GEO5案例:加筋土式挡土墙设计——国内某边坡

库仑戚工 发表了文章 • 0 个评论 • 5082 次浏览 • 2017-08-24 16:34 • 来自相关话题

项目名称:国内某边坡项目使用软件:GEO5加筋土式挡土墙设计、土质边坡稳定分析设计方案:边坡采用砌块+筋材形式的加筋土挡墙做支护,挡墙高度3m,坡体主要为黏土。项目特点:该项目为倾斜加筋土挡土墙设计,如上图所示。软件优势:GEO5「加筋土式挡土墙设计」模块可以考虑做种不同形式的加筋土,此项目中倾斜加筋土挡土墙即采用此功能实现。计算结果:倾覆滑移稳定性验算验算位置 : 砌块底部倾覆稳定性验算抗倾覆力矩Mres=132.49kNm/m倾覆力矩Movr=7.67kNm/m安全系数 = 17.29 > 1.60倾覆稳定性验算 满足要求滑移稳定性验算抗滑力(平行基底)Hres=71.30kN/m滑动力(平行基底)Hact=21.31kN/m安全系数 = 3.35 > 1.30滑移稳定性验算 满足要求倾覆滑移验算 满足要求截面强度验算位置 - 连接处下砌块编号: 1倾覆稳定性验算抗倾覆力矩Mres=70.50kNm/m倾覆力矩Movr=6.51kNm/m安全系数 = 10.83 > 1.60砌块连接处倾覆稳定性验算 满足要求滑移稳定性验算抗滑力(平行基底)Hres=78.16kN/m滑动力(平行基底)Hact=15.62kN/m 安全系数 = 5.00 > 1.30砌块连接处滑移稳定性验算 满足要求连接处 满足要求作用在基底中心的荷载设计值编号弯矩轴力剪力偏心距验算[kNm/m][kN/m][kN/m][–]1-39.88106.1921.310.000 作用在基底中心的荷载标准值编号弯矩轴力剪力[kNm/m][kN/m][kN/m]1-39.88106.1921.31 地基承载力验算偏心距验算轴力的最大偏心率e=0.000允许偏心率最大值ealw=0.250轴力偏心距验算 满足要求地基承载力验算地基承载力fa=120.00kPa基底平均应力Pk=66.37kPa 地基承载力1.2fa=144.00kPa基底最大应力Pk,max=66.37kPa基底最小应力Pk,min=66.37kPa地基承载力 满足要求地基承载力整体验算 满足要求抗滑验算的筋材编号: 1竖向滑动面倾角=60.00°作用在筋材上的竖向压力=117.11kN/m筋材抗滑摩擦力折减系数=0.90水平滑动面处沿筋材的抗滑力=34.25kN/m砌体抗滑力=19.79kN/m水平滑动面上部筋材总承载力=0.00kN/m 滑移稳定性验算:水平抗滑力Hres=49.13kN/m水平滑动力Hact=29.94kN/m安全系数 = 1.64 > 1.50沿筋材滑动 满足要求验算筋材承载力,筋材编号: 1抗拉承载力验算抗拉强度Rt=13.24kN/m筋材受力Fx=2.72kN/m安全系数 = 4.87 > 1.50筋材抗拉承载力验算 满足要求抗拔承载力验算抗拔强度Tp=30.02kN/m筋材受力Fx=2.72kN/m 安全系数 = 11.03 > 1.50筋材抗拔承载力验算 满足要求筋材总承载力验算 满足要求滑面参数(搜索得到的最危险滑面)圆心S=(0.49;-8.78)m半径r=12.21m角度a1=-16.94°a2=65.10°整体稳定性验算 (毕肖普法(Bishop))FS = 2.21 > 1.35整体稳定性 满足要求边坡稳定性验算 (毕肖普法(Bishop))滑面上下滑力的总和 :Fa =259.52kN/m滑面上抗滑力的总和 :Fp =586.40kN/m下滑力矩 :Ma =2621.12kNm/m抗滑力矩 :Mp =5922.62kNm/m安全系数 = 2.26 > 1.35边坡稳定性 满足要求筋材承载力 筋材承载力 [kN/m]10.0020.0030.0040.0050.0060.00 查看全部
项目名称:国内某边坡项目使用软件:GEO5加筋土式挡土墙设计、土质边坡稳定分析设计方案:边坡采用砌块+筋材形式的加筋土挡墙做支护,挡墙高度3m,坡体主要为黏土。项目特点:该项目为倾斜加筋土挡土墙设计,如上图所示。软件优势:GEO5「加筋土式挡土墙设计」模块可以考虑做种不同形式的加筋土,此项目中倾斜加筋土挡土墙即采用此功能实现。计算结果:倾覆滑移稳定性验算验算位置 : 砌块底部倾覆稳定性验算抗倾覆力矩Mres=132.49kNm/m倾覆力矩Movr=7.67kNm/m安全系数 = 17.29 > 1.60倾覆稳定性验算 满足要求滑移稳定性验算抗滑力(平行基底)Hres=71.30kN/m滑动力(平行基底)Hact=21.31kN/m安全系数 = 3.35 > 1.30滑移稳定性验算 满足要求倾覆滑移验算 满足要求截面强度验算位置 - 连接处下砌块编号: 1倾覆稳定性验算抗倾覆力矩Mres=70.50kNm/m倾覆力矩Movr=6.51kNm/m安全系数 = 10.83 > 1.60砌块连接处倾覆稳定性验算 满足要求滑移稳定性验算抗滑力(平行基底)Hres=78.16kN/m滑动力(平行基底)Hact=15.62kN/m 安全系数 = 5.00 > 1.30砌块连接处滑移稳定性验算 满足要求连接处 满足要求作用在基底中心的荷载设计值编号弯矩轴力剪力偏心距验算[kNm/m][kN/m][kN/m][–]1-39.88106.1921.310.000 作用在基底中心的荷载标准值编号弯矩轴力剪力[kNm/m][kN/m][kN/m]1-39.88106.1921.31 地基承载力验算偏心距验算轴力的最大偏心率e=0.000允许偏心率最大值ealw=0.250轴力偏心距验算 满足要求地基承载力验算地基承载力fa=120.00kPa基底平均应力Pk=66.37kPa 地基承载力1.2fa=144.00kPa基底最大应力Pk,max=66.37kPa基底最小应力Pk,min=66.37kPa地基承载力 满足要求地基承载力整体验算 满足要求抗滑验算的筋材编号: 1竖向滑动面倾角=60.00°作用在筋材上的竖向压力=117.11kN/m筋材抗滑摩擦力折减系数=0.90水平滑动面处沿筋材的抗滑力=34.25kN/m砌体抗滑力=19.79kN/m水平滑动面上部筋材总承载力=0.00kN/m 滑移稳定性验算:水平抗滑力Hres=49.13kN/m水平滑动力Hact=29.94kN/m安全系数 = 1.64 > 1.50沿筋材滑动 满足要求验算筋材承载力,筋材编号: 1抗拉承载力验算抗拉强度Rt=13.24kN/m筋材受力Fx=2.72kN/m安全系数 = 4.87 > 1.50筋材抗拉承载力验算 满足要求抗拔承载力验算抗拔强度Tp=30.02kN/m筋材受力Fx=2.72kN/m 安全系数 = 11.03 > 1.50筋材抗拔承载力验算 满足要求筋材总承载力验算 满足要求滑面参数(搜索得到的最危险滑面)圆心S=(0.49;-8.78)m半径r=12.21m角度a1=-16.94°a2=65.10°整体稳定性验算 (毕肖普法(Bishop))FS = 2.21 > 1.35整体稳定性 满足要求边坡稳定性验算 (毕肖普法(Bishop))滑面上下滑力的总和 :Fa =259.52kN/m滑面上抗滑力的总和 :Fp =586.40kN/m下滑力矩 :Ma =2621.12kNm/m抗滑力矩 :Mp =5922.62kNm/m安全系数 = 2.26 > 1.35边坡稳定性 满足要求筋材承载力 筋材承载力 [kN/m]10.0020.0030.0040.0050.0060.00

