竖井

竖井

GEO5某圆形顶管工作井稳定性分析

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 305 次浏览 • 2023-06-27 11:30 • 来自相关话题

一、项目背景       某地下暗挖施工采用泥水平衡岩石顶管机施工工艺,管材采用DN2400管径钢筋混凝土管。顶管机机头自重56t,直径为2.92m,长5.85m,采用全地面起重机整体吊入工作井内导轨上,然后在顶推设备作用下进行顶进作业。工作井采用护壁逆作法施工,深度为15m,支护结构采用桩径1m咬合式排桩,桩长21m,嵌固深度7m,在深度0.5m处设置1m×1m冠梁、5.6m与10.2m处设2道0.8×0.8钢筋混凝土环梁支撑。图1:顶管机机头吊装现场图2:吊装作业平面布置二、设计方案       工作井由设计单位设计,未考虑临近桩基吊车荷载对桩基础影响,设计地面超载一般为20kPa,本次吊装施工中,地面超载远超过了设计允许值。超载过大容易导致工作井位移过大,影响支护结构安全。吊装工况的发生,是设计单位在设计阶段无法预料的,施工单位在该特殊工况下,应进行安全性复核。       由于R3、R4离基坑较远,超载引起的土压力扩散对工作井影响较小,仅考虑R1、R2对工作井影响。支腿1受力912.30 kN ,支腿2受力 702.44 kN,支腿下设置路基箱1.5m×6m,分别等效局部荷载为101.37kPa,78.05kPa。       模型建立过程中,地基土体采用修正Mohr-Coulomb模型进行模拟,土压力采用主动土压力计算,并考虑地下水位影响,地下水位根据施工实测取-6m。支护结构受力主要在水平方向,忽略支护桩的自重等轴向受力。选用GEO5“竖井模块”进行结构受力计算。岩土材料指标如下:三、分析计算       依次对各工况进行计算分析,得到围护桩受力情况见图3、图4。图3:围护桩弯矩图4:围护桩剪力      桩身受力弯矩最大值为1170.13kNm,剪力最大值417.49KN,均在第三道腰梁处(Z=10.2m),与桩身截面承载力1168.49 kN·m大致相等,考虑吊车荷载为偶然状态下短暂施加,非持久设计工况下,可认为达到承载力状态。开挖至基底时,桩身位移达到最大为8.1mm。       Z=0.5m、Z=5.6m、Z=10.2m处设置三道腰梁,受力分别如下图5至图10       通过腰梁受力分析,三道腰梁受力包络图均表现椭圆形,均存在受压区和受拉区,且受压区受拉区径向对称,最大值相似。具有环状物受力形态的共同点。第一道和第二道腰梁水平环向受力性状基本相同,随着深度增加,呈现第三道腰梁>第二道腰梁>第一道腰梁。       最大弯矩值1070.13 kN.m与桩身截面承载力1168.49kN.m大致相等,考虑吊车荷载为偶然状态下短暂施加,以及荷载取值与材料性能的安全储备,可认为满足安全要求。       第三道腰梁受力最大,以第三道腰梁截面复核为例,根据《混凝土结构设计规范》GB50010第6.1.2条,在最大弯矩和剪力作用下,上部钢筋应配置钢筋面积1280mm2,实配6C20(钢筋面积1885mm2),腰筋应配置1224mm2,实配4 C 20(钢筋面积1257mm2),下部纵筋应配置2419mm2,实配钢筋8 C 20(钢筋面积2513mm2),满足要求。四、 总结       暗挖始发井和顶管工作井等竖井结构不同于一般基坑工程,不仅有围护结构,还需要加环形腰梁。利用GEO5竖井模块建模,使用方便,可以得到环形腰梁的内力包络图,为后续结构设计提供受力依据。 查看全部
<p><strong>一、</strong><strong>项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某地下暗挖施工采用泥水平衡岩石顶管机施工工艺,管材采用DN2400管径钢筋混凝土管。顶管机机头自重56t,直径为2.92m,长5.85m,采用全地面起重机整体吊入工作井内导轨上,然后在顶推设备作用下进行顶进作业。工作井采用护壁逆作法施工,深度为15m,支护结构采用桩径1m咬合式排桩,桩长21m,嵌固深度7m,在深度0.5m处设置1m×1m冠梁、5.6m与10.2m处设2道0.8×0.8钢筋混凝土环梁支撑。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836169144166.png" alt="image.png"/></p><p style="text-align: center;">图1:顶管机机头吊装现场</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836205915947.png" alt="image.png"/></p><p style="text-align: center;">图2:吊装作业平面布置</p><p><strong>二、</strong><strong>设计方案</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;工作井由设计单位设计,未考虑临近桩基吊车荷载对桩基础影响,设计地面超载一般为20kPa,本次吊装施工中,地面超载远超过了设计允许值。超载过大容易导致工作井位移过大,影响支护结构安全。吊装工况的发生,是设计单位在设计阶段无法预料的,施工单位在该特殊工况下,应进行安全性复核。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;由于R3、R4离基坑较远,超载引起的土压力扩散对工作井影响较小,仅考虑R1、R2对工作井影响。