OptumG2

OptumG2

G2 随机分析

岩土工程库仑张崇波 回答了问题 • 2 人关注 • 1 个回答 • 27 次浏览 • 5 天前 • 来自相关话题

OptumG2——土壤水分特征曲线模型

库仑产品库仑赵 发表了文章 • 0 个评论 • 46 次浏览 • 6 天前 • 来自相关话题

         在OptumG2软件中,涉及到水力分析时有三类水分特征曲线模型:        (1)线性        (2)双曲正切        (3)Van Genuchten         很多初步学习软件的工程师可能不太了解其含义和区别,在这里推荐大家拜读《非饱和土力学》卢宁,William J.L著一书的第12章详细了解其概念和意义。如果想要了解如何进行试验,当然相关的论文是非常多的,这里推荐《非饱和土力学》陈仲颐译。通过阅读能够了解水分特征曲线的含义和获得方法。        OptumG2中给出的三类模型,代表这由单参数线性到多参数曲线的三类模型。此前两种均为单一参数控制斜率的曲线,Van Genuchten为应用非常广泛的双参数模型。在软件的材料手册的第14页,我们能够比较直观地通过曲线进行了解。          上面为线性和双曲正切模型的曲线,可以看见h*是控制斜率的参数,通过这个参数控制曲线拟合试验数据。同样的对于Van Genuchten模型也是相同的道理,只不过是通过两个参数控制相应的模型参数进行拟合。         如果想要了解更多的水分特征曲线模型及他们的对比关系,可以参考《土壤水分特征曲线模型模拟性能评价》王愿斌。通过该文章中的一个表1大家能够获得一个更全面的了解。        相信通过上面的书籍和文献,除此接触此概念的工程师能够对水分特征曲线模型及参数有一个了解,能够从陌生转向熟悉,对OPtumG2软件的使用产生促进作用。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;在OptumG2软件中,涉及到水力分析时有三类水分特征曲线模型:</p><p>&nbsp; &nbsp; &nbsp; &nbsp; (1)线性<br/>&nbsp; &nbsp; &nbsp; &nbsp; (2)双曲正切</p><p>&nbsp; &nbsp; &nbsp; &nbsp; (3)Van Genuchten<br/>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;很多初步学习软件的工程师可能不太了解其含义和区别,在这里推荐大家拜读《非饱和土力学》卢宁,William J.L著一书的第12章详细了解其概念和意义。如果想要了解如何进行试验,当然相关的论文是非常多的,这里推荐《非饱和土力学》陈仲颐译。通过阅读能够了解水分特征曲线的含义和获得方法。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; OptumG2中给出的三类模型,代表这由单参数线性到多参数曲线的三类模型。此前两种均为单一参数控制斜率的曲线,Van Genuchten为应用非常广泛的双参数模型。在软件的材料手册的第14页,我们能够比较直观地通过曲线进行了解。</p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1596725082194111.png" alt="image.png" width="351" height="233" style="width: 351px; height: 233px;"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1596725176330253.png" alt="image.png" width="303" height="220" style="width: 303px; height: 220px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;上面为线性和双曲正切模型的曲线,可以看见h<sup>*</sup>是控制斜率的参数,通过这个参数控制曲线拟合试验数据。同样的对于Van&nbsp;Genuchten模型也是相同的道理,只不过是通过两个参数控制相应的模型参数进行拟合。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;如果想要了解更多的水分特征曲线模型及他们的对比关系,可以参考《土壤水分特征曲线模型模拟性能评价》王愿斌。通过该文章中的一个表1大家能够获得一个更全面的了解。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1596725742695267.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1596725762368062.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1596725782248645.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 相信通过上面的书籍和文献,除此接触此概念的工程师能够对水分特征曲线模型及参数有一个了解,能够从陌生转向熟悉,对OPtumG2软件的使用产生促进作用。</p>