在EVS中如何处理透镜体和尖灭

库仑焦工 发表了文章 • 0 个评论 • 4592 次浏览 • 2017-08-16 15:58 • 来自相关话题

    在三维地质建模工作中,地层中透镜体、尖灭的处理一直都是工程师较为头疼的问题。三维地球科学软件EVS可以很好的解决上述提到的问题,使用科学的方法对透镜体、尖灭进行相应的处理,从而更快更好的模拟出地层和地层之间的接触情况,提高模型的精度。下面大致介绍EVS中控制透镜体、尖灭的几种方法:一、层序控制    建立标准地层层序是利用EVS进行多数地质建模的前提,而EVS的地层层序区别于通常地质意义上的地层层序。在EVS软件中,建立的标准地层层序要求适用于每一个钻孔,所有地层均作为完整的岩层分布于整个建模区域,自上而下依次叠置。实际的地层层序常因地层分布不连续导致地层出现尖灭或是局部呈透镜体(如图1)。因此处理尖灭或透镜体的方法之一就是在确定层序时通过调整地层位置来确定尖灭、透镜体的位置。    在EVS中有一个专门用于地层层序确定模块,叫做make_geo_hierarchy。通过该模块,我们可以通过3D的方式来确定地层层序,而不再是传统的基于2D剖面的方式。在图2中,我们可以看到绿色钻孔上白色的线框,这代表该钻孔拥有这种岩性,而我们可以通过调整该线框的上下位置来改变透镜体的位置及厚度。 图1 地层层序图2 调整透镜体厚度二、插值方法及选择    空间数据插值是指通过己知的数据点或己知的己划为各个相对小的区域内的数据点,计算出相关的其它未知点或相关区域内的所有点的方法。通过插值可以估计某一缺失的观测数据,提高数据密度;可以使数据网格化,把非规则分布的空间数据内插或外插为规则分布的空间数据。离散数据拟合和插值所构造的层(曲)面模型是对地质信息在复杂地质体中的分布的数学抽象描述,为绘制和显示地质信息在地质空间分布提供了重要的方法基础。地质信息的插值和拟合函数要根据实际勘测数据建立,实测数据越丰富精确,得到的地质模型越能够真实描绘出这些信息的空间分布规律。另外,由于地质信息数据的特殊性,在进行空间数据的插值时,必须考虑许多约束条件及相关的地质学原理。    对于不同特点的地质信息,需采用不同的拟合函数,才能形成准确可靠的模型。因此,在处理透镜体和尖灭时,也应当选择合适的差值方法才能得到合理的尖灭情况。下面大致介绍一下可以在EVS中使用的部分插值方法: 克里金法(Kriging)    克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师 D.G.Krige 的名字命名的一种最优内插法。克里金法是一种很有用的地质统计格网化方法。它首先考虑的是空间属性在空间位置上的变异分布,确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。自然邻点法(Natural Neighbors)    自然邻点插值法广泛应用于一些研究领域中。其基本原理是对于一组泰森(Thiessen)多边形,当在数据集中加入一个新的数据点(目标)时,就会修改这些泰森多边形,而使用邻点的权重平均值将决定待插点的权重,待插点的权重和目标泰森多边形成比例。实际上,在这些多边形中,有一些多边形的尺寸将缩小,并且没有一个多边形的大小会增加。同时,自然邻点插值法在数据点凸起的位置并不外推等值线(如泰森多边形的轮廓线)。最近邻点法(Nearest Neighbor)    最近邻点插值法(Nearest Neighbor)又称泰森多边形方法,泰森多边形分析法是荷兰气象学家 A.H.Thiessen 提出的一种分析方法。最近邻点插值的一个隐含的假设条件是任一网格点 p(x,y)的属性值都使用距它最近的位置点的属性值,用每一个网格节点的最邻点值作为该节点的值。样条板法(Spline)    样条插值法是一种以可变样条来作出一条经过一系列点的光滑曲线的数学方法。插值样条是由一些多项式组成的,每一个多项式都是由相邻的两个数据点决定的,这样,任意的两个相邻的多项式以及它们的导数(不包括仇阶导数)在连接点处都是连续的。插值法主要用于道路桥梁,机械设计,电子信息工程等很多工科领域的优化方法。IDW(Shepard)    谢别德法使用距离倒数加权的最小二乘方的方法。因此,它与距离倒数乘方插值器相似,但它利用了局部最小二乘方来消除或减少所生成等值线的"牛眼"外观。谢别德法可以是一个准确或圆滑插值器。在用谢别德法作为格网化方法时要涉及到圆滑参数的设置。圆滑参数是使谢别德法能够像一个圆滑插值器那样工作。当你增加圆滑参数的值时,圆滑的效果越好。图3 不同插值方法下同一模型的结果差异三、调整岩层厚度    尖灭还可以解释为两个相邻的地层面相交或者重合,此时该层的厚度就是0。在EVS中厚度为0的面默认仍然会生成模型网格并在Z轴方向上压缩重合,也就是说我们可以通过调整岩层厚度(Layer Thickness)来控制尖灭的情况。图4 岩层厚度调整四、Pinch Factor    当建模数据中都是垂直钻孔时,我们可以使用Pinch Factor来调整尖灭的位置。Pinch的意思为尖灭,即在地层中厚度为0的位置。我们在处理尖灭时无法确定的是该地层是正好在钻孔点处尖灭还是在钻孔点之前就已经尖灭了,在软件中该选项默认为1,即上下地层正好重合,而调整该数值则可以使上部地层高于下部地层,从而在两个地层面之间产生一个更明显的尖灭。我们通过图6、7的例子就可以看出Pinch Factor是如何控制尖灭位置的。图6为模型默认情况,此时Pinch Factor为1,然后我们将Pinch Factor调整为100及-100,在图7、8中可以看到尖灭位置的变化。5 Pinch Factor选项图6 模型初始情况图7 Pinch Factor=100模型图8 Pinch Factor=-100模型总结上述几种方法即为在EVS中处理透镜体和尖灭的常用方法,基本能处理我们大部分常见的土层尖灭问题。其他还有一些更复杂的方法用于处理地层之间的接触关系,例如岩层侵入,这里就不再进一步说明了。感兴趣的用户可以查阅EVS的用户手册。 查看全部
    在三维地质建模工作中,地层中透镜体、尖灭的处理一直都是工程师较为头疼的问题。三维地球科学软件EVS可以很好的解决上述提到的问题,使用科学的方法对透镜体、尖灭进行相应的处理,从而更快更好的模拟出地层和地层之间的接触情况,提高模型的精度。下面大致介绍EVS中控制透镜体、尖灭的几种方法:一、层序控制    建立标准地层层序是利用EVS进行多数地质建模的前提,而EVS的地层层序区别于通常地质意义上的地层层序。在EVS软件中,建立的标准地层层序要求适用于每一个钻孔,所有地层均作为完整的岩层分布于整个建模区域,自上而下依次叠置。实际的地层层序常因地层分布不连续导致地层出现尖灭或是局部呈透镜体(如图1)。因此处理尖灭或透镜体的方法之一就是在确定层序时通过调整地层位置来确定尖灭、透镜体的位置。    在EVS中有一个专门用于地层层序确定模块,叫做make_geo_hierarchy。通过该模块,我们可以通过3D的方式来确定地层层序,而不再是传统的基于2D剖面的方式。在图2中,我们可以看到绿色钻孔上白色的线框,这代表该钻孔拥有这种岩性,而我们可以通过调整该线框的上下位置来改变透镜体的位置及厚度。 图1 地层层序图2 调整透镜体厚度二、插值方法及选择    空间数据插值是指通过己知的数据点或己知的己划为各个相对小的区域内的数据点,计算出相关的其它未知点或相关区域内的所有点的方法。通过插值可以估计某一缺失的观测数据,提高数据密度;可以使数据网格化,把非规则分布的空间数据内插或外插为规则分布的空间数据。离散数据拟合和插值所构造的层(曲)面模型是对地质信息在复杂地质体中的分布的数学抽象描述,为绘制和显示地质信息在地质空间分布提供了重要的方法基础。地质信息的插值和拟合函数要根据实际勘测数据建立,实测数据越丰富精确,得到的地质模型越能够真实描绘出这些信息的空间分布规律。另外,由于地质信息数据的特殊性,在进行空间数据的插值时,必须考虑许多约束条件及相关的地质学原理。    对于不同特点的地质信息,需采用不同的拟合函数,才能形成准确可靠的模型。因此,在处理透镜体和尖灭时,也应当选择合适的差值方法才能得到合理的尖灭情况。下面大致介绍一下可以在EVS中使用的部分插值方法: 克里金法(Kriging)    克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师 D.G.Krige 的名字命名的一种最优内插法。克里金法是一种很有用的地质统计格网化方法。它首先考虑的是空间属性在空间位置上的变异分布,确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。自然邻点法(Natural Neighbors)    自然邻点插值法广泛应用于一些研究领域中。其基本原理是对于一组泰森(Thiessen)多边形,当在数据集中加入一个新的数据点(目标)时,就会修改这些泰森多边形,而使用邻点的权重平均值将决定待插点的权重,待插点的权重和目标泰森多边形成比例。实际上,在这些多边形中,有一些多边形的尺寸将缩小,并且没有一个多边形的大小会增加。同时,自然邻点插值法在数据点凸起的位置并不外推等值线(如泰森多边形的轮廓线)。最近邻点法(Nearest Neighbor)    最近邻点插值法(Nearest Neighbor)又称泰森多边形方法,泰森多边形分析法是荷兰气象学家 A.H.Thiessen 提出的一种分析方法。最近邻点插值的一个隐含的假设条件是任一网格点 p(x,y)的属性值都使用距它最近的位置点的属性值,用每一个网格节点的最邻点值作为该节点的值。样条板法(Spline)    样条插值法是一种以可变样条来作出一条经过一系列点的光滑曲线的数学方法。插值样条是由一些多项式组成的,每一个多项式都是由相邻的两个数据点决定的,这样,任意的两个相邻的多项式以及它们的导数(不包括仇阶导数)在连接点处都是连续的。插值法主要用于道路桥梁,机械设计,电子信息工程等很多工科领域的优化方法。IDW(Shepard)    谢别德法使用距离倒数加权的最小二乘方的方法。因此,它与距离倒数乘方插值器相似,但它利用了局部最小二乘方来消除或减少所生成等值线的"牛眼"外观。谢别德法可以是一个准确或圆滑插值器。在用谢别德法作为格网化方法时要涉及到圆滑参数的设置。圆滑参数是使谢别德法能够像一个圆滑插值器那样工作。当你增加圆滑参数的值时,圆滑的效果越好。图3 不同插值方法下同一模型的结果差异三、调整岩层厚度    尖灭还可以解释为两个相邻的地层面相交或者重合,此时该层的厚度就是0。在EVS中厚度为0的面默认仍然会生成模型网格并在Z轴方向上压缩重合,也就是说我们可以通过调整岩层厚度(Layer Thickness)来控制尖灭的情况。图4 岩层厚度调整四、Pinch Factor    当建模数据中都是垂直钻孔时,我们可以使用Pinch Factor来调整尖灭的位置。Pinch的意思为尖灭,即在地层中厚度为0的位置。我们在处理尖灭时无法确定的是该地层是正好在钻孔点处尖灭还是在钻孔点之前就已经尖灭了,在软件中该选项默认为1,即上下地层正好重合,而调整该数值则可以使上部地层高于下部地层,从而在两个地层面之间产生一个更明显的尖灭。我们通过图6、7的例子就可以看出Pinch Factor是如何控制尖灭位置的。图6为模型默认情况,此时Pinch Factor为1,然后我们将Pinch Factor调整为100及-100,在图7、8中可以看到尖灭位置的变化。5 Pinch Factor选项图6 模型初始情况图7 Pinch Factor=100模型图8 Pinch Factor=-100模型总结上述几种方法即为在EVS中处理透镜体和尖灭的常用方法,基本能处理我们大部分常见的土层尖灭问题。其他还有一些更复杂的方法用于处理地层之间的接触关系,例如岩层侵入,这里就不再进一步说明了。感兴趣的用户可以查阅EVS的用户手册。

GEO5三维地质建模如何处理透镜体问题

库仑沈工 发表了文章 • 0 个评论 • 3663 次浏览 • 2017-08-14 09:33 • 来自相关话题

  目前有部分使用GEO5「三维地质建模」的客户咨询软件建模的一些具体细节,今天小编就三维地质建模中如何处理透镜体问题作简单说明。  透镜体百度百科词条为:发生在压性或压扭性构造破碎带中的,它标志着该构造属于压应力为主形成的,应力的作用力方向与透镜体的长轴方向相垂直。它的产状与构造的产状相当。  首先,使用GEO5「三维地质建模」需要有确定的层序,在层序确定的前提下,我们可以通过设置地层缺失的方法来处理透镜体。  下面举例说明:  例如我们有如下一个地层,材料分别为0(砂土)、1(黏土)、2(砾石)。图1 实际地层  那么我们可以将该地层分为4层,层序为:上部砂土、黏土、下部砂土、砾石。如下所示:图2 人为处理后的地层  接下来,我们使用GEO5「三维地质建模」创建地层,首先打开【基本参数】通过钻孔或者地层点输入地面,添加地层1、地层2、地层3。 图3地层名称然后添加【岩土材料】,分别为砂土、黏土、砾石。再【指定材料】,创建地层层序如下图:图4 GEO5中创建的地层层序  地层层序创建好之后,该如何正确建模呢?我们通过编辑【钻孔】,添加钻孔数据,来创建透镜体。未穿过透镜体的钻孔,既没有黏土层,我们设置其黏土层厚度为零即可;通过透镜体的钻孔,黏土层厚度不为零。 图5 未穿过透镜体的钻孔  根据输入的钻孔数据,软件会自动生成透镜体的轮廓线。  上述例子相对简单,对于一些复杂的问题(岩性分布比较复杂,无法简单确定出层序等),则需要更多的经验去判断,当经验不足乃至无法判断时,可以使用我们的EVS(Earth Volumetric Studio)来建模,EVS有一个专门的功能用于三维可视化的确定层序。图6 EVS 三维可视化确定层序相关EVS教程,请查看:EVS中如何处理透镜体和尖灭。 查看全部
  目前有部分使用GEO5「三维地质建模」的客户咨询软件建模的一些具体细节,今天小编就三维地质建模中如何处理透镜体问题作简单说明。  透镜体百度百科词条为:发生在压性或压扭性构造破碎带中的,它标志着该构造属于压应力为主形成的,应力的作用力方向与透镜体的长轴方向相垂直。它的产状与构造的产状相当。  首先,使用GEO5「三维地质建模」需要有确定的层序,在层序确定的前提下,我们可以通过设置地层缺失的方法来处理透镜体。  下面举例说明:  例如我们有如下一个地层,材料分别为0(砂土)、1(黏土)、2(砾石)。图1 实际地层  那么我们可以将该地层分为4层,层序为:上部砂土、黏土、下部砂土、砾石。如下所示:图2 人为处理后的地层  接下来,我们使用GEO5「三维地质建模」创建地层,首先打开【基本参数】通过钻孔或者地层点输入地面,添加地层1、地层2、地层3。 图3地层名称然后添加【岩土材料】,分别为砂土、黏土、砾石。再【指定材料】,创建地层层序如下图:图4 GEO5中创建的地层层序  地层层序创建好之后,该如何正确建模呢?我们通过编辑【钻孔】,添加钻孔数据,来创建透镜体。未穿过透镜体的钻孔,既没有黏土层,我们设置其黏土层厚度为零即可;通过透镜体的钻孔,黏土层厚度不为零。 图5 未穿过透镜体的钻孔  根据输入的钻孔数据,软件会自动生成透镜体的轮廓线。  上述例子相对简单,对于一些复杂的问题(岩性分布比较复杂,无法简单确定出层序等),则需要更多的经验去判断,当经验不足乃至无法判断时,可以使用我们的EVS(Earth Volumetric Studio)来建模,EVS有一个专门的功能用于三维可视化的确定层序。图6 EVS 三维可视化确定层序相关EVS教程,请查看:EVS中如何处理透镜体和尖灭。