支腿1受力912.30 kN ,支腿2受力 702.44 kN,支腿下设置路基箱1.5m×6m,分别等效局部荷载为101.37kPa,78.05kPa。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;模型建立过程中,地基土体采用修正Mohr-Coulomb模型进行模拟,土压力采用主动土压力计算,并考虑地下水位影响,地下水位根据施工实测取-6m。支护结构受力主要在水平方向,忽略支护桩的自重等轴向受力。选用GEO5“竖井模块”进行结构受力计算。</p><p>岩土材料指标如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836283176171.png" alt="image.png"/></p><p><strong>三、</strong><strong>分析计算</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;依次对各工况进行计算分析,得到围护桩受力情况见图3、图4。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836349485773.png" alt="image.png" width="288" height="316" style="width: 288px; height: 316px;"/></p><p style="text-align: center;">图3:围护桩弯矩</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836366130231.png" alt="image.png" width="270" height="348" style="width: 270px; height: 348px;"/></p><p style="text-align: center;">图4:围护桩剪力</p><p>&nbsp; &nbsp; &nbsp; 桩身受力弯矩最大值为1170.13kNm,剪力最大值417.49KN,均在第三道腰梁处(Z=10.2m),与桩身截面承载力1168.49 kN·m大致相等,考虑吊车荷载为偶然状态下短暂施加,非持久设计工况下,可认为达到承载力状态。开挖至基底时,桩身位移达到最大为8.1mm。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;Z=0.5m、Z=5.6m、Z=10.2m处设置三道腰梁,受力分别如下图5至图10</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836481769003.png" alt="image.png" width="509" height="244" style="width: 509px; height: 244px;"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836472790504.png" alt="image.png" width="1" height="1" style="width: 1px; height: 1px;"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836519402673.png" alt="image.png" width="521" height="243" style="width: 521px; height: 243px;"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836721393086.png" alt="image.png" width="540" height="225" style="width: 540px; height: 225px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;通过腰梁受力分析,三道腰梁受力包络图均表现椭圆形,均存在受压区和受拉区,且受压区受拉区径向对称,最大值相似。具有环状物受力形态的共同点。第一道和第二道腰梁水平环向受力性状基本相同,随着深度增加,呈现第三道腰梁>第二道腰梁>第一道腰梁。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;最大弯矩值1070.13 kN.m与桩身截面承载力1168.49kN.m大致相等,考虑吊车荷载为偶然状态下短暂施加,以及荷载取值与材料性能的安全储备,可认为满足安全要求。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第三道腰梁受力最大,以第三道腰梁截面复核为例,根据《混凝土结构设计规范》GB50010第6.1.2条,在最大弯矩和剪力作用下,上部钢筋应配置钢筋面积1280mm2,实配6C20(钢筋面积1885mm2),腰筋应配置1224mm2,实配4 C 20(钢筋面积1257mm2),下部纵筋应配置2419mm2,实配钢筋8 C 20(钢筋面积2513mm2),满足要求。</p><p><strong>四、&nbsp;</strong><strong>总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;暗挖始发井和顶管工作井等竖井结构不同于一般基坑工程,不仅有围护结构,还需要加环形腰梁。利用GEO5竖井模块建模,使用方便,可以得到环形腰梁的内力包络图,为后续结构设计提供受力依据。</p>