极限分析法确定地基极限承载力系数Nγ

库仑产品库仑赵 发表了文章 • 0 个评论 • 76 次浏览 • 2020-07-22 19:43 • 来自相关话题

        我们经常使用经典解析公式进行地基极限承载力的相关计算,但是针对相对复杂的问题,往往各经典公式计算结果的准确性有一定的条件限制,超过该限制则差异性较大,或模型复杂情况下计算过于繁琐。此时极限分析法就能够较好的帮助工程师解决相关问题,并且能够对经典解析解提供良好的安全性定量评价和假定破坏模式的复核。下面进行具体介绍。基于经典假设的地基极限承载力公式如下:       其中,Nc,Nq和Nγ是承载力计算系数,针对基底光滑和粗糙时有非常多的经典求解方法。如极限平衡法、滑移线法等。      系数Nc,Nq均有非常易于计算的显示公式。具体可见《土力学》卢廷浩 第二版 page275-277。但是对于Nγ的求解就相对较为复杂。尤其是当下伏土体摩擦角大于30°各类经典计算方法的差异性会变得比较大,而通常我们计算涉及摩擦角在45°以下都是比较常见的,所以有学者研究用极限分析的方法进行求解,最终求解的准确性误差在3.42%,该准确性精度完全能够满足工程设计。       这里用南京库仑的OptumG2软件采用极限分析法进行关键系数Nγ的求解,对该研究的过程进行还原,并对比软件计算结果和经典方法的计算结果。具体研究文献:Hjiaj M , Lyamin A V , Sloan S W . Numerical limit analysis solutions for the bearing capacity factor Nγ[J]. International Journal of Solids & Structures, 2005, 42(5-6):1681-1704.       计算公式:         其中B是基础宽度,γ为土体重度,Vult是极限承载力.其中极限承载力的求解用极限分析乘数荷载的方式进行求解。         对称模式进行建模:       最终得出如下结果:        此处给出三组对比,更多对比有兴趣者可下载计算文件自行对比:Nγ确定.zip       对比文献计算结果:       介于极限分析上下限解的理论特点,真实解是介于上下限之间的某一值。可以对比相关研究结果,极限分析的结果是非常稳定,且上下限解能够与大多数经典理论对应,且差异较小。这同时也印证着其实OptumG2中的极限分析法对地基极限承载力,包括破坏模式的分析具备非常良好的准确性,与传统的经典计算方法有良好的对应关系。关于用G2确定地基承载力与实际规范解析解的对比结果可见技术贴:http://www.wen.kulunsoft.com/article/347               OptumG2对地基承载力的分析与安全性评估,其实也可以分为两大方向:(1)岩土参数不变,用乘数荷载的方式确定最大极限承载力,然后与设计荷载的比值即为安全性评价系数;(2)在给定的设计荷载下,折减岩土参数,岩土参数的折减系数即为安全性评价系数。        这两类方法均能够定义安全系数法或分分项系数法评价。安全系数法的定义大家比较熟悉,就是比值定义。然后分项系数法以欧标为例,三类方法分项系数组合表如下:       在OptumG2中其实已经内置了欧标的计算组合,用户可以在软件中直接选择,甚至能够自定义各类组合:        至此就将OptumG2中关于地基极限承载力分析,以及适用于工程设计的安全性评价流程做了一个简单的介绍。希望能够对各位工程师产生一定的启发和帮助,具体更多问题可以加入OptumG2官方QQ群:566599410 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp; 我们经常使用经典解析公式进行地基极限承载力的相关计算,但是针对相对复杂的问题,往往各经典公式计算结果的准确性有一定的条件限制,超过该限制则差异性较大,或模型复杂情况下计算过于繁琐。此时极限分析法就能够较好的帮助工程师解决相关问题,并且能够对经典解析解提供良好的安全性定量评价和假定破坏模式的复核。下面进行具体介绍。</p><p>基于经典假设的地基极限承载力公式如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1595417661581893.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;其中,N<sub>c</sub>,N<sub>q</sub>和N<sub>γ</sub>是承载力计算系数,针对基底光滑和粗糙时有非常多的经典求解方法。如极限平衡法、滑移线法等。<br/></p><p>&nbsp; &nbsp; &nbsp; 系数N<sub>c</sub>,N<sub>q</sub>均有非常易于计算的显示公式。具体可见《土力学》卢廷浩 第二版 page275-277。但是对于N<sub>γ</sub>的求解就相对较为复杂。尤其是当下伏土体摩擦角大于30°各类经典计算方法的差异性会变得比较大,而通常我们计算涉及摩擦角在45°以下都是比较常见的,所以有学者研究用极限分析的方法进行求解,最终求解的准确性误差在3.42%,该准确性精度完全能够满足工程设计。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;这里用南京库仑的OptumG2软件采用极限分析法进行关键系数N<sub>γ</sub>的求解,对该研究的过程进行还原,并对比软件计算结果和经典方法的计算结果。具体研究文献:Hjiaj M , Lyamin A V , Sloan S W . Numerical limit analysis solutions for the bearing capacity factor Nγ[J]. International Journal of Solids &amp; Structures, 2005, 42(5-6):1681-1704.