参数-有效值</p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841185332948.png" alt="image.png"/></p><p>1.&nbsp; 瑞典条分法验算边坡稳定性</p><p>滑面是指定的,圆心O(13.5279,18.9443),半径R=15m,点Zsp和点Ksp</p><p>代表滑面的开始和终止点。滑面被竖直分成20个宽度<em>b<sub>i</sub></em>=1.0m的小滑块。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841220138804.png" alt="image.png"/></p><p style="text-align: center;">图2 竖直滑块</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841238686004.png" alt="image.png"/></p><p style="text-align: center;">图3 小滑块静力学分析</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 计算各个滑块的重量,以13号小滑块为例来计算土块自重,各个滑块的计算结果放在表2中。</p><p>定义水位线以上的的区域为A,水位线以下区域为B</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841309132724.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 每块土体的自重:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841330377937.png" alt="image.png"/></p><p>13号土块的自重:</p><p style="text-align: center;"><em>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</em><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841344403804.png" alt="image.png"/></p><p style="text-align: center;">表2 土块自重和施加的荷载</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841389266880.png" alt="image.png"/></p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 确定每个滑块滑面的倾角和孔压。为简化计算,圆弧滑面被直滑面代替,滑面的倾角由滑面和水平面的夹角决定。为了计算孔压,必须确定地下水位的高度,地下水位线<em>h<sub>i</sub></em>被看作土块的分界线。水的容重<em>γ</em><em><sub>w </sub></em>=10.00 <em>kN </em>/ <em>m</em><sup>3</sup>, 为了计算孔隙水压力的水平力,必须确定滑块左侧和右侧的地下水位高度。以13号土块为例进行计算,其他土块结果放入表3。</p><p>滑面倾角:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841404180067.png" alt="image.png"/></p><p>滑面长:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841489120996.png" alt="image.png"/></p><p>地下水位线倾角:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841501669495.png" alt="image.png"/></p><p>地下水位线高度:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841511186399.png" alt="image.png"/></p><p>地下水位换算高度【参考:土工原理与计算,钱家欢】:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841521573225.png" alt="image.png"/></p><p>计算孔隙应力:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841533675405.png" alt="image.png"/></p><p>计算土条两侧渗透水压力:</p><p>左侧:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841553112480.png" alt="image.png"/></p><p>右侧:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841561468451.png" alt="image.png"/></p><p style="text-align: center;">表3 滑面和孔压的倾角和长度</p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841595703716.png" alt="image.png"/></p><p style="text-align: center;">表4 孔压的水平渗透应力</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841706760397.png" alt="image.png"/></p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 滑动力矩计算。每个土条的重力包括超载作用在从土条中轴到O的水平力矩臂上。从初始滑移面开始计算力矩( <em>Z </em><em>sp &nbsp;</em>= [<em>x</em>, <em>z</em>]= [8.00; 5.00])。还是以13号土条为例进行计算,其他的结果放在表5。</p><p>计算力矩臂:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841741558828.png" alt="image.png"/></p><p>计算滑动力矩:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841750657629.png" alt="image.png"/></p><p style="text-align: center;">表5 滑动力矩一览表</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841828754338.png" alt="image.png"/>&nbsp;</p><p>总力矩:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841859631648.png" alt="image.png"/></p><p><span style="color: #00B050;"><strong>GEO5</strong><strong>土质边坡模块的计算结果</strong></span><strong>:</strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841870384631.png" alt="image.png"/></p><p><strong>下滑力:</strong></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841892689181.png" alt="image.png"/></p><p><span style="color: #00B050;"><strong>GEO5</strong><strong>土质边坡模块的计算结果:</strong></span><strong><em>F</em><em>a</em><em>&nbsp;</em>= 696 .53 <em>kN</em><em> </em>/ <em>m</em></strong><em> </em></p><p>抗滑力矩的计算。每个土条的法向力<em>N </em><em>i</em>垂直于滑面。以13号土条为例计算,其他的结果放在表6中。</p><p>计算安全系数FS:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841925376515.png" alt="image.png"/></p><p>计算法向力:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841934961288.png" alt="image.png"/></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841943972461.png" alt="image.png"/></p><p>&nbsp;计算抗滑力矩:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841953753238.png" alt="image.png"/></p><p style="text-align: center;">表6 法向力和抗滑力矩</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553841974337896.png" alt="image.png"/></p><p>抗滑力矩:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553842010780520.png" alt="image.png"/></p><p><span style="color: #00B050;">GEO5计算结果:</span><strong><em>M </em><em>p &nbsp;</em>= 14936 .16 <em>kNm</em><em> </em>/ <em>m</em></strong></p><p>抗滑力:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553842018668277.png" alt="image.png"/></p><p><span style="color: #00B050;">GEO5计算结果:</span><strong><em>F</em><em>p</em><em>&nbsp;&nbsp;</em>= 995.74 <em>kN</em><em> </em>/ <em>m</em></strong></p><p>安全系数计算:</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1553842050552662.png" alt="image.png"/></p><p><span style="color: #00B050;">GEO5计算结果:</span><strong><em>FS</em><em> </em>= 1.43</strong></p><p><br/></p>