GEO5中如何在多台阶加筋挡墙的第一个台阶上添加超载

库仑沈工 发表了文章 • 0 个评论 • 2129 次浏览 • 2017-08-14 09:27 • 来自相关话题

 近期有客户询问在GEO5中如何在多台阶加筋挡墙的第一个台阶上添加超载,如下图1:图1 加筋式挡土墙第一个台阶上添加超载的位置  在「加筋式挡土墙设计」模块中建模时,点击「超载」界面,点击「添加」,弹出对话框如图2,不难看出此处的确只能添加墙后地表上的超载。图2 添加超载对话框  针对上述情况,应如何灵活的应用软件来满足客户需求,添加第一个台阶上的超载呢?根据以往的经验,参照GEO5多级台阶挡墙分析教程,可对各台阶分别进行分析,按以下思路操作:       第一步:先验算最上面台阶的稳定性,主要进行「倾覆滑移验算」、「承载力验算」、「外部稳定性」分析;       第二步:再验算下一级台阶的稳定性,可以将上一级台阶考虑为荷载或在软件中直接输入墙后坡形,同时通过「超载」功能在第一个台阶上添加超载;       第三步:最后验算所有台阶的整体稳定性。当然,也可以先进行整体稳定分析,判断整体方案是否可行。  详细内容可参考技术贴: GEO5多台阶挡墙分析  查看全部
 近期有客户询问在GEO5中如何在多台阶加筋挡墙的第一个台阶上添加超载,如下图1:图1 加筋式挡土墙第一个台阶上添加超载的位置  在「加筋式挡土墙设计」模块中建模时,点击「超载」界面,点击「添加」,弹出对话框如图2,不难看出此处的确只能添加墙后地表上的超载。图2 添加超载对话框  针对上述情况,应如何灵活的应用软件来满足客户需求,添加第一个台阶上的超载呢?根据以往的经验,参照GEO5多级台阶挡墙分析教程,可对各台阶分别进行分析,按以下思路操作:       第一步:先验算最上面台阶的稳定性,主要进行「倾覆滑移验算」、「承载力验算」、「外部稳定性」分析;       第二步:再验算下一级台阶的稳定性,可以将上一级台阶考虑为荷载或在软件中直接输入墙后坡形,同时通过「超载」功能在第一个台阶上添加超载;       第三步:最后验算所有台阶的整体稳定性。当然,也可以先进行整体稳定分析,判断整体方案是否可行。  详细内容可参考技术贴: GEO5多台阶挡墙分析 

GEO5案例:边坡顶部考虑裂缝—甘肃某边坡

库仑戚工 发表了文章 • 0 个评论 • 2218 次浏览 • 2017-08-11 13:43 • 来自相关话题

项目名称:甘肃某边坡项目使用软件:GEO5土质边坡稳定分析使用目的:现场勘察到边坡顶部有裂缝,分析该状态下的边坡稳定性,坡体为主要为粉质黏土,裂缝深度约2m。项目特点:边坡顶部现场勘察到2m深的裂缝,如下图中所示。软件优势:GEO5「土质边坡稳定分析」模块可以考虑分析边坡存在裂缝的情况,并且在分析时,可通过限制搜索区域将破裂面顶点坐标固定在裂缝处。此项目中坡顶存在裂缝即采用此功能实现。边坡稳定性验算 (所有方法)毕肖普法(Bishop) :FS = 1.57 > 1.35满足要求瑞典法(Fellenius / Petterson) :FS = 1.52 > 1.35满足要求斯宾塞法(Spencer) :FS = 1.57 > 1.35满足要求简布法(Janbu) :FS = 1.56 > 1.35满足要求摩根斯坦法(Morgenstern-Price) :FS = 1.56 > 1.35满足要求俄罗斯法(Shachunyanc) :FS = 1.44 > 1.35满足要求不平衡推力法(隐式) :FS = 1.61 > 1.35满足要求不平衡推力法(显式) :FS = 1.61 > 1.35满足要求 查看全部
项目名称:甘肃某边坡项目使用软件:GEO5土质边坡稳定分析使用目的:现场勘察到边坡顶部有裂缝,分析该状态下的边坡稳定性,坡体为主要为粉质黏土,裂缝深度约2m。项目特点:边坡顶部现场勘察到2m深的裂缝,如下图中所示。软件优势:GEO5「土质边坡稳定分析」模块可以考虑分析边坡存在裂缝的情况,并且在分析时,可通过限制搜索区域将破裂面顶点坐标固定在裂缝处。此项目中坡顶存在裂缝即采用此功能实现。边坡稳定性验算 (所有方法)毕肖普法(Bishop) :FS = 1.57 > 1.35满足要求瑞典法(Fellenius / Petterson) :FS = 1.52 > 1.35满足要求斯宾塞法(Spencer) :FS = 1.57 > 1.35满足要求简布法(Janbu) :FS = 1.56 > 1.35满足要求摩根斯坦法(Morgenstern-Price) :FS = 1.56 > 1.35满足要求俄罗斯法(Shachunyanc) :FS = 1.44 > 1.35满足要求不平衡推力法(隐式) :FS = 1.61 > 1.35满足要求不平衡推力法(显式) :FS = 1.61 > 1.35满足要求

GEO5如何模拟基坑冠梁的作用

库仑戚工 发表了文章 • 0 个评论 • 4690 次浏览 • 2017-08-11 09:08 • 来自相关话题

  基坑采用排桩支护方案时,排桩顶部一般会施工一圈冠梁,如下图所示。冠梁为构造措施,进行基坑计算分析时一般不考虑构造措施,所以GEO5中并未提供冠梁选项。若用户希望模拟冠梁,可用GEO5中提供的支座功能模拟冠梁作用。冠梁作用分析如下:冠梁侧向刚度估算公式(依据简支梁在集中荷载作用下的挠度计算公式推导):式中:K-冠梁刚度估算值(MN/m)a-桩、墙位置(m);一般取L长度的一半(最不利位置)。L-冠梁长度(m);如有内支撑,取内支撑间距;如无内支撑,取该基坑边长。EI-冠梁截面抗弯刚度(MN·m²);其中E表示混凝土的弹性模量,可见《混凝土设计规范2010》表4.1.5,I表示截面对X轴的惯性矩。  根据计算的冠梁刚度估算值,在GEO5深基坑结构分析模块中,选择支座,位移类型选择弹簧,输入相关的刚度值,支座间距取排桩的间距,转角类型选择固定,即可用支座等效模拟冠梁作用。注:注意支座与冠梁刚度单位的换算。注意:  特别注意:(1)这种冠梁等效刚度的前提是,冠梁两端被支撑挡住,固定不动,两端是没有位移的。(2)冠梁,类似于一根绳,拦住中间的桩,减小其位移。冠梁对桩的作用,就是等效成弹簧,就是上面的公式。(3)但这里存在很大的问题①对于基坑。冠梁的反力会很大,每个桩对冠梁都有反力,而冠梁本身是没有进行验算的,只是构造配筋。这可能出现冠梁被反作用力破坏,而工程师却没办法发现的情况。②对于微型桩,承台两端并没有支撑固定,所以承台并不满足两端固定的前提条件。不能简单的按基坑里面的等效方法。③对于抗滑桩,边坡上的冠梁两端,一般没有支撑,并不满足前提条件。(4)建议微型桩本身刚度小,变形必然很大,这时可以考虑在顶部加预应力锚索 查看全部
  基坑采用排桩支护方案时,排桩顶部一般会施工一圈冠梁,如下图所示。冠梁为构造措施,进行基坑计算分析时一般不考虑构造措施,所以GEO5中并未提供冠梁选项。若用户希望模拟冠梁,可用GEO5中提供的支座功能模拟冠梁作用。冠梁作用分析如下:冠梁侧向刚度估算公式(依据简支梁在集中荷载作用下的挠度计算公式推导):式中:K-冠梁刚度估算值(MN/m)a-桩、墙位置(m);一般取L长度的一半(最不利位置)。L-冠梁长度(m);如有内支撑,取内支撑间距;如无内支撑,取该基坑边长。EI-冠梁截面抗弯刚度(MN·m²);其中E表示混凝土的弹性模量,可见《混凝土设计规范2010》表4.1.5,I表示截面对X轴的惯性矩。  根据计算的冠梁刚度估算值,在GEO5深基坑结构分析模块中,选择支座,位移类型选择弹簧,输入相关的刚度值,支座间距取排桩的间距,转角类型选择固定,即可用支座等效模拟冠梁作用。注:注意支座与冠梁刚度单位的换算。注意:  特别注意:(1)这种冠梁等效刚度的前提是,冠梁两端被支撑挡住,固定不动,两端是没有位移的。(2)冠梁,类似于一根绳,拦住中间的桩,减小其位移。冠梁对桩的作用,就是等效成弹簧,就是上面的公式。(3)但这里存在很大的问题①对于基坑。冠梁的反力会很大,每个桩对冠梁都有反力,而冠梁本身是没有进行验算的,只是构造配筋。这可能出现冠梁被反作用力破坏,而工程师却没办法发现的情况。②对于微型桩,承台两端并没有支撑固定,所以承台并不满足两端固定的前提条件。不能简单的按基坑里面的等效方法。③对于抗滑桩,边坡上的冠梁两端,一般没有支撑,并不满足前提条件。(4)建议微型桩本身刚度小,变形必然很大,这时可以考虑在顶部加预应力锚索