</p><p>&nbsp; &nbsp; &nbsp; &nbsp;计算公式:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1595417705375094.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;其中B是基础宽度,γ为土体重度,V<sub>ult</sub>是极限承载力.其中极限承载力的求解用极限分析乘数荷载的方式进行求解。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;对称模式进行建模:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1595417727118513.png" alt="image.png"/></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1595418897118598.png" alt="image.png" width="310" height="202" style="width: 310px; height: 202px;"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1595418951226488.png" alt="image.png" width="340" height="200" style="width: 340px; height: 200px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;最终得出如下结果:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1595417820180726.png" alt="image.png"/>&nbsp;</p><p style="line-height: 16px;">&nbsp; &nbsp; &nbsp; &nbsp;此处给出三组对比,更多对比有兴趣者可下载计算文件自行对比:<img style="vertical-align: middle; margin-right: 2px;" src="http://www.wen.kulunsoft.com/s ... t%3Ba style="font-size:12px; color:#0066cc;" href="http://www.wen.kulunsoft.com/u ... ot%3B title="Nγ确定.zip">Nγ确定.zip</a></p><p>&nbsp; &nbsp; &nbsp; &nbsp;对比文献计算结果:<br/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1595417989615501.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1595418002958091.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;介于极限分析上下限解的理论特点,真实解是介于上下限之间的某一值。可以对比相关研究结果,极限分析的结果是非常稳定,且上下限解能够与大多数经典理论对应,且差异较小。这同时也印证着其实OptumG2中的极限分析法对地基极限承载力,包括破坏模式的分析具备非常良好的准确性,与传统的经典计算方法有良好的对应关系。关于用G2确定地基承载力与实际规范解析解的对比结果可见技术贴:<a href="http://www.wen.kulunsoft.com/a ... sp%3B &nbsp; &nbsp; &nbsp;</p><p>&nbsp; &nbsp; &nbsp; &nbsp; OptumG2对地基承载力的分析与安全性评估,其实也可以分为两大方向:</p><p>(1)岩土参数不变,用乘数荷载的方式确定最大极限承载力,然后与设计荷载的比值即为安全性评价系数;</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1595418090703590.png" alt="image.png"/></p><p>(2)在给定的设计荷载下,折减岩土参数,岩土参数的折减系数即为安全性评价系数。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1595418121366977.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 这两类方法均能够定义安全系数法或分分项系数法评价。安全系数法的定义大家比较熟悉,就是比值定义。然后分项系数法以欧标为例,三类方法分项系数组合表如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1595418143539651.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;在OptumG2中其实已经内置了欧标的计算组合,用户可以在软件中直接选择,甚至能够自定义各类组合:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1595418169370673.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 至此就将OptumG2中关于地基极限承载力分析,以及适用于工程设计的安全性评价流程做了一个简单的介绍。希望能够对各位工程师产生一定的启发和帮助,具体更多问题可以加入OptumG2官方QQ群:566599410</p>