欧标——锚杆内部稳定性验算

库仑产品库仑赵 发表了文章 • 0 个评论 • 541 次浏览 • 2019-02-25 15:01 • 来自相关话题

       GEO5基坑设计中,有一项关于锚具“内部稳定性验算”的功能,很多用户对此验算有一定的疑问,在这里对采用的理论和出处做一个简单的介绍。       打开对应的GEO5帮助文档,可以看见:      帮助文档中已经详细介绍了具体的计算方法,在此不进行再次推导。      关于“锚杆内部稳定性验算”采用的方法为“ Kranz’s force equilibrium method”,在谷歌中搜索可以很快找到相关理论的介绍。进一步参考可以参见:      《Foundation Engineering Handbook》Hsai-Yang Fang,page 899,Fig 26.37 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5基坑设计中,有一项关于锚具“内部稳定性验算”的功能,很多用户对此验算有一定的疑问,在这里对采用的理论和出处做一个简单的介绍。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;打开对应的GEO5帮助文档,可以看见:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1551077652731580.png" alt="QLNAUPRLU)BQZE84D(W}R1X.png"/></p><p>&nbsp; &nbsp; &nbsp; 帮助文档中已经详细介绍了具体的计算方法,在此不进行再次推导。</p><p>&nbsp; &nbsp; &nbsp; 关于“锚杆内部稳定性验算”采用的方法为“&nbsp;<strong>Kranz’s force equilibrium method</strong>”,在谷歌中搜索可以很快找到相关理论的介绍。进一步参考可以参见:</p><p class="gb-volume-title" dir="ltr" style="font-size: 12px; margin: 0px; color: rgb(51, 51, 51); font-family: Arial, sans-serif; white-space: normal; background-color: rgb(255, 255, 255);">&nbsp; &nbsp; &nbsp; 《<strong>Foundation Engineering Handbook</strong>》Hsai-Yang Fang,page 899,Fig 26.37</p>

扶壁式挡墙中肋的弯矩、剪力手算与电算对比

库仑产品库仑刘工 发表了文章 • 0 个评论 • 1020 次浏览 • 2019-01-25 16:59 • 来自相关话题

扶壁式挡墙手算过程比较繁琐,这里取一简单模型对扶壁(肋)的弯矩、剪力进行手算,并与GEO5计算结果进行对比。扶壁式挡墙肋板弯矩、剪力电算.zip一、概况墙后坡面水平,填土为无粘性土,墙背光滑结构与岩土间摩擦角为0.岩土材料参数,挡墙尺寸如图所示。二、根据《公路路基设计手册》中的计算公式进行手算。模型中无超载作用,h0=0;墙后坡面水平,cosβ=1;Ka=0.56784;剪力        QHi = 19X8.3X3.5X0.5X8.3XKaXcosβ               =1300.69kN          V=1.35X1300.69=1755.93kN弯矩        MHi=1/6 X 19 X 8.3 X 8.3 X3.5 X 8.3 X0.56784 X1              = 3598.57kN·m        M= 1.35 X 3598.57 = 4858.07 kN·m 三、GEO5电算            V电算=1755.42kN                            手算V为1755.93kN            M电算=4855.95kNm                         手算M为4858.07 kN·m 两者误差极小,可以忽略不计。四、说明为使软件计算能适用于各种工况,将Ei定义成总水平土压力(包括地震、超载等引起的水平土压力增量),软件会给出土压力,自己也可以进行验证。371.52 X 3.5 X 1.35 =1755.432     剪力计算371.52X2.77X3.5X1.35=4862.55  弯矩计算(误差来源于2.77,2.77是取两位小数,软件后台计算精度较高) 查看全部
<p>扶壁式挡墙手算过程比较繁琐,这里取一简单模型对扶壁(肋)的弯矩、剪力进行手算,并与GEO5计算结果进行对比。<img src="http://www.wen.kulunsoft.com/s ... ot%3B style="vertical-align: middle; margin-right: 2px;"/><a href="http://www.wen.kulunsoft.com/u ... ot%3B title="扶壁式挡墙肋板弯矩、剪力电算.zip" style="font-size: 12px; color: rgb(0, 102, 204);">扶壁式挡墙肋板弯矩、剪力电算.zip</a></p><p><strong>一、概况</strong></p><p>墙后坡面水平,填土为无粘性土,墙背光滑结构与岩土间摩擦角为0.岩土材料参数,挡墙尺寸如图所示。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1548402955550829.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1548402988892114.png" alt="image.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1548403045786640.png" alt="image.png"/></p><p><br/></p><p><strong>二、根据《公路路基设计手册》中的计算公式进行手算。</strong></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1548402414368614.png" alt="image.png"/><br/></p><p>模型中无超载作用,h<sub>0</sub>=0;墙后坡面水平,cosβ=1;Ka=0.56784;</p><p>剪力<br/></p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Q<sub>Hi</sub> = 19X8.3X3.5X0.5X8.3XKaXcosβ</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;=1300.69kN<br/></p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; V=1.35X1300.69=1755.93kN</p><p>弯矩</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;M<sub>Hi</sub>=1/6 X 19 X 8.3 X 8.3 X3.5 X 8.3 X0.56784 X1</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;= 3598.57kN·m</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;M=&nbsp;1.35 X 3598.57 = 4858.07&nbsp;kN·m&nbsp;</p><p><strong>三、GEO5电算</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1548405248769995.png" alt="image.png"/></p><p style="text-align: left;"><span style="color: #00B050;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;V<sub>电算</sub>=1755.42kN&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;手算V为1755.93kN</span></p><p style="text-align: left;"><span style="color: #00B050;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;M<sub>电算</sub>=4855.95kNm&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;手算M为4858.07&nbsp;kN·m&nbsp;</span></p><p>两者误差极小,可以忽略不计。</p><p><strong>四、说明</strong></p><p>为使软件计算能适用于各种工况,将Ei定义成总水平土压力(包括地震、超载等引起的水平土压力增量),软件会给出土压力,自己也可以进行验证。<br/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1548405826684566.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1548406085218489.png" alt="image.png"/></p><p>371.52 X 3.5 X 1.35 =1755.432 &nbsp;&nbsp;&nbsp;&nbsp;剪力计算</p><p>371.52X2.77X3.5X1.35=4862.55&nbsp; 弯矩计算(误差来源于2.77,2.77是取两位小数,软件后台计算精度较高)</p>