GEO5深基坑分析模块与增量法/全量法

库仑戚工 发表了文章 • 0 个评论 • 4588 次浏览 • 2017-08-09 11:26 • 来自相关话题

  本文介绍增量法、全量法的计算原理、主要区别,以及GEO5深基坑分析模块中增量法和全量法的应用。  我们知道,考虑施工过程中受力继承性及内力变形的基本方法有增量法和全量法两种,他们的计算原理是怎样的?GEO5深基坑支护结构分析模块中对应的建模方法是什么呢?这里跟大家介绍一下。增量法、全量法的计算原理  全量法中,已知外荷载是各施工阶段实际作用在墙上的有效土压力或其他荷载,支承由支撑弹簧和地层弹簧组成。在支承处应输入设置支承前该点墙体已产生的水平位移。由此可直接求得当前施工阶段完成后围护结构的实际位移及内力。  增量法中,外荷载是相当于前一施工阶段完成后的荷载增量,支承由支撑弹簧和地层弹簧组成。所求得的围护结构的位移和内力是相当于前一施工阶段完成后的增量,当墙体刚度不发生变化时,与前一个施工阶段完成后墙体已产生的位移和内力叠加,可得到当前施工阶段完成后体系的实际位移及内力。增量法、全量法的主要区别  增量法充分考虑上一步开挖对下一步施工的影响,而全量法未予考虑,这是两种计算方法的主要不同点。由此可知增量法更接近于施工过程、更科学。全量法由于考虑因素少了,计算过程相对简单。GEO5深基坑分析模块中的应用  深基坑支护结构分析模块对应建模方法为增量法,在计算过程中每一步工况都只考虑当前工况新增的荷载,当前工况的位移、弯矩、剪力和支撑反力可以通过前面工况每一步的位移、弯矩、剪力以及支撑反力值进行累加后得到。  如果想要采用全量法分析,那么只要在深基坑分析模块中第一个工况阶段直接开挖到最终的施工状态,则为全量法,即整个分析只有一个工况阶段。总结  基坑的开挖顺序和施工步骤的不同,对于基坑的受力和变形状态有很大的影响,因此,建议根据施工步骤采用增量法计算,这样才能更真实的反应基坑在整个施工阶段中的变形和受力情况,从而防止由于施工方法设计不合理带来的损失。GEO5深基坑支护结构分析模块可以灵活地模拟任意一种情况下的基坑开挖步骤和方法。 查看全部
  本文介绍增量法、全量法的计算原理、主要区别,以及GEO5深基坑分析模块中增量法和全量法的应用。  我们知道,考虑施工过程中受力继承性及内力变形的基本方法有增量法和全量法两种,他们的计算原理是怎样的?GEO5深基坑支护结构分析模块中对应的建模方法是什么呢?这里跟大家介绍一下。增量法、全量法的计算原理  全量法中,已知外荷载是各施工阶段实际作用在墙上的有效土压力或其他荷载,支承由支撑弹簧和地层弹簧组成。在支承处应输入设置支承前该点墙体已产生的水平位移。由此可直接求得当前施工阶段完成后围护结构的实际位移及内力。  增量法中,外荷载是相当于前一施工阶段完成后的荷载增量,支承由支撑弹簧和地层弹簧组成。所求得的围护结构的位移和内力是相当于前一施工阶段完成后的增量,当墙体刚度不发生变化时,与前一个施工阶段完成后墙体已产生的位移和内力叠加,可得到当前施工阶段完成后体系的实际位移及内力。增量法、全量法的主要区别  增量法充分考虑上一步开挖对下一步施工的影响,而全量法未予考虑,这是两种计算方法的主要不同点。由此可知增量法更接近于施工过程、更科学。全量法由于考虑因素少了,计算过程相对简单。GEO5深基坑分析模块中的应用  深基坑支护结构分析模块对应建模方法为增量法,在计算过程中每一步工况都只考虑当前工况新增的荷载,当前工况的位移、弯矩、剪力和支撑反力可以通过前面工况每一步的位移、弯矩、剪力以及支撑反力值进行累加后得到。  如果想要采用全量法分析,那么只要在深基坑分析模块中第一个工况阶段直接开挖到最终的施工状态,则为全量法,即整个分析只有一个工况阶段。总结  基坑的开挖顺序和施工步骤的不同,对于基坑的受力和变形状态有很大的影响,因此,建议根据施工步骤采用增量法计算,这样才能更真实的反应基坑在整个施工阶段中的变形和受力情况,从而防止由于施工方法设计不合理带来的损失。GEO5深基坑支护结构分析模块可以灵活地模拟任意一种情况下的基坑开挖步骤和方法。

OptumG2实例:隧道开挖——国内某轨道交通项目

库仑李建 发表了文章 • 0 个评论 • 2634 次浏览 • 2017-08-04 16:46 • 来自相关话题

项目名称:国内某轨道交通项目使用软件:岩土分析软件OptumG2项目信息:图1 隧道和地表建筑物的相对关系图2 隧道和地表建筑物的相对关系(纵断面)项目建模:图3 模型建立注:图中红线为用于方便读取相应位置结果数据的结果截面,对计算没有影响。为了避免边界条件的对隧道周围岩土体的影响,边界范围取为距隧道中心的距离为隧道宽度的6倍。岩土材料采用Mohr-Coulomb材料模型来模拟,衬砌采用板单元来模拟。表1 岩土参数编号名称重度kN/m3弹性模量MPa泊松比粘聚力kPa内摩擦角1素填土20800.252302泥质砂岩25.616010.251632.5表2 衬砌参数成熟状态单元类型厚度m混凝土型号最大网格大小未成熟板单元0.28C25 未成熟0.2成熟板单元0.35C250.2表3 锚杆参数长度m环相间距m纵向间距m屈服力kN/m锚杆和土体间的粘结力kPa3.00.60.530018图4 锚杆和衬砌支护图开挖步骤:采用台阶法进行隧道开挖,大致开挖步骤如下:(1)隧道范围分为左、右洞错开挖掘,先开挖右洞上台阶;(2)上台阶进约4-5m后,开挖右洞下台阶;(3)待右洞整个断面掘进30m后,再开挖左洞上台阶;(4)同样,之后再开挖左洞的下台阶。对单独的每一步开挖采用如下流程进行:(1)开挖隧道,并对洞壁约束松弛30%;(2)对洞壁约束松弛70%,同时施加锚杆和喷射混凝土,混凝土采用未成熟,即强度较低的C25混凝土;(3)对洞壁约束松弛100%,即移除约束,提高混凝土强度,降混凝土强度提升至C25标准强度。具体开挖流程如下图所示:   开挖(1)                                                      开挖(2)开挖(3)开挖(4)图5 隧道开挖步骤地表沉降结果: (1)开挖右洞上台阶                                            (2)开挖右洞下台阶 (3)开挖左洞上台阶                                            (4)开挖左洞下台阶图6 隧道开挖地表沉降结果图7 隧道开挖地层沉降云图地表水平位移结果: (1)开挖右洞上台阶                                            (2)开挖右洞下台阶 (3)开挖左洞上台阶                                            (4)开挖左洞下台阶图8 隧道开挖地表水平位移结果基础沉降:隧道开挖引起的地层位移范围内受影响建筑的基础最大沉降如下图所示。其中:(1)A – 水平方向1.7mm,竖直方向37.5mm(2)泵 – 水平方向-17.2mm,竖直方向31.6mm(3)B – 水平方向-13.8mm,竖直方向21.2mm(4)C – 水平方向-1.4mm,竖直方向-0.5mm图9 隧道开挖基础沉降根据《建筑地基基础设计规范》GB 50007-2011表5.3.4中的规定,体型简单的高层建筑基础的允许平均沉降量为200mm。若考虑安全系数为2,那么受影响的地表建筑基础最大沉降为75mm,小于允许沉降,因此,建筑基础受隧道开挖的影响在规范允许范围内。 查看全部
项目名称:国内某轨道交通项目使用软件:岩土分析软件OptumG2项目信息:图1 隧道和地表建筑物的相对关系图2 隧道和地表建筑物的相对关系(纵断面)项目建模:图3 模型建立注:图中红线为用于方便读取相应位置结果数据的结果截面,对计算没有影响。为了避免边界条件的对隧道周围岩土体的影响,边界范围取为距隧道中心的距离为隧道宽度的6倍。岩土材料采用Mohr-Coulomb材料模型来模拟,衬砌采用板单元来模拟。表1 岩土参数编号名称重度kN/m3弹性模量MPa泊松比粘聚力kPa内摩擦角1素填土20800.252302泥质砂岩25.616010.251632.5表2 衬砌参数成熟状态单元类型厚度m混凝土型号最大网格大小未成熟板单元0.28C25 未成熟0.2成熟板单元0.35C250.2表3 锚杆参数长度m环相间距m纵向间距m屈服力kN/m锚杆和土体间的粘结力kPa3.00.60.530018图4 锚杆和衬砌支护图开挖步骤:采用台阶法进行隧道开挖,大致开挖步骤如下:(1)隧道范围分为左、右洞错开挖掘,先开挖右洞上台阶;(2)上台阶进约4-5m后,开挖右洞下台阶;(3)待右洞整个断面掘进30m后,再开挖左洞上台阶;(4)同样,之后再开挖左洞的下台阶。对单独的每一步开挖采用如下流程进行:(1)开挖隧道,并对洞壁约束松弛30%;(2)对洞壁约束松弛70%,同时施加锚杆和喷射混凝土,混凝土采用未成熟,即强度较低的C25混凝土;(3)对洞壁约束松弛100%,即移除约束,提高混凝土强度,降混凝土强度提升至C25标准强度。具体开挖流程如下图所示:   开挖(1)                                                      开挖(2)开挖(3)开挖(4)图5 隧道开挖步骤地表沉降结果: (1)开挖右洞上台阶                                            (2)开挖右洞下台阶 (3)开挖左洞上台阶                                            (4)开挖左洞下台阶图6 隧道开挖地表沉降结果图7 隧道开挖地层沉降云图地表水平位移结果: (1)开挖右洞上台阶                                            (2)开挖右洞下台阶 (3)开挖左洞上台阶                                            (4)开挖左洞下台阶图8 隧道开挖地表水平位移结果基础沉降:隧道开挖引起的地层位移范围内受影响建筑的基础最大沉降如下图所示。其中:(1)A – 水平方向1.7mm,竖直方向37.5mm(2)泵 – 水平方向-17.2mm,竖直方向31.6mm(3)B – 水平方向-13.8mm,竖直方向21.2mm(4)C – 水平方向-1.4mm,竖直方向-0.5mm图9 隧道开挖基础沉降根据《建筑地基基础设计规范》GB 50007-2011表5.3.4中的规定,体型简单的高层建筑基础的允许平均沉降量为200mm。若考虑安全系数为2,那么受影响的地表建筑基础最大沉降为75mm,小于允许沉降,因此,建筑基础受隧道开挖的影响在规范允许范围内。