关于Optum G2计算排桩的问题

库仑产品库仑沈工 回答了问题 • 2 人关注 • 1 个回答 • 57 次浏览 • 2020-07-17 10:03 • 来自相关话题

OptumG2 锚杆高边坡设计

库仑产品库仑沈工 发表了文章 • 0 个评论 • 81 次浏览 • 2020-07-08 15:07 • 来自相关话题

1. 项目介绍该边坡位于水库旁,为一高陡的土质边坡,混杂部分坡积碎块石。原有边坡呈六级阶梯状,坡面无防护,在强降雨的影响下易发生滑塌破坏。边坡地层结构简单,上部为坡积碎石土,下部为全风化凝灰岩,在土岩结合面易形成滑动面,且坡面为松散土体,吸水饱和后易发生局部土块掉落,因此需要进行综合治理。2. 计算要求本次采用GEO5软件进行极限平衡分析,并通过G2软件进行数值模拟分析,综合考虑边坡安全性。 2.1. GEO5 (不平衡推力法(隐式))计算结果:  原始坡面天然工况安全系数 = 1.04 < 1.35支护状况下天然工况安全系数 = 1.42 > 1.35  原始坡面地震工况安全系数 = 0.95 < 1.15支护状况下地震工况安全系数 = 1.27 > 1.152.2. OptumG2强度折减法计算结果:  天然工况安全系数 = 1.03支护工况安全系数 = 1.405   地震工况安全系数 =0.942支护地震工况安全系数 =1.276可以更直观的模拟边坡破坏的形式,通过对岩土体变形的综合考虑,可以模拟出岩土体中应力、位移、剪切耗散等破坏情况,便于设计人员更好的把握边坡的稳定性,从而选择更为有效的支护形式。 3. 结果分析通过GEO5和G2软件分别对两种方法进行对比分析,边坡稳定性分析所得的滑面与安全系数基本相同。最终的计算滑面都满足要求。两种不同的计算方法不仅可以相互验证、相互模拟,还能从各自独特的方面对边坡稳定性进行分析,而OptumG2能有效的反映边坡破坏的趋势,能更有针对性的对边坡进行支护,使结果更为精确。注:本案例为库仑G2培训的优秀作业,已对计算模型及报告内容进行简单编辑,在此展示以供大家参考。 查看全部
<p>1.&nbsp;<strong>项目介绍</strong></p><p>该边坡位于水库旁,为一高陡的土质边坡,混杂部分坡积碎块石。原有边坡呈六级阶梯状,坡面无防护,在强降雨的影响下易发生滑塌破坏。边坡地层结构简单,上部为坡积碎石土,下部为全风化凝灰岩,在土岩结合面易形成滑动面,且坡面为松散土体,吸水饱和后易发生局部土块掉落,因此需要进行综合治理。</p><p>2.&nbsp;<strong>计算要求</strong></p><p>本次采用GEO5软件进行极限平衡分析,并通过G2软件进行数值模拟分析,综合考虑边坡安全性。&nbsp;</p><p>2.1.&nbsp;<strong>GEO5 </strong><strong>(不平衡推力法(隐式))</strong><strong>计算结果:</strong></p><table><tbody><tr class="firstRow"><td style="word-break: break-all;"><p>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191285800335.png" alt="image.png"/></p></td><td style="word-break: break-all;"><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191290841615.png" alt="image.png"/>&nbsp;</p></td></tr><tr><td><p>原始坡面天然工况</p><p>安全系数 = 1.04 &lt; 1.35</p></td><td><p>支护状况下天然工况</p><p>安全系数 = 1.42 &gt; 1.35</p></td></tr><tr><td style="word-break: break-all;"><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191298421696.png" alt="image.png"/>&nbsp;</p></td><td style="word-break: break-all;"><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191303205656.png" alt="image.png"/>&nbsp;</p></td></tr><tr><td><p>原始坡面地震工况</p><p>安全系数 = 0.95 &lt; 1.15</p></td><td><p>支护状况下地震工况</p><p>安全系数 = 1.27 &gt; 1.15</p></td></tr></tbody></table><p>2.2.&nbsp;<strong>OptumG2强度折减法</strong><strong>计算结果:</strong></p><table><tbody><tr class="firstRow"><td style="word-break: break-all;"><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191310328271.png" alt="image.png"/>&nbsp;</p></td><td style="word-break: break-all;"><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191314664328.png" alt="image.png"/>&nbsp;</p></td></tr><tr><td><p>天然工况</p><p>安全系数 = 1.03</p></td><td style="word-break: break-all;"><p>支护工况</p><p>安全系数 = 1.405</p></td></tr></tbody></table><p>&nbsp;</p><table><tbody><tr class="firstRow"><td style="word-break: break-all;"><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191360465517.png" alt="image.png"/>&nbsp;</p></td><td style="word-break: break-all;"><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191365168029.png" alt="image.png"/>&nbsp;</p></td></tr><tr><td><p>地震工况</p><p>安全系数 =0.942</p></td><td><p>支护地震工况</p><p>安全系数 =1.276</p></td></tr></tbody></table><p>可以更直观的模拟边坡破坏的形式,通过对岩土体变形的综合考虑,可以模拟出岩土体中应力、位移、剪切耗散等破坏情况,便于设计人员更好的把握边坡的稳定性,从而选择更为有效的支护形式。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191373555364.png" alt="image.png"/>&nbsp;</p><p>3.&nbsp;<strong>结果分析</strong></p><p>通过GEO5和G2软件分别对两种方法进行对比分析,边坡稳定性分析所得的滑面与安全系数基本相同。最终的计算滑面都满足要求。两种不同的计算方法不仅可以相互验证、相互模拟,还能从各自独特的方面对边坡稳定性进行分析,而OptumG2能有效的反映边坡破坏的趋势,能更有针对性的对边坡进行支护,使结果更为精确。</p><p>注:本案例为库仑G2培训的优秀作业,已对计算模型及报告内容进行简单编辑,在此展示以供大家参考。</p>