如何充分使用GEO5帮助系统

库仑产品库仑赵 发表了文章 • 0 个评论 • 596 次浏览 • 2019-01-17 14:15 • 来自相关话题

       GEO5是一款功能强大、理论完备的现代化岩土工程勘察设计软件,充分发挥其功能势必能够提升设计的效率和水平。在这里简单说明如何使用帮助系统来更好地掌握软件的功能。       首先,启动软件任意模块,点击菜单栏中“帮助”选项,在下拉菜单中我们可以看到GEO5软件帮助系统所涵盖的子选项内容,接下来将依次介绍各子选项的功能和具体的使用方法。                          菜单栏—“帮助”选项—子选项(一)帮助文档(F1键)        帮助文档涵盖了当前模块的所有功能、设置、选项和输入输出内容的介绍,同时详细地给出了当前模块所涉及的所有理论原理和相关出处。        进入帮助文档的方式除了在菜单栏“帮助”选项的下拉菜单中直接点击“帮助文档(c)...”外,更快速有效的方法是直接在软件界面中点击“F1键”。“帮助文档”窗口帮助文档窗口包括以下部分:基本工具栏。“隐藏(显示)”按钮可以隐藏(显示)左侧树形结构的帮助目录。“后退/前进”按钮可以显示前面已经阅读过的页面。“打印”按钮用于打印帮助文档,“选项”按钮用于设置Explorer窗口属性。含有“目录”(用树形结构显示帮助文档的目录)、“索引”和“搜索”选项卡的左侧工具栏。“树形结构”的帮助文档目录      – 可以通过点击目录名称前面的"+"或"-"符号来展开/关闭相应的帮助文档目录。用于显示帮助内容的主窗口 – 标题栏包含当前帮助页面的标题和“前进/后退”按钮,这两个按钮的功能与基本工具栏上的“前进/后退”按钮功能一样。       帮助中的每个章节都可能包含指向其他相关章节的超链,具有超链功能的文本在帮助中为绿色。下面具体介绍一下如何高效地使用帮助文档,以参数查询为例。       GEO5帮助文档区别于以往的帮助文档,能够迅速定位需要查询的相关内容,如在进行岩土材料定义时,我们想要查询结构与岩土间摩擦角时,只需在“添加岩土材料”界面中点击键盘“F1键”即可迅速定位至帮助文档“岩土材料”部分。      然后点击“基本参数”链接,即可跳转入“基本参数”部分。        接着点击我们需要查看的“结构和土体间摩擦角”链接,可转入相关部分。在这里我们能够了解“结构和土体间摩擦角”的相关理论和图解。并且能够了解其取值的范围和相关取值推荐,推荐取值具备完备的出处。这样用户就可以在了解其相关理论的同时查看具体的推荐取值。        除此之外,在搜索栏中输入想要查询的相关参数名称也能达到相同的效果。(二)官网(http://www.kulunsoft.com/)         在软件任意模块的帮助选项下,我们能够进入南京库仑软件的官网。官网主选项卡:●产品:能够快速了解库仑公司的软件及其相关功能和完备的解决方案;●案例与库仑:能够看见相关软件的典型案例并附有供学习使用的源文件;●支持与学习:在这里能够看到所有的教程资料,包括工程设计手册、工程实例手册、教学课程以及相关安装和激活教程;●试用与购买:这里能够快速免费申请任意一款库仑软件的试用,对软件有一个更深刻的了解。●问答社区:给工程师提供一个自由的交流和问答平台,客户的问题的回复质量和效率将受到公司的管控,提供一个更良好的售后服务。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5是一款功能强大、理论完备的现代化岩土工程勘察设计软件,充分发挥其功能势必能够提升设计的效率和水平。在这里简单说明如何使用<strong>帮助系统</strong>来更好地掌握软件的功能。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;首先,启动软件任意模块,点击<strong>菜单栏</strong>中“<strong>帮助</strong>”选项,在下拉菜单中我们可以看到GEO5软件帮助系统所涵盖的<strong>子选项</strong>内容,接下来将依次介绍各子选项的功能和具体的使用方法。&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;</p><p style="text-align:center"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1547705395875712.png" alt="image.png"/></p><p style="text-align: center;"><strong>菜单栏—“帮助”选项—子选项</strong></p><p><strong>(一)帮助文档(F1键)</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 帮助文档涵盖了当前模块的所有功能、设置、选项和输入输出内容的介绍,同时详细地给出了当前模块所涉及的所有理论原理和相关出处。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 进入帮助文档的方式除了在菜单栏“<strong>帮助</strong>”选项的下拉菜单中直接点击“<strong>帮助文档(c)...</strong>”外,更快速有效的方法是直接在软件界面中点击“<strong>F1键</strong>”。