GEO5某圆形顶管工作井稳定性分析

岩土工程南京库仑张工 发表了文章 • 0 个评论 • 305 次浏览 • 2023-06-27 11:30 • 来自相关话题

一、项目背景       某地下暗挖施工采用泥水平衡岩石顶管机施工工艺,管材采用DN2400管径钢筋混凝土管。顶管机机头自重56t,直径为2.92m,长5.85m,采用全地面起重机整体吊入工作井内导轨上,然后在顶推设备作用下进行顶进作业。工作井采用护壁逆作法施工,深度为15m,支护结构采用桩径1m咬合式排桩,桩长21m,嵌固深度7m,在深度0.5m处设置1m×1m冠梁、5.6m与10.2m处设2道0.8×0.8钢筋混凝土环梁支撑。图1:顶管机机头吊装现场图2:吊装作业平面布置二、设计方案       工作井由设计单位设计,未考虑临近桩基吊车荷载对桩基础影响,设计地面超载一般为20kPa,本次吊装施工中,地面超载远超过了设计允许值。超载过大容易导致工作井位移过大,影响支护结构安全。吊装工况的发生,是设计单位在设计阶段无法预料的,施工单位在该特殊工况下,应进行安全性复核。       由于R3、R4离基坑较远,超载引起的土压力扩散对工作井影响较小,仅考虑R1、R2对工作井影响。支腿1受力912.30 kN ,支腿2受力 702.44 kN,支腿下设置路基箱1.5m×6m,分别等效局部荷载为101.37kPa,78.05kPa。       模型建立过程中,地基土体采用修正Mohr-Coulomb模型进行模拟,土压力采用主动土压力计算,并考虑地下水位影响,地下水位根据施工实测取-6m。支护结构受力主要在水平方向,忽略支护桩的自重等轴向受力。选用GEO5“竖井模块”进行结构受力计算。岩土材料指标如下:三、分析计算       依次对各工况进行计算分析,得到围护桩受力情况见图3、图4。图3:围护桩弯矩图4:围护桩剪力      桩身受力弯矩最大值为1170.13kNm,剪力最大值417.49KN,均在第三道腰梁处(Z=10.2m),与桩身截面承载力1168.49 kN·m大致相等,考虑吊车荷载为偶然状态下短暂施加,非持久设计工况下,可认为达到承载力状态。开挖至基底时,桩身位移达到最大为8.1mm。       Z=0.5m、Z=5.6m、Z=10.2m处设置三道腰梁,受力分别如下图5至图10       通过腰梁受力分析,三道腰梁受力包络图均表现椭圆形,均存在受压区和受拉区,且受压区受拉区径向对称,最大值相似。具有环状物受力形态的共同点。第一道和第二道腰梁水平环向受力性状基本相同,随着深度增加,呈现第三道腰梁>第二道腰梁>第一道腰梁。       最大弯矩值1070.13 kN.m与桩身截面承载力1168.49kN.m大致相等,考虑吊车荷载为偶然状态下短暂施加,以及荷载取值与材料性能的安全储备,可认为满足安全要求。       第三道腰梁受力最大,以第三道腰梁截面复核为例,根据《混凝土结构设计规范》GB50010第6.1.2条,在最大弯矩和剪力作用下,上部钢筋应配置钢筋面积1280mm2,实配6C20(钢筋面积1885mm2),腰筋应配置1224mm2,实配4 C 20(钢筋面积1257mm2),下部纵筋应配置2419mm2,实配钢筋8 C 20(钢筋面积2513mm2),满足要求。四、 总结       暗挖始发井和顶管工作井等竖井结构不同于一般基坑工程,不仅有围护结构,还需要加环形腰梁。利用GEO5竖井模块建模,使用方便,可以得到环形腰梁的内力包络图,为后续结构设计提供受力依据。 查看全部
<p><strong>一、</strong><strong>项目背景</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;某地下暗挖施工采用泥水平衡岩石顶管机施工工艺,管材采用DN2400管径钢筋混凝土管。顶管机机头自重56t,直径为2.92m,长5.85m,采用全地面起重机整体吊入工作井内导轨上,然后在顶推设备作用下进行顶进作业。工作井采用护壁逆作法施工,深度为15m,支护结构采用桩径1m咬合式排桩,桩长21m,嵌固深度7m,在深度0.5m处设置1m×1m冠梁、5.6m与10.2m处设2道0.8×0.8钢筋混凝土环梁支撑。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836169144166.png" alt="image.png"/></p><p style="text-align: center;">图1:顶管机机头吊装现场</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836205915947.png" alt="image.png"/></p><p style="text-align: center;">图2:吊装作业平面布置</p><p><strong>二、</strong><strong>设计方案</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;工作井由设计单位设计,未考虑临近桩基吊车荷载对桩基础影响,设计地面超载一般为20kPa,本次吊装施工中,地面超载远超过了设计允许值。超载过大容易导致工作井位移过大,影响支护结构安全。吊装工况的发生,是设计单位在设计阶段无法预料的,施工单位在该特殊工况下,应进行安全性复核。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;由于R3、R4离基坑较远,超载引起的土压力扩散对工作井影响较小,仅考虑R1、R2对工作井影响。