Optum G2正确设置板单元参数以模拟混凝土受弯桩

库仑产品库仑沈工 发表了文章 • 0 个评论 • 145 次浏览 • 2020-07-06 10:03 • 来自相关话题

Optum G2软件是一款数值分析软件,使用过程中我们经常需要去模拟各种混凝土桩,钢板桩,型钢桩及钢管组合桩等。G2软件可使用排桩和板单元两种结构进行桩的模拟,而排桩主要是受轴向力为主,板单元受横向力(弯矩与剪力) 为主,所以经常我们用排桩去模拟受压的基础桩,而用板单元模拟受弯矩、剪力为主的抗滑桩等。 模拟抗滑桩当采用板单元模拟桩时,我们可以选择两种类型的参数设置,此处的设置需要简单的换算,本文将进行举例说明,并明确具体的换算关系,以防弄错。 A类型模型参数 B类型模型参数A、B两种类型的模型参数,可以模拟各种混凝土桩,钢板桩,型钢桩及钢管组合桩等。上面截图与桩截面相关的参数给的都是每延米的数值,也就是真实的截面尺寸换算过后要除以桩间距。下面我们将借助GEO5[抗滑桩设计]或[深基坑支护结构分析]模块来快速获取这些数值。钢筋混凝土桩(矩形或者圆形)--选A类参数设置混凝土桩更适合选用A类型的参数设置,这里以A类型为例作说明:打开抗滑桩设计模块,打开GEO5自带例题Demo 01(C:\Program Files (x86)\Fine\GEO5 2020 Examples China,也可能是其他盘)或者其他任意设计好的源文件。在GEO5的【尺寸】菜单下,设置好桩的尺寸和间距就可以查看A与I每延米的数值。 混凝土的弹性模型可直接参考以下截图,也可以在【材料】菜单下,选择不同的混凝土等级,查看对于的弹性模量,如下图:  法向刚度EA(kN/m)=每延米的面积A(m2/m)*弹性模量(MPa)*1000抗弯刚度EI(kNm2/m)=每延米的惯性矩I(m4/m)*弹性模量(MPa)*1000重量w(kg/m/m)=容重(KN/m3)*面积(m2)*1000/9.8(N/kg)此处面积=bh或者π*d^2/4;混凝土容重一般取值25KN/m3。屈服力与屈服弯矩是截面的承载力,正常的混凝土桩都是要配筋的,所以要考虑钢筋的这部分贡献。尺寸与材料设置完成后,点击分析,结构稳定将会有结果弹出,但是如果此时结构不稳定需要调整模型,使之稳定。然后,里面设置具体的配筋数量,然后再点击,查看承载力详细数值Vu,Mu。  屈服力np(kN/m)=Vu(kN)/桩间距a(m)屈服弯矩mp(kNm/m)=Mu(kNm)/桩间距a(m)至此,本文对于钢筋混凝土矩形或圆形桩的板单元建模参数就介绍完了,下一章节我们将介绍如何用板单元去模拟板桩,型钢桩,敬请期待。。。 查看全部
<p>Optum G2软件是一款数值分析软件,使用过程中我们经常需要去模拟各种混凝土桩,钢板桩,型钢桩及钢管组合桩等。G2软件可使用排桩和板单元两种结构进行桩的模拟,而排桩主要是受轴向力为主,板单元受横向力(弯矩与剪力) 为主,所以经常我们用排桩去模拟受压的基础桩,而用板单元模拟受弯矩、剪力为主的抗滑桩等。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000689729544.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">模拟抗滑桩</p><p>当采用板单元模拟桩时,我们可以选择两种类型的参数设置,此处的设置需要简单的换算,本文将进行举例说明,并明确具体的换算关系,以防弄错。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000699508530.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">A类型模型参数</p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000709471241.png" alt="image.png"/></p><p style="text-align: center;">B类型模型参数</p><p>A、B两种类型的模型参数,可以模拟各种混凝土桩,钢板桩,型钢桩及钢管组合桩等。上面截图与桩截面相关的参数给的都是每延米的数值,也就是真实的截面尺寸换算过后要除以桩间距。下面我们将借助GEO5[抗滑桩设计]或[深基坑支护结构分析]模块来快速获取这些数值。</p><p><strong>钢筋混凝土桩(矩形或者圆形)--选A类参数设置</strong></p><p>混凝土桩更适合选用A类型的参数设置,这里以A类型为例作说明:</p><p>打开抗滑桩设计模块,打开GEO5自带例题Demo 01(C:\Program Files (x86)\Fine\GEO5 2020 Examples China,也可能是其他盘)或者其他任意设计好的源文件。在GEO5的【尺寸】菜单下,设置好桩的尺寸和间距就可以查看A与I每延米的数值。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000719418794.png" alt="image.png"/>&nbsp;</p><p>混凝土的弹性模型可直接参考以下截图,也可以在【材料】菜单下,选择不同的混凝土等级,查看对于的弹性模量,如下图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000728441997.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000738885845.png" alt="image.png"/>&nbsp;</p><p>法向刚度EA(kN/m)=每延米的面积A(m2/m)*弹性模量(MPa)*1000</p><p>抗弯刚度EI(kNm2/m)=每延米的惯性矩I(m4/m)*弹性模量(MPa)*1000</p><p>重量w(kg/m/m)=容重(KN/m3)*面积(m2)*1000/9.8(N/kg)</p><p>此处面积=bh或者π*d^2/4;混凝土容重一般取值25KN/m3。</p><p>屈服力与屈服弯矩是截面的承载力,正常的混凝土桩都是要配筋的,所以要考虑钢筋的这部分贡献。尺寸与材料设置完成后,点击分析,结构稳定将会有结果弹出,但是如果此时结构不稳定需要调整模型,使之稳定。然后<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000747789681.png" alt="image.png"/>,里面设置具体的配筋数量,然后再点击<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000751370551.png" alt="image.png"/>,查看承载力详细数值Vu,Mu。</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000755456448.png" alt="image.png"/>&nbsp;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000758952739.png" alt="image.png"/>&nbsp;</p><p>屈服力np(kN/m)=Vu(kN)/桩间距a(m)</p><p>屈服弯矩mp(kNm/m)=Mu(kNm)/桩间距a(m)</p><p>至此,本文对于钢筋混凝土矩形或圆形桩的板单元建模参数就介绍完了,下一章节我们将介绍如何用板单元去模拟板桩,型钢桩,敬请期待。。。</p>