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1547705410824577.png" alt="image.png"/></p><p style="text-align: center;"><strong>“帮助文档”窗口</strong></p><p>帮助文档窗口包括以下部分:</p><ul class=" list-paddingleft-2"><li><p>基本工具栏。<strong>“隐藏(显示)”</strong>按钮可以隐藏(显示)左侧树形结构的帮助目录。<strong>“后退/前进”</strong>按钮可以显示前面已经阅读过的页面。<strong>“打印”</strong>按钮用于打印帮助文档,<strong>“选项”</strong>按钮用于设置Explorer窗口属性。</p></li><li><p>含有<strong>“目录”</strong>(用树形结构显示帮助文档的目录)、<strong>“索引”</strong>和“<a href="http://www.wen.kulunsoft.com/dochelp/183">搜索</a>”选项卡的左侧工具栏。</p></li><li><p><strong>“树形结构”</strong>的帮助文档目录 &nbsp; &nbsp; &nbsp;– 可以通过点击目录名称前面的&quot;+&quot;或&quot;-&quot;符号来<strong>展开/关闭</strong>相应的帮助文档目录。</p></li><li><p>用于显示帮助内容的主窗口 – 标题栏包含当前帮助页面的标题和<strong>“前进/后退”</strong>按钮,这两个按钮的功能与基本工具栏上的“前进/后退”按钮功能一样。</p></li></ul><p>&nbsp; &nbsp; &nbsp; &nbsp;帮助中的每个章节都可能包含指向其他相关章节的超链,具有超链功能的文本在帮助中为绿色。下面具体介绍一下如何高效地使用帮助文档,以<span style="text-decoration: underline;"><strong>参数查询</strong></span>为例。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5帮助文档区别于以往的帮助文档,能够迅速定位需要查询的相关内容,如在进行岩土材料定义时,我们想要查询<strong>结构与岩土间摩擦角</strong>时,只需在“添加岩土材料”界面中点击键盘“F1键”即可迅速定位至帮助文档“岩土材料”部分。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1547705516839111.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; 然后点击“基本参数”链接,即可跳转入“基本参数”部分。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1547705557195810.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 接着点击我们需要查看的“结构和土体间摩擦角”链接,可转入相关部分。在这里我们能够了解“结构和土体间摩擦角”的相关理论和图解。并且能够了解其取值的范围和相关取值推荐,推荐取值具备完备的出处。这样用户就可以在了解其相关理论的同时查看具体的推荐取值。</p><p style="text-align:center"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1547705618650145.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1547705634341817.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 除此之外,在<strong>搜索栏</strong>中输入想要查询的相关参数名称也能达到相同的效果。</p><hr/><p><strong>(二)官网(<a href="http://www.kulunsoft.com/)" _src="http://www.kulunsoft.com/)">http://www.kulunsoft.com/)</a> </strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 在软件任意模块的帮助选项下,我们能够进入南京库仑软件的官网。官网主选项卡:</p><p>●<strong>产品</strong>:能够快速了解库仑公司的软件及其相关功能和完备的<strong>解决方案</strong>;</p><p>●<strong>案例与库仑</strong>:能够看见相关软件的典型案例并附有供学习使用的源文件;</p><p>●<strong>支持与学习</strong>:在这里能够看到所有的<span style="text-decoration: underline;"><strong>教程资料</strong></span>,包括工<strong>程设计手册、工程实例手册、教学课程</strong>以及相关<strong>安装和激活教程</strong>;</p><p>●<strong>试用与购买</strong>:这里能够快速<strong>免费申请</strong>任意一款库仑软件的试用,对软件有一个更深刻的了解。</p><p>●<strong>问答社区:</strong>给工程师提供一个自由的交流和问答平台,客户的问题的回复质量和效率将受到公司的管控,提供一个更良好的<strong>售后服务</strong>。</p>