GEO5案例:土钉边坡支护——西安某边坡

库仑戚工 发表了文章 • 0 个评论 • 2862 次浏览 • 2017-08-04 09:45 • 来自相关话题

项目名称:西安某边坡项目使用软件:GEO5土钉边坡支护设计、GEO5土质边坡稳定分析设计方案:边坡采用土钉+混凝土面层支护方式,边坡高度6.5m,岩土材料从上至下分别为杂填土、粉质砂土、中砂和卵石。项目特点:土体性质不好,如上图所示,并且希望分步分析每根土钉施工后边坡的整体稳定性。软件优势:1.GEO5土钉边坡支护设计重新考虑了土钉受力方式,并且这种计算方法更为合理,避免造成材料浪费。2.GEO5土钉边坡支护设计模块可实现直接调用土质边坡稳定分析模块的功能,避免重复建模。3.在调用的土质边坡稳定分析模块中稍作调整即可实现分步分析每根土钉施工后边坡的整体稳定性情况。计算结果:自动搜索后的折线滑动面:滑动面角度=21.00°滑动面起点深度=6.50m 验算:滑体重力=553.28kN/m土钉滑面外的总承载力=138.08kN/m滑面上的下滑力(滑体重力)=198.28kN/m滑面上的下滑力(主动土压力)=30.61kN/m滑面上的抗滑力 (土层)=420.97kN/m滑面上的抗滑力(土钉)=118.36kN/m安全系数 = 2.36 > 1.30滑动面稳定性 满足要求倾覆滑移稳定性验算倾覆稳定性验算抗倾覆力矩Mres=5660.43kNm/m倾覆力矩Movr=47.69kNm/m安全系数 = 118.69 > 1.60倾覆稳定性验算 满足要求滑移稳定性验算抗滑力(平行基底)Hres=573.73kN/m滑动力(平行基底)Hact=15.39kN/m安全系数 = 37.28 > 1.30滑移稳定性验算 满足要求倾覆滑移验算 满足要求作用在基底中心的荷载设计值编号弯矩轴力剪力偏心距验算[kNm/m][kN/m][kN/m][–]1-3339.74819.3015.390.000 作用在基底中心的荷载标准值编号弯矩轴力剪力[kNm/m][kN/m][kN/m]1-3339.74819.3015.39地基承载力验算偏心距验算轴力的最大偏心率e=0.000允许偏心率最大值ealw=0.250轴力偏心距验算 满足要求地基承载力验算地基承载力fa=300.00kPa基底平均应力Pk=147.66kPa 地基承载力1.2fa=360.00kPa基底最大应力Pk,max=147.66kPa基底最小应力Pk,min=147.66kPa地基承载力 满足要求地基承载力整体验算 满足要求混凝土保护层截面强度水平钢筋 - 背面中和轴位置x/1=0.01m -0.76kNm/m=M 截面满足要求。竖向钢筋 - 背面中和轴位置x/1=0.01m -0.13kNm/m=M截面满足要求。水平钢筋 - 正面中和轴位置x/1=0.01m 0.85kNm/m=M截面满足要求。竖向钢筋 - 正面中和轴位置x/1=0.01m 0.25kNm/m=M截面满足要求。配筋率验算配筋率=0.30%> 0.20%=min截面满足要求。受剪承载力验算截面受剪承载力设计值 Vu = 44.00 kN/m > 2.77 kN/m = V截面满足要求。总验算 满足要求边坡稳定性验算 (所有方法)毕肖普法(Bishop) :FS = 13.12 > 1.30满足要求瑞典法(Fellenius / Petterson) :FS = 12.75 > 1.30满足要求斯宾塞法(Spencer) :FS = 15.29 > 1.30满足要求简布法(Janbu) :FS = 15.18 > 1.30满足要求摩根斯坦法(Morgenstern-Price) :FS = 15.18 > 1.30满足要求俄罗斯法(Shachunyanc) :FS = 14.99 > 1.30满足要求不平衡推力法(隐式) :FS = 15.47 > 1.30满足要求不平衡推力法(显式) :FS = 16.57 > 1.30满足要求筋带力筋材力 [kN/m]19.7020.0030.0040.0050.0060.00边坡稳定性验算 (所有方法)毕肖普法(Bishop) :FS = 3.74 > 1.30满足要求瑞典法(Fellenius / Petterson) :FS = 3.71 > 1.30满足要求斯宾塞法(Spencer) :FS = 3.90 > 1.30满足要求简布法(Janbu) :FS = 3.91 > 1.30满足要求摩根斯坦法(Morgenstern-Price) :FS = 3.90 > 1.30满足要求俄罗斯法(Shachunyanc) :FS = 3.74 > 1.30满足要求不平衡推力法(隐式) :FS = 3.91 > 1.30满足要求不平衡推力法(显式) :FS = 3.86 > 1.30满足要求筋带力筋材力 [kN/m]10.0027.7530.0040.0050.0060.00边坡稳定性验算 (所有方法)毕肖普法(Bishop) :FS = 4.08 > 1.30满足要求瑞典法(Fellenius / Petterson) :FS = 3.88 > 1.30满足要求斯宾塞法(Spencer) :FS = 4.43 > 1.30满足要求简布法(Janbu) :FS = 4.42 > 1.30满足要求摩根斯坦法(Morgenstern-Price) :FS = 4.42 > 1.30满足要求俄罗斯法(Shachunyanc) :FS = 4.05 > 1.30满足要求不平衡推力法(隐式) :FS = 4.44 > 1.30满足要求不平衡推力法(显式) :FS = 5.03 > 1.30满足要求 筋带力筋材力 [kN/m]13.9426.8938.6540.0050.0060.00边坡稳定性验算 (所有方法)毕肖普法(Bishop) :FS = 3.67 > 1.30满足要求瑞典法(Fellenius / Petterson) :FS = 3.47 > 1.30满足要求斯宾塞法(Spencer) :FS = 4.15 > 1.30满足要求简布法(Janbu) :FS = 5.03 > 1.30满足要求摩根斯坦法(Morgenstern-Price) :FS = 4.13 > 1.30满足要求俄罗斯法(Shachunyanc) :FS = 3.60 > 1.30满足要求不平衡推力法(隐式) :FS = 4.17 > 1.30满足要求不平衡推力法(显式) :FS = 4.68 > 1.30满足要求筋带力筋材力 [kN/m]13.1225.6636.24421.9950.0060.00边坡稳定性验算 (所有方法)毕肖普法(Bishop) :FS = 1.63 > 1.30满足要求瑞典法(Fellenius / Petterson) :FS = 1.50 > 1.30满足要求斯宾塞法(Spencer) :FS = 1.66 > 1.30满足要求简布法(Janbu) :FS = 1.65 > 1.30满足要求摩根斯坦法(Morgenstern-Price) :FS = 1.65 > 1.30满足要求俄罗斯法(Shachunyanc) :FS = 1.49 > 1.30满足要求不平衡推力法(隐式) :FS = 1.68 > 1.30满足要求不平衡推力法(显式) :FS = 1.75 > 1.30满足要求筋带力筋材力 [kN/m]10.1921.7630.8541.4354.2660.00 查看全部
项目名称:西安某边坡项目使用软件:GEO5土钉边坡支护设计、GEO5土质边坡稳定分析设计方案:边坡采用土钉+混凝土面层支护方式,边坡高度6.5m,岩土材料从上至下分别为杂填土、粉质砂土、中砂和卵石。项目特点:土体性质不好,如上图所示,并且希望分步分析每根土钉施工后边坡的整体稳定性。软件优势:1.GEO5土钉边坡支护设计重新考虑了土钉受力方式,并且这种计算方法更为合理,避免造成材料浪费。2.GEO5土钉边坡支护设计模块可实现直接调用土质边坡稳定分析模块的功能,避免重复建模。3.在调用的土质边坡稳定分析模块中稍作调整即可实现分步分析每根土钉施工后边坡的整体稳定性情况。计算结果:自动搜索后的折线滑动面:滑动面角度=21.00°滑动面起点深度=6.50m 验算:滑体重力=553.28kN/m土钉滑面外的总承载力=138.08kN/m滑面上的下滑力(滑体重力)=198.28kN/m滑面上的下滑力(主动土压力)=30.61kN/m滑面上的抗滑力 (土层)=420.97kN/m滑面上的抗滑力(土钉)=118.36kN/m安全系数 = 2.36 > 1.30滑动面稳定性 满足要求倾覆滑移稳定性验算倾覆稳定性验算抗倾覆力矩Mres=5660.43kNm/m倾覆力矩Movr=47.69kNm/m安全系数 = 118.69 > 1.60倾覆稳定性验算 满足要求滑移稳定性验算抗滑力(平行基底)Hres=573.73kN/m滑动力(平行基底)Hact=15.39kN/m安全系数 = 37.28 > 1.30滑移稳定性验算 满足要求倾覆滑移验算 满足要求作用在基底中心的荷载设计值编号弯矩轴力剪力偏心距验算[kNm/m][kN/m][kN/m][–]1-3339.74819.3015.390.000 作用在基底中心的荷载标准值编号弯矩轴力剪力[kNm/m][kN/m][kN/m]1-3339.74819.3015.39地基承载力验算偏心距验算轴力的最大偏心率e=0.000允许偏心率最大值ealw=0.250轴力偏心距验算 满足要求地基承载力验算地基承载力fa=300.00kPa基底平均应力Pk=147.66kPa 地基承载力1.2fa=360.00kPa基底最大应力Pk,max=147.66kPa基底最小应力Pk,min=147.66kPa地基承载力 满足要求地基承载力整体验算 满足要求混凝土保护层截面强度水平钢筋 - 背面中和轴位置x/1=0.01m< 0.05m=bh0/1截面受弯承载力设计值Mu=-6.48kNm/m> -0.76kNm/m=M 截面满足要求。竖向钢筋 - 背面中和轴位置x/1=0.01m< 0.05m=bh0/1截面受弯承载力设计值Mu=-6.48kNm/m> -0.13kNm/m=M截面满足要求。水平钢筋 - 正面中和轴位置x/1=0.01m< 0.05m=bh0/1截面受弯承载力设计值Mu=6.48kNm/m> 0.85kNm/m=M截面满足要求。竖向钢筋 - 正面中和轴位置x/1=0.01m< 0.05m=bh0/1截面受弯承载力设计值Mu=6.48kNm/m> 0.25kNm/m=M截面满足要求。配筋率验算配筋率=0.30%> 0.20%=min截面满足要求。受剪承载力验算截面受剪承载力设计值 Vu = 44.00 kN/m > 2.77 kN/m = V截面满足要求。总验算 满足要求边坡稳定性验算 (所有方法)毕肖普法(Bishop) :FS = 13.12 > 1.30满足要求瑞典法(Fellenius / Petterson) :FS = 12.75 > 1.30满足要求斯宾塞法(Spencer) :FS = 15.29 > 1.30满足要求简布法(Janbu) :FS = 15.18 > 1.30满足要求摩根斯坦法(Morgenstern-Price) :FS = 15.18 > 1.30满足要求俄罗斯法(Shachunyanc) :FS = 14.99 > 1.30满足要求不平衡推力法(隐式) :FS = 15.47 > 1.30满足要求不平衡推力法(显式) :FS = 16.57 > 1.30满足要求筋带力筋材力 [kN/m]19.7020.0030.0040.0050.0060.00边坡稳定性验算 (所有方法)毕肖普法(Bishop) :FS = 3.74 > 1.30满足要求瑞典法(Fellenius / Petterson) :FS = 3.71 > 1.30满足要求斯宾塞法(Spencer) :FS = 3.90 > 1.30满足要求简布法(Janbu) :FS = 3.91 > 1.30满足要求摩根斯坦法(Morgenstern-Price) :FS = 3.90 > 1.30满足要求俄罗斯法(Shachunyanc) :FS = 3.74 > 1.30满足要求不平衡推力法(隐式) :FS = 3.91 > 1.30满足要求不平衡推力法(显式) :FS = 3.86 > 1.30满足要求筋带力筋材力 [kN/m]10.0027.7530.0040.0050.0060.00边坡稳定性验算 (所有方法)毕肖普法(Bishop) :FS = 4.08 > 1.30满足要求瑞典法(Fellenius / Petterson) :FS = 3.88 > 1.30满足要求斯宾塞法(Spencer) :FS = 4.43 > 1.30满足要求简布法(Janbu) :FS = 4.42 > 1.30满足要求摩根斯坦法(Morgenstern-Price) :FS = 4.42 > 1.30满足要求俄罗斯法(Shachunyanc) :FS = 4.05 > 1.30满足要求不平衡推力法(隐式) :FS = 4.44 > 1.30满足要求不平衡推力法(显式) :FS = 5.03 > 1.30满足要求 筋带力筋材力 [kN/m]13.9426.8938.6540.0050.0060.00边坡稳定性验算 (所有方法)毕肖普法(Bishop) :FS = 3.67 > 1.30满足要求瑞典法(Fellenius / Petterson) :FS = 3.47 > 1.30满足要求斯宾塞法(Spencer) :FS = 4.15 > 1.30满足要求简布法(Janbu) :FS = 5.03 > 1.30满足要求摩根斯坦法(Morgenstern-Price) :FS = 4.13 > 1.30满足要求俄罗斯法(Shachunyanc) :FS = 3.60 > 1.30满足要求不平衡推力法(隐式) :FS = 4.17 > 1.30满足要求不平衡推力法(显式) :FS = 4.68 > 1.30满足要求筋带力筋材力 [kN/m]13.1225.6636.24421.9950.0060.00边坡稳定性验算 (所有方法)毕肖普法(Bishop) :FS = 1.63 > 1.30满足要求瑞典法(Fellenius / Petterson) :FS = 1.50 > 1.30满足要求斯宾塞法(Spencer) :FS = 1.66 > 1.30满足要求简布法(Janbu) :FS = 1.65 > 1.30满足要求摩根斯坦法(Morgenstern-Price) :FS = 1.65 > 1.30满足要求俄罗斯法(Shachunyanc) :FS = 1.49 > 1.30满足要求不平衡推力法(隐式) :FS = 1.68 > 1.30满足要求不平衡推力法(显式) :FS = 1.75 > 1.30满足要求筋带力筋材力 [kN/m]10.1921.7630.8541.4354.2660.00