Optum 安装问题:手动安装Microsoft Visual C++2015-2019 Redistributable(x64)

库仑产品库仑沈工 发表了文章 • 0 个评论 • 276 次浏览 • 2020-06-22 15:54 • 来自相关话题

安装Optum 产品的时候,有时候会弹出如下错误:Optum 产品对操作系统的最低要求是64位操作系统,如果您是32位的操作系统,该系列软件将不支持安装及使用。请自行查看下操作系统信息,在桌面右击“此电脑”,点击属性。在弹出的窗口中即可查看系统属性。确定操作系统为64位后,再依据弹窗提示手动安装如下程序,Microsoft Visual C++2015-2019 Redistributable(x64).rar 安装完成后,再重新使用我们optum安装包安装软件即可。 查看全部
<p>安装Optum 产品的时候,有时候会弹出如下错误:<br/></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1592811058567807.png" alt="image.png"/></p><p>Optum 产品对操作系统的最低要求是64位操作系统,如果您是32位的操作系统,该系列软件将不支持安装及使用。请自行查看下操作系统信息,在桌面右击“此电脑”,点击属性。在弹出的窗口中即可查看系统属性。</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1592811741805871.png" alt="image.png"/></p><p>确定操作系统为64位后,再依据弹窗提示手动安装如下程序,</p><p style="line-height: 16px;"><img style="vertical-align: middle; margin-right: 2px;" src="http://www.wen.kulunsoft.com/s ... t%3Ba style="font-size:12px; color:#0066cc;" href="http://www.wen.kulunsoft.com/u ... ot%3B title="Microsoft Visual C++2015-2019 Redistributable(x64).rar">Microsoft Visual C++2015-2019 Redistributable(x64).rar</a>&nbsp;安装完成后,再重新使用我们optum安装包安装软件即可。</p><p><br/></p>