抗滑桩设计注意事项归纳

库仑产品库仑沈工 发表了文章 • 0 个评论 • 824 次浏览 • 2019-01-15 09:45 • 来自相关话题

1.抗滑桩的哪些参数影响整体稳定性?  计算安全系数主要依据是可以提供给边坡的每延米的最大抗力Vu,最大抗力是由「最大抗滑承载力」除以「桩间距」得到的,因此安全系数计算结果和「最大抗滑承载力」、「桩间距」有关,和桩的截面尺寸无关。  参考:GEO5土坡模块中如何确定抗滑桩的最大抗滑承载力Vu   GEO5土坡模块中抗滑桩的哪些参数对计算得到的安全系数有影响? 2.桩身打锚杆如何设置?  关于抗滑桩上的锚杆,如果锚杆是减小桩位移的作用,请在调用的抗滑桩模块中增加,如果是为了提高稳定性,在边坡模块中加入锚杆。相同的锚杆只能在其中一个模块中设置,否则就会重复考虑了。  可参考:抗滑桩+锚索设计时抗滑桩验算说明 3.垂直边坡避免临界位置  桩的中心线正好与垂直边坡线完全重合,这个时候属于临界位置,桩很有可能会不起作用(对稳定性的提高没有贡献)  处理办法:将桩身水平移动(向有土一侧)微小位移(0.01m)  参考:垂直边坡加设抗滑桩应避开临界位置4.垂直边坡如何判别是基坑桩还是抗滑桩?  当有明显滑面的时候,此时抗滑桩滑面深度以上抗滑桩受桩前滑体抗力跟桩后滑坡推力。(推力、抗力、滑面深度可以通过土质边坡模块计算出来)。滑面以下受土压力,用[抗滑桩设计]模块即可。  当没有明显滑面时,当桩受桩受1桩前滑体抗力跟桩后滑坡推力(抗滑桩)、2土压力(基坑桩)包络设计。  当桩前滑体抗力跟桩后滑坡推力,用[抗滑桩设计]模块即可。  当桩受土压力,直接使用[深基坑支护结构分析]模块,也可以用[土压力计算]模块计算出滑面以上的土压力,然后通过在【岩土作用力】菜单下选择【输入】该力,参与计算。 可参考:搜索最大剩余下滑力和无软弱滑面抗滑桩设计 5.关于结构不稳定可能存在的原因  a. 要么受力大(滑坡推力大或者桩后土层特别陡导致土压力大)  b. 要么桩支护薄弱(桩直径小,间距大,桩长不足)  c. 也有可能是桩前土体不稳或者坡形较陡引起的  可参考:较陡边坡抗滑桩验算提示结构不稳定的说明  桩前土体不稳定导致抗滑桩分析提示“结构不稳定-改变输入” 桩前坡形较陡导致抗滑桩分析提示“结构不稳定-改变输入” 6. 桩身嵌岩跟嵌土有什么区别  嵌土:滑面以下受土压力作用,桩前及桩后相当于弹簧作用,土体按弹塑性材料考虑,最大应力不能大于被动土压力,最小应力不能小于主动土压力。  嵌岩:嵌岩段受岩石反力作用,桩身一侧有弹簧作用(桩前或桩后,由桩身位移决定),岩体按弹性材料考虑,分析时岩石反力可以达到任意值,最终验算最大应力是否大于岩石的横向承载力。可参考:抗滑桩计算中土体嵌固段和岩石嵌固段的区别7. 埋入式抗滑桩如何分析?埋入式抗滑桩即桩没有设置到地表,此时GEO5土坡模块无法计算作用在桩身的剩余下滑力和抗滑力。因为在土质边坡稳定分析模块中,软件并不知道滑坡推力的分布形式,因此无法确定作用在下面这部分桩的剩余下滑力。如果一定要求得作用在桩上的剩余下滑力,可以把抗滑桩衍生到地表,求得剩余下滑力,然后按照剩余下滑的分布,换算作用在抗滑桩上的推力,最后在单独使用「抗滑桩设计」模块设计即可。思路参考:桩基+挡墙组合结构 查看全部
<p><strong>1.</strong><strong>抗滑桩的哪些参数影响整体稳定性?</strong></p><p>&nbsp; 计算安全系数主要依据是可以提供给边坡的每延米的最大抗力Vu,最大抗力是由「最大抗滑承载力」除以「桩间距」得到的,因此安全系数计算结果和「最大抗滑承载力」、「桩间距」有关,和桩的截面尺寸无关。</p><p>&nbsp; 参考:<a href="/article/17" target="_self">GEO5土坡模块中如何确定抗滑桩的最大抗滑承载力Vu</a>&nbsp;</p><p>&nbsp;&nbsp;<a href="/question/924" target="_self">GEO5土坡模块中抗滑桩的哪些参数对计算得到的安全系数有影响?</a>&nbsp;</p><p><strong>2.桩身打锚杆如何设置?</strong></p><p>&nbsp; 关于抗滑桩上的锚杆,如果锚杆是减小桩位移的作用,请在调用的抗滑桩模块中增加,如果是为了提高稳定性,在边坡模块中加入锚杆。相同的锚杆只能在其中一个模块中设置,否则就会重复考虑了。