某地区渲染地层的三维地质模型

库仑焦工 发表了文章 • 0 个评论 • 2974 次浏览 • 2017-08-04 09:15 • 来自相关话题

项目背景:本项目通过钻孔勘察数据完成对某地区的三维地质建模工作,且通过贴图很好地将各地层的不同岩性渲染出来,岩性名也显示在地层边界上,让工程师更直观的了解到各地层岩性及接触关系的变化情况。图1 某地区三维地质模型图2 某地区三维地质模型图3 模型侧面图4 地层分离模型 项目特点:本模型运用EVS强大的贴图渲染功能使三维地质模型更加真实,这与市面上其他三维地质建模软件有很大的不同,告别了过去单一的颜色渲染模式,让地质体的特点一览无余。图5 其他贴图渲染的地质模型图6 其他贴图渲染的地质模型 软件优势: EVS拥有强大的图形渲染能力,能够将模型真实的呈现在工程师面前,这不用于以往的三维地质建模数据软件只是简单的利用单一的颜色进行渲染,用户在EVS中可以任意选择自己的需要的贴图,软件自带上百种纹理供您选择,同时用户也可以插入自己需要的图片。除了添加贴图,EVS也可以添加遥感影像、DEM、航拍图等,此外还可以在此基础上对模型进行剖切、计算等工作,极大满足了用户的需求。 图8 贴图渲染下的剖面图 查看全部
项目背景:本项目通过钻孔勘察数据完成对某地区的三维地质建模工作,且通过贴图很好地将各地层的不同岩性渲染出来,岩性名也显示在地层边界上,让工程师更直观的了解到各地层岩性及接触关系的变化情况。图1 某地区三维地质模型图2 某地区三维地质模型图3 模型侧面图4 地层分离模型 项目特点:本模型运用EVS强大的贴图渲染功能使三维地质模型更加真实,这与市面上其他三维地质建模软件有很大的不同,告别了过去单一的颜色渲染模式,让地质体的特点一览无余。图5 其他贴图渲染的地质模型图6 其他贴图渲染的地质模型 软件优势: EVS拥有强大的图形渲染能力,能够将模型真实的呈现在工程师面前,这不用于以往的三维地质建模数据软件只是简单的利用单一的颜色进行渲染,用户在EVS中可以任意选择自己的需要的贴图,软件自带上百种纹理供您选择,同时用户也可以插入自己需要的图片。除了添加贴图,EVS也可以添加遥感影像、DEM、航拍图等,此外还可以在此基础上对模型进行剖切、计算等工作,极大满足了用户的需求。 图8 贴图渲染下的剖面图

某湖上隧道三维地质模型

库仑焦工 发表了文章 • 0 个评论 • 2248 次浏览 • 2017-08-04 09:12 • 来自相关话题

项目名称:某湖上隧道三维地质模型项目背景: 本次研究基于三维地质建模软件EVS,利用已有勘察数据(钻孔数据)来建立该隧道三维地质模型,并在建模后导入结构构件且进行基坑开挖工作,以实现BIM技术在地下工程中的应用,帮助决策者、设计师、施工方、公众等对地下工程项目更直观、更精确、更高效的认识和管理。三维地质模型地层分离模型项目工作量:本次建模范围长约10.8公里,建模主要使用到的数据为原始钻孔数据(约100个钻孔)。钻孔分布展示项目特点:本次建模主要运用到的是钻孔数据,利用Access建立地质钻孔数据库并通过Matlab数据提取等功能自动筛选出建模所需要的数据,在既保证效率的情况下,也保证结果的准确。数据整理完毕后连接EVS的各类功能的模块形成逻辑网来完成建模。在构建出三维地质模型之后,并不意味着构建三维可视化模型已经结束,在这个阶段中要返回数据资料中,根据已收集的二维地层剖面图,进行模型剖面与已知剖面的拟合,找出软件在构建模型时实际不符合的地方,根据实际情况进行参数的修改和适当的增减钻孔数据(虚拟钻孔)。已知剖面与模型剖面的拟合过程即为模型接近实际情况的过程,因此,模型完善阶段的是非常重要的。三维地质模型创建完成后,可以导入设计部门做好的结构构件,例如各种支护结构构件,从而更好的对模型进行展示,并判断设计方案在地层中的准确位置和周围的地质情况,为设计方案是否合理提供更直观更快捷的参考。EVS建模思路剖切模型软件优势: 地下工程勘察作为建筑业中的一环,长期游离于BIM之外。通过本案例初步实践表明,利用三维地质建模软件EVS将岩土工程勘察成果三维可视化,实现上部建筑与其地下空间工程地质信息的三维融合是具有可操作性的,它将本地区的地质概况直观地展示给工程项目人员,并为其他部门提供三维可视化的数据,进一步提升本项目的工程建设质量和进度,为今后地下工程BIM技术的实践和推广提供应用参考。围堰下的基坑开挖示意图 查看全部
项目名称:某湖上隧道三维地质模型项目背景: 本次研究基于三维地质建模软件EVS,利用已有勘察数据(钻孔数据)来建立该隧道三维地质模型,并在建模后导入结构构件且进行基坑开挖工作,以实现BIM技术在地下工程中的应用,帮助决策者、设计师、施工方、公众等对地下工程项目更直观、更精确、更高效的认识和管理。三维地质模型地层分离模型项目工作量:本次建模范围长约10.8公里,建模主要使用到的数据为原始钻孔数据(约100个钻孔)。钻孔分布展示项目特点:本次建模主要运用到的是钻孔数据,利用Access建立地质钻孔数据库并通过Matlab数据提取等功能自动筛选出建模所需要的数据,在既保证效率的情况下,也保证结果的准确。数据整理完毕后连接EVS的各类功能的模块形成逻辑网来完成建模。在构建出三维地质模型之后,并不意味着构建三维可视化模型已经结束,在这个阶段中要返回数据资料中,根据已收集的二维地层剖面图,进行模型剖面与已知剖面的拟合,找出软件在构建模型时实际不符合的地方,根据实际情况进行参数的修改和适当的增减钻孔数据(虚拟钻孔)。已知剖面与模型剖面的拟合过程即为模型接近实际情况的过程,因此,模型完善阶段的是非常重要的。三维地质模型创建完成后,可以导入设计部门做好的结构构件,例如各种支护结构构件,从而更好的对模型进行展示,并判断设计方案在地层中的准确位置和周围的地质情况,为设计方案是否合理提供更直观更快捷的参考。EVS建模思路剖切模型软件优势: 地下工程勘察作为建筑业中的一环,长期游离于BIM之外。通过本案例初步实践表明,利用三维地质建模软件EVS将岩土工程勘察成果三维可视化,实现上部建筑与其地下空间工程地质信息的三维融合是具有可操作性的,它将本地区的地质概况直观地展示给工程项目人员,并为其他部门提供三维可视化的数据,进一步提升本项目的工程建设质量和进度,为今后地下工程BIM技术的实践和推广提供应用参考。围堰下的基坑开挖示意图

库仑公司助力太湖隧道项目 造福苏锡常

库仑焦工 发表了文章 • 0 个评论 • 1969 次浏览 • 2017-08-04 09:09 • 来自相关话题

    作为《江苏省高速公路网规划》中“横六”的组成部分,苏锡常南部高速公路是无锡迄今为止单体投资规模最大的公路基础设施项目,将成为无锡高速公路环线的重要部分,填补高速公路环线在市区西南部的空白,优化全市高速公路网络布局。     库仑公司与中设设计集团等单位密切合作,运用库仑地质建模EVS软件,为太湖隧道建立了三维地质模型,将岩土工程勘察成果可视化,使地质概况直观地展示给工程项目人员,提升工程建设质量和进度,为今后地下工程BIM技术的实践和推广提供应用参考。项目工作量:本次建模范围长约10.8公里,建模主要使用到的数据为原始钻孔数据(约1000个钻孔)。                                                                        部分钻孔分布展示项目特点:本次建模主要运用到的是钻孔数据,利用Access建立地质钻孔数据库并通过数据提取等功能自动筛选出建模所需要的数据,在既保证效率的情况下,也保证结果的准确。数据整理完毕后连接EVS的各类功能的模块形成逻辑网来完成建模。在构建出三维地质模型之后,并不意味着构建三维可视化模型已经结束,在这个阶段中要返回数据资料中,根据已收集的二维地层剖面图,进行模型剖面与已知剖面的拟合,找出软件在构建模型时实际不符合的地方,根据实际情况进行参数的修改和适当的增减钻孔数据(虚拟钻孔)。已知剖面与模型剖面的拟合过程即为模型接近实际情况的过程,因此,模型完善阶段的是非常重要的。三维地质模型创建完成后,可以导入设计部门做好的结构构件,例如各种支护结构构件,从而更好的对模型进行展示,并判断设计方案在地层中的准确位置和周围的地质情况,为设计方案是否合理提供更直观更快捷的参考。EVS建模思路剖切模型EVS软件建模成果展示——三维地质模型EVS软件建模成果展示——地层分离模型软件优势: 地下工程勘察作为建筑业中的一环,长期游离于BIM之外。通过本案例初步实践表明,利用三维地质建模软件EVS将岩土工程勘察成果三维可视化,实现上部建筑与其地下空间工程地质信息的三维融合是具有可操作性的,它将本地区的地质概况直观地展示给工程项目人员,并为其他部门提供三维可视化的数据,进一步提升本项目的工程建设质量和进度,为今后地下工程BIM技术的实践和推广提供应用参考。围堰下的基坑开挖示意图 查看全部
    作为《江苏省高速公路网规划》中“横六”的组成部分,苏锡常南部高速公路是无锡迄今为止单体投资规模最大的公路基础设施项目,将成为无锡高速公路环线的重要部分,填补高速公路环线在市区西南部的空白,优化全市高速公路网络布局。     库仑公司与中设设计集团等单位密切合作,运用库仑地质建模EVS软件,为太湖隧道建立了三维地质模型,将岩土工程勘察成果可视化,使地质概况直观地展示给工程项目人员,提升工程建设质量和进度,为今后地下工程BIM技术的实践和推广提供应用参考。项目工作量:本次建模范围长约10.8公里,建模主要使用到的数据为原始钻孔数据(约1000个钻孔)。                                                                        部分钻孔分布展示项目特点:本次建模主要运用到的是钻孔数据,利用Access建立地质钻孔数据库并通过数据提取等功能自动筛选出建模所需要的数据,在既保证效率的情况下,也保证结果的准确。数据整理完毕后连接EVS的各类功能的模块形成逻辑网来完成建模。在构建出三维地质模型之后,并不意味着构建三维可视化模型已经结束,在这个阶段中要返回数据资料中,根据已收集的二维地层剖面图,进行模型剖面与已知剖面的拟合,找出软件在构建模型时实际不符合的地方,根据实际情况进行参数的修改和适当的增减钻孔数据(虚拟钻孔)。已知剖面与模型剖面的拟合过程即为模型接近实际情况的过程,因此,模型完善阶段的是非常重要的。三维地质模型创建完成后,可以导入设计部门做好的结构构件,例如各种支护结构构件,从而更好的对模型进行展示,并判断设计方案在地层中的准确位置和周围的地质情况,为设计方案是否合理提供更直观更快捷的参考。EVS建模思路剖切模型EVS软件建模成果展示——三维地质模型EVS软件建模成果展示——地层分离模型软件优势: 地下工程勘察作为建筑业中的一环,长期游离于BIM之外。通过本案例初步实践表明,利用三维地质建模软件EVS将岩土工程勘察成果三维可视化,实现上部建筑与其地下空间工程地质信息的三维融合是具有可操作性的,它将本地区的地质概况直观地展示给工程项目人员,并为其他部门提供三维可视化的数据,进一步提升本项目的工程建设质量和进度,为今后地下工程BIM技术的实践和推广提供应用参考。围堰下的基坑开挖示意图