支腿1受力912.30 kN ,支腿2受力 702.44 kN,支腿下设置路基箱1.5m×6m,分别等效局部荷载为101.37kPa,78.05kPa。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;模型建立过程中,地基土体采用修正Mohr-Coulomb模型进行模拟,土压力采用主动土压力计算,并考虑地下水位影响,地下水位根据施工实测取-6m。支护结构受力主要在水平方向,忽略支护桩的自重等轴向受力。选用GEO5“竖井模块”进行结构受力计算。</p><p>岩土材料指标如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836283176171.png" alt="image.png"/></p><p><strong>三、</strong><strong>分析计算</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;依次对各工况进行计算分析,得到围护桩受力情况见图3、图4。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836349485773.png" alt="image.png" width="288" height="316" style="width: 288px; height: 316px;"/></p><p style="text-align: center;">图3:围护桩弯矩</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836366130231.png" alt="image.png" width="270" height="348" style="width: 270px; height: 348px;"/></p><p style="text-align: center;">图4:围护桩剪力</p><p>&nbsp; &nbsp; &nbsp; 桩身受力弯矩最大值为1170.13kNm,剪力最大值417.49KN,均在第三道腰梁处(Z=10.2m),与桩身截面承载力1168.49 kN·m大致相等,考虑吊车荷载为偶然状态下短暂施加,非持久设计工况下,可认为达到承载力状态。开挖至基底时,桩身位移达到最大为8.1mm。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;Z=0.5m、Z=5.6m、Z=10.2m处设置三道腰梁,受力分别如下图5至图10</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836481769003.png" alt="image.png" width="509" height="244" style="width: 509px; height: 244px;"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836472790504.png" alt="image.png" width="1" height="1" style="width: 1px; height: 1px;"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836519402673.png" alt="image.png" width="521" height="243" style="width: 521px; height: 243px;"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1687836721393086.png" alt="image.png" width="540" height="225" style="width: 540px; height: 225px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;通过腰梁受力分析,三道腰梁受力包络图均表现椭圆形,均存在受压区和受拉区,且受压区受拉区径向对称,最大值相似。具有环状物受力形态的共同点。第一道和第二道腰梁水平环向受力性状基本相同,随着深度增加,呈现第三道腰梁>第二道腰梁>第一道腰梁。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;最大弯矩值1070.13 kN.m与桩身截面承载力1168.49kN.m大致相等,考虑吊车荷载为偶然状态下短暂施加,以及荷载取值与材料性能的安全储备,可认为满足安全要求。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;第三道腰梁受力最大,以第三道腰梁截面复核为例,根据《混凝土结构设计规范》GB50010第6.1.2条,在最大弯矩和剪力作用下,上部钢筋应配置钢筋面积1280mm2,实配6C20(钢筋面积1885mm2),腰筋应配置1224mm2,实配4 C 20(钢筋面积1257mm2),下部纵筋应配置2419mm2,实配钢筋8 C 20(钢筋面积2513mm2),满足要求。</p><p><strong>四、&nbsp;</strong><strong>总结</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;暗挖始发井和顶管工作井等竖井结构不同于一般基坑工程,不仅有围护结构,还需要加环形腰梁。利用GEO5竖井模块建模,使用方便,可以得到环形腰梁的内力包络图,为后续结构设计提供受力依据。</p>