</p><p>&nbsp; 可参考:<a href="/article/202" target="_self">抗滑桩+锚索设计时抗滑桩验算说明 </a></p><p><strong>3.垂直边坡避免临界位置</strong></p><p>&nbsp; 桩的中心线正好与垂直边坡线完全重合,这个时候属于临界位置,桩很有可能会不起作用(对稳定性的提高没有贡献)</p><p>&nbsp; 处理办法:将桩身水平移动(向有土一侧)微小位移(0.01m)</p><p>&nbsp; 参考:<a href="/article/315" target="_self">垂直边坡加设抗滑桩应避开临界位置</a></p><p><strong>4.垂直边坡如何判别是基坑桩还是抗滑桩?</strong></p><p>&nbsp; 当有明显滑面的时候,此时抗滑桩滑面深度以上抗滑桩受桩前滑体抗力跟桩后滑坡推力。(推力、抗力、滑面深度可以通过土质边坡模块计算出来)。滑面以下受土压力,用[抗滑桩设计]模块即可。</p><p>&nbsp; 当没有明显滑面时,当桩受桩受1桩前滑体抗力跟桩后滑坡推力(抗滑桩)、2土压力(基坑桩)包络设计。</p><p>&nbsp; 当桩前滑体抗力跟桩后滑坡推力,用[抗滑桩设计]模块即可。</p><p>&nbsp; 当桩受土压力,直接使用[深基坑支护结构分析]模块,也可以用[土压力计算]模块计算出滑面以上的土压力,然后通过在【岩土作用力】菜单下选择【输入】该力,参与计算。</p><p>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1547516586694911.png" alt="image.png"/></p><p>可参考:<a href="/dochelp/1787" target="_self">搜索最大剩余下滑力和无软弱滑面抗滑桩设计</a>&nbsp;</p><p><strong>5.关于结构不稳定可能存在的原因</strong></p><p>&nbsp; a.&nbsp;要么受力大(滑坡推力大或者桩后土层特别陡导致土压力大)</p><p>&nbsp; b.&nbsp;要么桩支护薄弱(桩直径小,间距大,桩长不足)</p><p>&nbsp; c.&nbsp;也有可能是桩前土体不稳或者坡形较陡引起的</p><p>&nbsp; 可参考:<a href="/article/227" target="_self">较陡边坡抗滑桩验算提示结构不稳定的说明</a></p><p>&nbsp; <a href="/article/301" target="_self" textvalue="桩前土体不稳定导致抗滑桩分析提示“结构不稳定-改变输入”">桩前土体不稳定导致抗滑桩分析提示“结构不稳定-改变输入”</a>&nbsp;</p><p><a href="/article/317" target="_self">桩前坡形较陡导致抗滑桩分析提示“结构不稳定-改变输入” </a></p><p>6.&nbsp;<strong>桩身嵌岩跟嵌土有什么区别</strong></p><p>&nbsp; 嵌土:滑面以下受土压力作用,桩前<strong>及</strong>桩后相当于弹簧作用,土体按弹塑性材料考虑,最大应力不能大于被动土压力,最小应力不能小于主动土压力。</p><p>&nbsp; 嵌岩:嵌岩段受岩石反力作用,桩身一侧有弹簧作用(桩前<strong>或</strong>桩后,由桩身位移决定),岩体按弹性材料考虑,分析时岩石反力可以达到任意值,最终验算最大应力是否大于岩石的横向承载力。</p><p>可参考:<a href="/article/15" target="_self">抗滑桩计算中土体嵌固段和岩石嵌固段的区别</a></p><p>7.&nbsp;<strong>埋入式抗滑桩如何分析?</strong></p><p>埋入式抗滑桩即桩没有设置到地表,此时GEO5土坡模块无法计算作用在桩身的剩余下滑力和抗滑力。因为在土质边坡稳定分析模块中,软件并不知道滑坡推力的分布形式,因此无法确定作用在下面这部分桩的剩余下滑力。如果一定要求得作用在桩上的剩余下滑力,可以把抗滑桩衍生到地表,求得剩余下滑力,然后按照剩余下滑的分布,换算作用在抗滑桩上的推力,最后在单独使用「抗滑桩设计」模块设计即可。</p><p>思路参考:<a href="/dochelp/1603" target="_self">桩基+挡墙组合结构</a></p>