某地区三维地质建模及填挖方优化

库仑焦工 发表了文章 • 0 个评论 • 1777 次浏览 • 2017-08-04 09:06 • 来自相关话题

项目背景:本项目拟在某地搭建大型商业中心,需要在该处进行填挖方量计算,通过钻孔及地面点勘察数据完成对某地区的三维地质建模工作,且导入该商业中心的CAD规划图,然后通过软件强大的计算功能来得出填方挖方的土方量,让工程师更直观的观察该地区的填挖方情况。                                              图1 某地区三维地质模型图2 某地区三维地质模型项目特点:本模型运用EVS强大的计算功能使填挖方计算方便快捷,并结合三维地质模型使得整个场地的填挖方位置一目了然。图3 填挖方后的地质模型图4 最终的填方挖方土方量 软件优势: EVS拥有强大的计算能力,除了可以计算土方量外,还能够计算矿石体积及重量,污染物体积、化学物质体积量等,此外还可以通过Pyhton脚本来完成一系列复杂的计算等功能,让工程师只通过EVS就能够完成需要其他软件协助的各类工作。  查看全部
项目背景:本项目拟在某地搭建大型商业中心,需要在该处进行填挖方量计算,通过钻孔及地面点勘察数据完成对某地区的三维地质建模工作,且导入该商业中心的CAD规划图,然后通过软件强大的计算功能来得出填方挖方的土方量,让工程师更直观的观察该地区的填挖方情况。                                              图1 某地区三维地质模型图2 某地区三维地质模型项目特点:本模型运用EVS强大的计算功能使填挖方计算方便快捷,并结合三维地质模型使得整个场地的填挖方位置一目了然。图3 填挖方后的地质模型图4 最终的填方挖方土方量 软件优势: EVS拥有强大的计算能力,除了可以计算土方量外,还能够计算矿石体积及重量,污染物体积、化学物质体积量等,此外还可以通过Pyhton脚本来完成一系列复杂的计算等功能,让工程师只通过EVS就能够完成需要其他软件协助的各类工作。 

EVS中不同区域模型的拼接

库仑焦工 发表了文章 • 0 个评论 • 2070 次浏览 • 2017-08-02 13:54 • 来自相关话题

    对于一些尺寸和钻孔数据量很大的模型,如果由一个人完成模型的创建工作,工作量将非常大。此时,我们可以把钻孔数据根据地层的复杂程度和数据量分成不同的区域,由不同的工程师完成,再把各个部分拼合在一起即可。    通常,有两种方法拼合模型。对于地层比较简单的情况,可以直接合并不同区域模型经过层序划分以后得到的gmf文件(或直接合并钻孔文件)。gmf文件EVS中一种用于标记每个层面点的文件,也就说只要将不同区域的gmf文件中同一层的点合并到一个文件中即可。这个过程可以通过Excel快速实现,也可以通过编写简单的程序实现。最后,再通过合并后的gmf文件建模即可。    当模型比较复杂时,可能不同的区域有着完全不同的层序和地层数量,此时合并gmf将比较麻烦,因此,对于这种情况,我们可以先创建两个不同的区域的模型,再对最终的数据结果进行合并和拼接。下面介绍采用这种方法时需要注意的问题和细节。    把多个模型拼接在一起最重要的是要将模型接合处的钻孔进行处理,接合处重合的钻孔数量足够多的话,就能保证两个不同模型边界处的差值结果相同,从而确保接合处模型的精确衔接。    上图显示的是两个地块的钻孔分布图,呈现上下的关系只是为了方便我们观察钻孔的分布情况。现在我们想将这两个不同区域的模型拼接在一起,可以看到拼接处有大量重合的钻孔,这些钻孔能够分别将拼接处的模型建立起来。                                  上图是两块钻孔区域建立的模型在同一位置的截面图,可以看出剖面完全一致,那么接下来只要将两个模型拼接在一起即可。     上图即为两个模型拼接后的效果。因此,拼接模型的关键在于确保拼接区域有足够重叠的钻孔数据,这样就可以很好的建立各自区域的模型并将它们平滑的拼接起来。     附件中有两个例题(可以用EVS试用版打开),merge-geo-regions-400例题中,东边方向的钻孔数据向西越过中线延伸400英尺,西侧钻孔数据中心从中心线向东延伸400英尺,我们可以看到在西北区域,上部区域的钻孔数据是缺失的,因此两者建立的模型也有些许差异(如下图所示),在拼接处数据不够多的情况下,建立的模型是较难很平滑的拼接在一起的。上图所示模型拼接不完善处    因此,在EVS拼接不同部分的模型时,要确保拼接区域有足够的的钻孔重叠,即建模时应该采用比所需建模区域更大的钻孔数据(如下图所示),这样才能保证模型在边缘处的精确对接。 总得来说,合并地质模型可以按以下原则进行:1) 若钻孔数量较少,采用合并gmf的方式或合并钻孔统一建模。2) 若钻孔数量较多,但是地层数量较少,采用合并gmf的方式或合并钻孔统一建模。3) 若钻孔数量较多,地层数量较多,采用合并已经生成的模型的方式,但是需要保证合并区域有足够多的钻孔数据重叠。4) 若钻孔数量较多,地层复杂,采用合并已经生成的模型的方式,但是需要保证合并区域有足够多的钻孔数据重叠。项目工程文件已包含在附件中,可在试用版中打开操作,请自行下载学习。Combined Mode for KulunWen.zip 查看全部
    对于一些尺寸和钻孔数据量很大的模型,如果由一个人完成模型的创建工作,工作量将非常大。此时,我们可以把钻孔数据根据地层的复杂程度和数据量分成不同的区域,由不同的工程师完成,再把各个部分拼合在一起即可。    通常,有两种方法拼合模型。对于地层比较简单的情况,可以直接合并不同区域模型经过层序划分以后得到的gmf文件(或直接合并钻孔文件)。gmf文件EVS中一种用于标记每个层面点的文件,也就说只要将不同区域的gmf文件中同一层的点合并到一个文件中即可。这个过程可以通过Excel快速实现,也可以通过编写简单的程序实现。最后,再通过合并后的gmf文件建模即可。    当模型比较复杂时,可能不同的区域有着完全不同的层序和地层数量,此时合并gmf将比较麻烦,因此,对于这种情况,我们可以先创建两个不同的区域的模型,再对最终的数据结果进行合并和拼接。下面介绍采用这种方法时需要注意的问题和细节。    把多个模型拼接在一起最重要的是要将模型接合处的钻孔进行处理,接合处重合的钻孔数量足够多的话,就能保证两个不同模型边界处的差值结果相同,从而确保接合处模型的精确衔接。    上图显示的是两个地块的钻孔分布图,呈现上下的关系只是为了方便我们观察钻孔的分布情况。现在我们想将这两个不同区域的模型拼接在一起,可以看到拼接处有大量重合的钻孔,这些钻孔能够分别将拼接处的模型建立起来。                                  上图是两块钻孔区域建立的模型在同一位置的截面图,可以看出剖面完全一致,那么接下来只要将两个模型拼接在一起即可。     上图即为两个模型拼接后的效果。因此,拼接模型的关键在于确保拼接区域有足够重叠的钻孔数据,这样就可以很好的建立各自区域的模型并将它们平滑的拼接起来。     附件中有两个例题(可以用EVS试用版打开),merge-geo-regions-400例题中,东边方向的钻孔数据向西越过中线延伸400英尺,西侧钻孔数据中心从中心线向东延伸400英尺,我们可以看到在西北区域,上部区域的钻孔数据是缺失的,因此两者建立的模型也有些许差异(如下图所示),在拼接处数据不够多的情况下,建立的模型是较难很平滑的拼接在一起的。上图所示模型拼接不完善处    因此,在EVS拼接不同部分的模型时,要确保拼接区域有足够的的钻孔重叠,即建模时应该采用比所需建模区域更大的钻孔数据(如下图所示),这样才能保证模型在边缘处的精确对接。 总得来说,合并地质模型可以按以下原则进行:1) 若钻孔数量较少,采用合并gmf的方式或合并钻孔统一建模。2) 若钻孔数量较多,但是地层数量较少,采用合并gmf的方式或合并钻孔统一建模。3) 若钻孔数量较多,地层数量较多,采用合并已经生成的模型的方式,但是需要保证合并区域有足够多的钻孔数据重叠。4) 若钻孔数量较多,地层复杂,采用合并已经生成的模型的方式,但是需要保证合并区域有足够多的钻孔数据重叠。项目工程文件已包含在附件中,可在试用版中打开操作,请自行下载学习。Combined Mode for KulunWen.zip

GEO5案例:基坑分步开挖+锚杆支护

库仑沈工 发表了文章 • 0 个评论 • 2551 次浏览 • 2017-07-04 10:05 • 来自相关话题

项目名称:某深基坑项目使用软件:GEO5岩土工程有限元分析设计方案:基坑分步开挖,岩土材料从上之下分别为杂填土、粉质粘土~砂质粘土、粉质粘土、粘质粉土~砂质、粘土、细砂、圆砾。 项目特点:基坑开挖支护项目计算较难,本案例分步开挖,表面喷锚,利用梁单元模拟。详细点击:http://www.wen.kulunsoft.com/question/297软件优势:GEO5「岩土工程有限元分析」模块可以考虑做基坑挖方工程,此项目即采用该模块实现分步开挖计算。过程与结果:等效塑性如上图,边坡稳定性均满足要求。 查看全部
项目名称:某深基坑项目使用软件:GEO5岩土工程有限元分析设计方案:基坑分步开挖,岩土材料从上之下分别为杂填土、粉质粘土~砂质粘土、粉质粘土、粘质粉土~砂质、粘土、细砂、圆砾。 项目特点:基坑开挖支护项目计算较难,本案例分步开挖,表面喷锚,利用梁单元模拟。详细点击:http://www.wen.kulunsoft.com/question/297软件优势:GEO5「岩土工程有限元分析」模块可以考虑做基坑挖方工程,此项目即采用该模块实现分步开挖计算。过程与结果:等效塑性如上图,边坡稳定性均满足要求。

EVS案例:隧道三维地质模型-国内某湖底隧道

库仑沈工 发表了文章 • 0 个评论 • 2491 次浏览 • 2017-06-27 08:54 • 来自相关话题

项目名称:国内某湖底隧道三维地质模型使用软件:EVS项目背景:根据已有勘察数据(钻孔数据),利用EVS来建立该隧道三维地质模型,并在建模后导入结构构件且进行基坑开挖工作,在地下工程中的开展BIM技术的应用。地层分离模型项目工作量:本次建模范围长约10.8公里,建模主要使用到的数据为原始钻孔数据(约100个钻孔)。 钻孔分布展示项目特点:1.数据库整理:本次建模主要运用到的是钻孔数据,利用Access建立地质钻孔数据库并通过Matlab数据提取等功能自动筛选出建模所需要的数据,在既保证效率的情况下,也保证结果的准确。2.EVS建模:数据整理完毕后连接EVS的各类功能的模块形成逻辑网来完成建模。在构建出三维地质模型之后,并不意味着构建三维可视化模型已经结束,在这个阶段中要需返回数据资料中,根据已收集的二维地层剖面图,进行模型剖面与已知剖面的拟合,找出软件在构建模型时实际不符合的地方,根据实际情况进行参数的修改和适当的增减钻孔数据(虚拟钻孔)。已知剖面与模型剖面的拟合过程即为模型接近实际情况的过程,因此,模型完善阶段是非常重要的。3.导入结构构件:三维地质模型创建完成后,可以导入设计部门做好的结构构件,例如各种支护结构构件,从而更好的对模型进行展示,并判断设计方案在地层中的准确位置和周围的地质情况,为设计方案是否合理提供更直观更快捷的参考。EVS建模思路剖切模型软件优势: 地下工程勘察作为建筑业中的一环,长期游离于BIM之外。通过本案例初步实践表明,利用三维地质建模软件EVS将岩土工程勘察成果三维可视化,实现上部建筑与其地下空间工程地质信息的三维融合是具有可操作性的,它将本地区的地质概况直观地展示给工程项目人员,并为其他部门提供三维可视化的数据,进一步提升本项目的工程建设质量和进度,为今后地下工程BIM技术的实践和推广提供应用参考。围堰下的基坑开挖示意图 查看全部
项目名称:国内某湖底隧道三维地质模型使用软件:EVS项目背景:根据已有勘察数据(钻孔数据),利用EVS来建立该隧道三维地质模型,并在建模后导入结构构件且进行基坑开挖工作,在地下工程中的开展BIM技术的应用。地层分离模型项目工作量:本次建模范围长约10.8公里,建模主要使用到的数据为原始钻孔数据(约100个钻孔)。 钻孔分布展示项目特点:1.数据库整理:本次建模主要运用到的是钻孔数据,利用Access建立地质钻孔数据库并通过Matlab数据提取等功能自动筛选出建模所需要的数据,在既保证效率的情况下,也保证结果的准确。2.EVS建模:数据整理完毕后连接EVS的各类功能的模块形成逻辑网来完成建模。在构建出三维地质模型之后,并不意味着构建三维可视化模型已经结束,在这个阶段中要需返回数据资料中,根据已收集的二维地层剖面图,进行模型剖面与已知剖面的拟合,找出软件在构建模型时实际不符合的地方,根据实际情况进行参数的修改和适当的增减钻孔数据(虚拟钻孔)。已知剖面与模型剖面的拟合过程即为模型接近实际情况的过程,因此,模型完善阶段是非常重要的。3.导入结构构件:三维地质模型创建完成后,可以导入设计部门做好的结构构件,例如各种支护结构构件,从而更好的对模型进行展示,并判断设计方案在地层中的准确位置和周围的地质情况,为设计方案是否合理提供更直观更快捷的参考。EVS建模思路剖切模型软件优势: 地下工程勘察作为建筑业中的一环,长期游离于BIM之外。通过本案例初步实践表明,利用三维地质建模软件EVS将岩土工程勘察成果三维可视化,实现上部建筑与其地下空间工程地质信息的三维融合是具有可操作性的,它将本地区的地质概况直观地展示给工程项目人员,并为其他部门提供三维可视化的数据,进一步提升本项目的工程建设质量和进度,为今后地下工程BIM技术的实践和推广提供应用参考。围堰下的基坑开挖示意图