桩前坡形较陡导致抗滑桩分析提示“结构不稳定-改变输入”

库仑产品库仑沈工 发表了文章 • 0 个评论 • 740 次浏览 • 2019-01-11 11:35 • 来自相关话题

结构不稳定可能存在的原因1. 要么受力大(滑坡推力大或者桩后土层特别陡导致土压力大)2. 要么桩支护薄弱(桩直径小,间距大,桩长不足)3. 也有可能是桩前土体不稳或者坡形较陡引起的   关于桩前土体不稳引起的抗滑桩“结构不稳定-改变输入”,之前我们在文档:桩前土体不稳定导致抗滑桩分析提示“结构不稳定-改变输入” 有详细介绍,这里我们着重介绍一下坡形较陡(坡角>80°)引起的结构不稳定。  土质边坡稳定性分析,确定危险滑面以及滑面以上受力,然后调用抗滑桩模块进行分析提示“结构不稳定-改变输入”,如下图:     此时的墙前坡面如下图:     存在较陡坡面,我们要分析是否是桩前土体不稳定引起的?在调用的[抗滑桩设计]模块中,我可以看到土层分布是水平的,软件认为该区域所在土层(含碎石粉质粘土)与实际边坡模块中土层(刚性体)并不一样,实际边坡此处是已建挡墙是不会失稳的,即使按照含碎石粉质粘土去分析该处也是稳定的。实际上分析提示“结构不稳定-改变输入”是由于此处坡形较陡(坡角>80°)无法计算出该区域的被动土压力。    在这种情况下,有必要修改模型(删除这个陡峭的部分)以使其稳定。 这不是bug,这正显示了模块之间的数据传输检查模型的必要性。  源文件:桩前坡形较陡导致抗滑桩分析提示“结构不稳定-改变输入”.rar 查看全部
<p><strong>结构不稳定可能存在的原因</strong></p><p>1.&nbsp;要么受力大(滑坡推力大或者桩后土层特别陡导致土压力大)</p><p>2.&nbsp;要么桩支护薄弱(桩直径小,间距大,桩长不足)</p><p>3.&nbsp;也有可能是桩前土体不稳或者坡形较陡引起的</p><p>&nbsp; &nbsp;关于桩前土体不稳引起的抗滑桩“结构不稳定-改变输入”,之前我们在文档:<a href="/article/301" target="_self" textvalue="桩前土体不稳定导致抗滑桩分析提示“结构不稳定-改变输入”">桩前土体不稳定导致抗滑桩分析提示“结构不稳定-改变输入”</a> 有详细介绍,这里我们着重介绍一下坡形较陡(坡角>80°)引起的结构不稳定。</p><p>&nbsp; 土质边坡稳定性分析,确定危险滑面以及滑面以上受力,然后调用抗滑桩模块进行分析提示“结构不稳定-改变输入”,如下图:</p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1547177637834930.png" alt="image.png"/></p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1547177647998975.png" alt="image.png"/></p><p>&nbsp; &nbsp;此时的墙前坡面如下图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1547177654158918.png" alt="image.png"/>&nbsp;</p><p>&nbsp; &nbsp; 存在较陡坡面,我们要分析是否是桩前土体不稳定引起的?在调用的[抗滑桩设计]模块中,我可以看到土层分布是水平的,软件认为该区域所在土层(含碎石粉质粘土)与实际边坡模块中土层(刚性体)并不一样,实际边坡此处是已建挡墙是不会失稳的,即使按照含碎石粉质粘土去分析该处也是稳定的。实际上分析提示“结构不稳定-改变输入”是由于此处坡形较陡(坡角>80°)无法计算出该区域的被动土压力。</p><p>&nbsp; &nbsp; 在这种情况下,有必要修改模型(删除这个陡峭的部分)以使其稳定。 这不是bug,这正显示了模块之间的数据传输检查模型的必要性。</p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1547177675298819.png" alt="image.png"/></p><p style="text-align: center;"><strong>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1547177683508864.png" alt="image.png"/></strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1547177692176883.png" alt="image.png"/></p><p>源文件:<img src="http://www.wen.kulunsoft.com/s ... ot%3B style="vertical-align: middle; margin-right: 2px;"/><a href="http://www.wen.kulunsoft.com/u ... ot%3B title="桩前坡形较陡导致抗滑桩分析提示“结构不稳定-改变输入”.rar" style="font-size: 12px; color: rgb(0, 102, 204);">桩前坡形较陡导致抗滑桩分析提示“结构不稳定-改变输入”.rar</a></p><p><br/></p>

垂直边坡加设抗滑桩应避开临界位置

库仑产品库仑沈工 发表了文章 • 0 个评论 • 774 次浏览 • 2019-01-08 15:07 • 来自相关话题

  边坡稳定性不满足要求的时候,经常会通过加设抗滑桩是用来提高其稳定性,所以常常会遇到在竖直边坡上加设抗滑桩的支护方案,如下图:    在【土质边坡稳定性分析】模块中,抗滑桩的计算模型是在桩中心线所在处提供一个最大抗滑承载力(KN/m)参与条块的受力平衡分析。而当抗滑桩的中心线正好与垂直边坡线完全重合,这个时候属于临界位置,桩很有可能会不起作用(对稳定性的提高没有贡献)。举例如下图:  上图相同的滑面,相同的分析方法,加桩跟不加桩分析得到的安全系数都是1.42,案例说明了在临界位置加桩此时没有效果。那么该如何处理呢?  处理办法:将桩身水平向左移动微小位移(0.01),让桩中线与土接触,且避开临界位置。总结:垂直边坡设置抗滑需避开临界位置,可将桩身水平移动微小位移来避开。源文件:桩临界位置不起作用.rar 查看全部
<p>&nbsp; 边坡稳定性不满足要求的时候,经常会通过加设抗滑桩是用来提高其稳定性,所以常常会遇到在竖直边坡上加设抗滑桩的支护方案,如下图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1546930894636916.png" alt="image.png"/></p><p>&nbsp;&nbsp;</p><p>&nbsp; 在【土质边坡稳定性分析】模块中,抗滑桩的计算模型是在桩中心线所在处提供一个最大抗滑承载力(KN/m)参与条块的受力平衡分析。而当抗滑桩的中心线正好与垂直边坡线完全重合,这个时候属于临界位置,桩很有可能会不起作用(对稳定性的提高没有贡献)。</p><p>举例如下图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1546931000314532.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1546931020379848.png" alt="image.png"/></p><p>&nbsp; 上图相同的滑面,相同的分析方法,加桩跟不加桩分析得到的安全系数都是1.42,案例说明了在临界位置加桩此时没有效果。那么该如何处理呢?</p><p><strong>&nbsp; 处理办法:</strong>将桩身水平向左移动微小位移(0.01),让桩中线与土接触,且避开临界位置。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1546931109563745.png" alt="image.png"/></p><p><strong>总结:</strong>垂直边坡设置抗滑需避开临界位置,可将桩身水平移动微小位移来避开。</p><p>源文件:<img src="http://www.wen.kulunsoft.com/s ... ot%3B style="vertical-align: middle; margin-right: 2px;"/><a href="http://www.wen.kulunsoft.com/u ... ot%3B title="桩临界位置不起作用.rar" style="font-size: 12px; color: rgb(0, 102, 204);">桩临界位置不起作用.rar</a></p><p><br/></p>

EVS和GEO5中的地质建模比较

库仑产品库仑杨工 发表了文章 • 0 个评论 • 644 次浏览 • 2018-12-19 09:24 • 来自相关话题

2018版中GEO5新增了地质建模模块,该模块可以利用钻孔数据建立三维地质模型,并且在该模型上进行下一步的操作和应用,比如岩土分析和设计、岩土开挖计算等。那么它和EVS建立的模型有何异同呢?1、  建模方式和原理的比较(1)       GEO5首先整合需要建模的钻孔数据,建立一个标准的地层顺序,所有参与建模的钻孔都要转换为标准钻孔,然后软件自动生成三维地质模型。因此生成模型是有标准地层顺序的。建模的主要人工工作在于普通钻孔转换为标准层序的钻孔,钻孔岩性复杂的话还需要一定的地质知识来进行调整。(2)       EVS有两种建模方式:地层建模和岩性建模。其中地层建模和GEO5的建模方式相似,都是先确定地质模型的地层顺序,建立地层的模型框架。在地层框架基础上划分网格,利用插值算法赋予网格属性。岩性建模则是另外一种建模方式:它不需要划分标准地层,而是直接利用钻孔的岩性数据,利用三维插值算法,在三维空间上直接进行插值运算,特别适合岩性复杂、没有明显成层性的地质建模,例如岩溶地质体。EVS中建立的地质模型是一种真三维模型。2、  模型的应用场景(1)       GEO5建立的地质模型,适合于岩土工程的分析和设计。在模型中,任意切取剖面后,可以直接调用GEO5的岩土分析模块进行计算和分析。对于规模不大、岩性不是特别复杂的地质体,并且需要对该地质体进行岩土工程计算和分析的情况特别适用。(2)       EVS建立的模型侧重在空间展示、以及空间应用(比如开挖方计算)。EVS模型具有强大的后处理能力,能够方便的根据属性来进行空间上的操作,比如剖切、筛选、爆炸、分割、合并等操作。另外,EVS模型的渲染效果极佳,结合GIS处理模块,非常适合用于多层次、复杂地质情况的展示。3、  各自的优势GEO5建立地质模型,建模原理比较简单,不需要反复的人工干预,只需要确定标准钻孔岩性顺序即可,建模过程自动化,并且能够方便的进行岩土工程的计算和分析。缺点是显示效果和对模型的处理不如EVS,表现在模型平滑性,空间的操作性方面。EVS可以根据地质情况,灵活的选择地层或者岩性建模方式,可以根据显示要求调整建模精度。建立的模型具有极佳的显示效果以及强大的三维空间操作性,支持大规模钻孔、大区域面积的地质建模。 查看全部
<p>2018版中GEO5新增了地质建模模块,该模块可以利用钻孔数据建立三维地质模型,并且在该模型上进行下一步的操作和应用,比如岩土分析和设计、岩土开挖计算等。那么它和EVS建立的模型有何异同呢?</p><p>1、&nbsp; 建模方式和原理的比较</p><p>(1)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; GEO5首先整合需要建模的钻孔数据,建立一个标准的地层顺序,所有参与建模的钻孔都要转换为标准钻孔,然后软件自动生成三维地质模型。因此生成模型是有标准地层顺序的。建模的主要人工工作在于普通钻孔转换为标准层序的钻孔,钻孔岩性复杂的话还需要一定的地质知识来进行调整。</p><p>(2)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; EVS有两种建模方式:地层建模和岩性建模。其中地层建模和GEO5的建模方式相似,都是先确定地质模型的地层顺序,建立地层的模型框架。在地层框架基础上划分网格,利用插值算法赋予网格属性。岩性建模则是另外一种建模方式:它不需要划分标准地层,而是直接利用钻孔的岩性数据,利用三维插值算法,在三维空间上直接进行插值运算,特别适合岩性复杂、没有明显成层性的地质建模,例如岩溶地质体。EVS中建立的地质模型是一种真三维模型。</p><p>2、&nbsp; 模型的应用场景</p><p>(1)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; GEO5建立的地质模型,适合于岩土工程的分析和设计。在模型中,任意切取剖面后,可以直接调用GEO5的岩土分析模块进行计算和分析。对于规模不大、岩性不是特别复杂的地质体,并且需要对该地质体进行岩土工程计算和分析的情况特别适用。</p><p>(2)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; EVS建立的模型侧重在空间展示、以及空间应用(比如开挖方计算)。EVS模型具有强大的后处理能力,能够方便的根据属性来进行空间上的操作,比如剖切、筛选、爆炸、分割、合并等操作。另外,EVS模型的渲染效果极佳,结合GIS处理模块,非常适合用于多层次、复杂地质情况的展示。</p><p>3、&nbsp; 各自的优势</p><p>GEO5建立地质模型,建模原理比较简单,不需要反复的人工干预,只需要确定标准钻孔岩性顺序即可,建模过程自动化,并且能够方便的进行岩土工程的计算和分析。缺点是显示效果和对模型的处理不如EVS,表现在模型平滑性,空间的操作性方面。</p><p>EVS可以根据地质情况,灵活的选择地层或者岩性建模方式,可以根据显示要求调整建模精度。建立的模型具有极佳的显示效果以及强大的三维空间操作性,支持大规模钻孔、大区域面积的地质建模。</p><p><br/></p>
简单、靠谱、好看、好用的岩土分析设计软件