GEO5案例:挡墙与群桩组合结构

库仑沈工 发表了文章 • 0 个评论 • 2837 次浏览 • 2017-06-20 09:44 • 来自相关话题

项目名称:某路堤挡墙项目使用软件:悬臂式挡土墙设计+群桩设计+土质边坡稳定性分析设计方案:挡墙墙身10m,墙后填土6m。 项目特点:悬臂式挡墙采用群桩基础,并且墙后有6m高填土。软件优势:「悬臂式挡土墙设计」可直接调用「群桩设计」与「土质边坡稳定性分析」,大大提高效率。基本思路:拆分结构,分别计算,宏观把控整体稳定性。计算结果:一、倾覆滑移验算 倾覆滑移稳定性验算倾覆滑移验算 满足要求二、承载力验算名称 : 分析工况阶段 : 1截面抗弯+抗压验算:钢筋数量20 钢筋直径32.0 mm; 保护层厚度 70.0 mm结构类型 (配筋率) : 按柱计算配筋率r = 3.200 % > 0.550 % = r min荷载 : N = -5013.22 kN (受压) ; M = 1202.15 kNm承载力 : Nu = -5843.69 kN; Mu = 1401.29 kNm桩配筋设计 满足要求截面抗剪验算:剪力筋 - 直径 14.0 mm; 间距 12.0 mm截面受剪承载力设计值: Vu = 957.57kN > 951.05 kN = V截面满足要求。三、截面强度验算墙身验算(墙址墙踵台阶顶截面)截面强度验算和配筋验算钢筋数量120 钢筋直径32.0 mm, 钢筋保护层50.0 mm截面宽度=12.00m截面高度=3.97m 配筋率r=0.21%>0.20%=rmin中和轴位置x/b1=0.25m16753.97kN=V截面受弯承载力设计值Mu=131973.51kNm>82835.75kNm=M 截面满足要求。四、整体稳定性验算名称 :分析工况阶段 : 1-1自动搜索后的滑动面边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 1.47 > 1.30边坡稳定性 满足要求名称 : 分析工况阶段 : 1-2自动搜索后的滑动面边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 3.75 > 1.30边坡稳定性 满足要求 查看全部
项目名称:某路堤挡墙项目使用软件:悬臂式挡土墙设计+群桩设计+土质边坡稳定性分析设计方案:挡墙墙身10m,墙后填土6m。 项目特点:悬臂式挡墙采用群桩基础,并且墙后有6m高填土。软件优势:「悬臂式挡土墙设计」可直接调用「群桩设计」与「土质边坡稳定性分析」,大大提高效率。基本思路:拆分结构,分别计算,宏观把控整体稳定性。计算结果:一、倾覆滑移验算 倾覆滑移稳定性验算倾覆滑移验算 满足要求二、承载力验算名称 : 分析工况阶段 : 1截面抗弯+抗压验算:钢筋数量20 钢筋直径32.0 mm; 保护层厚度 70.0 mm结构类型 (配筋率) : 按柱计算配筋率r = 3.200 % > 0.550 % = r min荷载 : N = -5013.22 kN (受压) ; M = 1202.15 kNm承载力 : Nu = -5843.69 kN; Mu = 1401.29 kNm桩配筋设计 满足要求截面抗剪验算:剪力筋 - 直径 14.0 mm; 间距 12.0 mm截面受剪承载力设计值: Vu = 957.57kN > 951.05 kN = V截面满足要求。三、截面强度验算墙身验算(墙址墙踵台阶顶截面)截面强度验算和配筋验算钢筋数量120 钢筋直径32.0 mm, 钢筋保护层50.0 mm截面宽度=12.00m截面高度=3.97m 配筋率r=0.21%>0.20%=rmin中和轴位置x/b1=0.25m<2.52m=xbh0/b1截面受剪承载力设计值Vu=47026.04kN>16753.97kN=V截面受弯承载力设计值Mu=131973.51kNm>82835.75kNm=M 截面满足要求。四、整体稳定性验算名称 :分析工况阶段 : 1-1自动搜索后的滑动面边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 1.47 > 1.30边坡稳定性 满足要求名称 : 分析工况阶段 : 1-2自动搜索后的滑动面边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 3.75 > 1.30边坡稳定性 满足要求

GEO5案例:重力式挡土墙设计-四川某大坝堤防

库仑沈工 发表了文章 • 0 个评论 • 2983 次浏览 • 2017-06-09 11:29 • 来自相关话题

项目名称:四川某大坝堤防使用软件:GEO5重力式挡土墙设计设计方案:异形挡墙高10m 软件优势:1.[墙身截面尺寸]已列出常用挡墙截面,本案例用户可以通过点击进行自定义挡墙截面。2.软件可设置墙后填土,理论计算更符合实际情况。3.当挡土墙基地偏心距为负时,GEO5将其考虑为0是合理且符合工程实际。处理原因:针对上述第三点优势,软件主要考虑以下三个原因:1.地基承载力如果不满足要求,一定是墙前地基首先发生破坏。2.偏心距为负对抗倾覆有利。3.偏心距为负时墙后土压力将大于主动土压力,偏心距不可能为负。过程与结果:一、倾覆滑移稳定性验算倾覆稳定性验算抗倾覆力矩Mres=1960.12kNm/m倾覆力矩Movr=233.94kNm/m安全系数 = 8.38 > 1.60倾覆稳定性验算 满足要求滑移稳定性验算抗滑力(平行基底)Hres=516.82kN/m滑动力(平行基底)Hact=61.89kN/m安全系数 = 8.35 > 1.30滑移稳定性验算 满足要求倾覆滑移验算 满足要求二、承载力验算 注:详见GEO5挡墙中基底偏心距为负时取零的说明。三、截面强度验算离墙顶0.10 m处施工缝的截面强度验算截面高度 h = 0.54 m截面受剪承载力设计值Vu=415.80kN/m>0.02kN/m=V截面受压承载力设计值Nu=4337.73kN/m>1.70kN/m=N截面受弯承载力设计值Mu=0.46kNm/m>0.01kNm/m=M截面承载力 满足要求四、外部稳定性验算边坡稳定性验算 (毕肖普法(Bishop))滑面上下滑力的总和 :Fa =535.48kN/m滑面上抗滑力的总和 :Fp =1061.86kN/m下滑力矩 :Ma =8155.41kNm/m抗滑力矩 :Mp =16172.16kNm/m安全系数 = 1.98 > 1.30边坡稳定性 满足要求 查看全部
项目名称:四川某大坝堤防使用软件:GEO5重力式挡土墙设计设计方案:异形挡墙高10m 软件优势:1.[墙身截面尺寸]已列出常用挡墙截面,本案例用户可以通过点击进行自定义挡墙截面。2.软件可设置墙后填土,理论计算更符合实际情况。3.当挡土墙基地偏心距为负时,GEO5将其考虑为0是合理且符合工程实际。处理原因:针对上述第三点优势,软件主要考虑以下三个原因:1.地基承载力如果不满足要求,一定是墙前地基首先发生破坏。2.偏心距为负对抗倾覆有利。3.偏心距为负时墙后土压力将大于主动土压力,偏心距不可能为负。过程与结果:一、倾覆滑移稳定性验算倾覆稳定性验算抗倾覆力矩Mres=1960.12kNm/m倾覆力矩Movr=233.94kNm/m安全系数 = 8.38 > 1.60倾覆稳定性验算 满足要求滑移稳定性验算抗滑力(平行基底)Hres=516.82kN/m滑动力(平行基底)Hact=61.89kN/m安全系数 = 8.35 > 1.30滑移稳定性验算 满足要求倾覆滑移验算 满足要求二、承载力验算 注:详见GEO5挡墙中基底偏心距为负时取零的说明。三、截面强度验算离墙顶0.10 m处施工缝的截面强度验算截面高度 h = 0.54 m截面受剪承载力设计值Vu=415.80kN/m>0.02kN/m=V截面受压承载力设计值Nu=4337.73kN/m>1.70kN/m=N截面受弯承载力设计值Mu=0.46kNm/m>0.01kNm/m=M截面承载力 满足要求四、外部稳定性验算边坡稳定性验算 (毕肖普法(Bishop))滑面上下滑力的总和 :Fa =535.48kN/m滑面上抗滑力的总和 :Fp =1061.86kN/m下滑力矩 :Ma =8155.41kNm/m抗滑力矩 :Mp =16172.16kNm/m安全系数 = 1.98 > 1.30边坡稳定性 满足要求

SOFiSTiK案例:综合管廊项目—西南某市政项目

库仑沈工 发表了文章 • 0 个评论 • 2159 次浏览 • 2017-06-09 11:22 • 来自相关话题

项目名称:西南某市政综合管廊项目使用软件:AutoCAD+SOFiSTiK或Revit+SOFiSTiK设计方案一:AutoCAD建模设计方案二:Revit建模 项目特点:地下工程,承受多种荷载作用,采用专业的有限元分析软件,容易在多个部位出现应力高度集中。软件优势:建模方面,软件有以下两点显著优势:1.SOFiSTiK软件支持多接口,前处理器可选择以下任意一种2.当采用Revit前处理器时,所建模型并不需要导入导出,SOFiSTiK可直接读取Revit数据库,并生成网格模型。过程与结果:底板主应力I底板主应力II 地面以下4.8处板主应力I 地面以下4.8m处板主应力II 主弯矩I 查看全部
项目名称:西南某市政综合管廊项目使用软件:AutoCAD+SOFiSTiK或Revit+SOFiSTiK设计方案一:AutoCAD建模设计方案二:Revit建模 项目特点:地下工程,承受多种荷载作用,采用专业的有限元分析软件,容易在多个部位出现应力高度集中。软件优势:建模方面,软件有以下两点显著优势:1.SOFiSTiK软件支持多接口,前处理器可选择以下任意一种2.当采用Revit前处理器时,所建模型并不需要导入导出,SOFiSTiK可直接读取Revit数据库,并生成网格模型。过程与结果:底板主应力I底板主应力II 地面以下4.8处板主应力I 地面以下4.8m处板主应力II 主弯矩I

testing002

回答

Jlee 发起了问题 • 1 人关注 • 0 个回答 • 1759 次浏览 • 2017-06-01 16:09 • 来自相关话题