Optum 安装问题:请求被中止:未能创建SSL/TLS安全通道

库仑产品库仑沈工 发表了文章 • 0 个评论 • 101 次浏览 • 2020-06-22 13:57 • 来自相关话题

OPTUM  G2/G3软件在安装过程中,可能会有显示“请求被中止:未能创建SSL/TLS安全通道” 如果使用Windows 7,需要安装部分补丁程序,可以通过“ Windows Update”来更新Windows。也可以直接在这里下载Windows 7(用于基于x64的系统)的补丁:Windows6.1-KB2992611-x64(1).rar 进行安装,更新Windows修复程序后,请重启再打开软件OPTUM G2 / G3。如果补丁安装后,问题仍未得到解决,可能需要使用最新安装包安装软件,1.可截图至G2官方交流群反馈问题并索要最新安装包,如下:2.可截图以邮件的形式发送至support@kulunsoft.com官方交流群反馈问题并索要最新安装包。 查看全部
<p>OPTUM&nbsp; G2/G3软件在安装过程中,可能会有显示“请求被中止:未能创建SSL/TLS安全通道”</p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1592804413217778.png" alt="image.png"/></p><p>如果使用Windows 7,需要安装部分补丁程序,可以通过“ Windows Update”来更新Windows。</p><p>也可以直接在这里下载Windows 7(用于基于x64的系统)的补丁:</p><p style="line-height: 16px;"><img style="vertical-align: middle; margin-right: 2px;" src="http://www.wen.kulunsoft.com/s ... t%3Ba style="font-size:12px; color:#0066cc;" href="http://www.wen.kulunsoft.com/u ... ot%3B title="Windows6.1-KB2992611-x64(1).rar">Windows6.1-KB2992611-x64(1).rar</a>&nbsp;进行安装,更新Windows修复程序后,请重启再打开软件OPTUM G2 / G3。</p><p style="line-height: 16px;">如果补丁安装后,问题仍未得到解决,可能需要使用最新安装包安装软件,</p><p style="line-height: 16px;">1.可截图至G2官方交流群反馈问题并索要最新安装包,如下:</p><p style="line-height: 16px;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1592805374247348.png" alt="image.png"/></p><p style="line-height: 16px;">2.可截图以邮件的形式发送至support@kulunsoft.com官方交流群反馈问题并索要最新安装包。</p>

G2中的不同材料之间的接触面采用什么模拟方式及其原理?

库仑产品库仑沈工 回答了问题 • 2 人关注 • 1 个回答 • 124 次浏览 • 2020-06-22 11:08 • 来自相关话题

G2重装系统后激活

库仑产品库仑沈工 回答了问题 • 2 人关注 • 1 个回答 • 87 次浏览 • 2020-06-22 09:11 • 来自相关话题

GEO5+G2某道路边坡滑塌治理支护设计案例

岩土工程库仑张崇波 发表了文章 • 0 个评论 • 191 次浏览 • 2020-06-10 17:04 • 来自相关话题

项目名称:某道路边坡滑塌治理设计使用软件:GEO5土质边坡稳定性分析、Optum G2项目背景:该滑坡位于湖北境内某省道一侧,边坡高陡,受强降雨影响发生滑塌破坏。边坡地层结构简单,上部为崩坡积碎石土,下部为志留系砂质页岩夹泥质粉砂岩,一方面土岩结合部位容易形成滑动面,另外基岩风化后表部局部掉块失稳,需要综合治理。最终使用GEO5软件分析原始边坡稳定性,推荐采用锚索+锚杆的支护方式,并验算了支护后的边坡稳定性。同时利用G2对支护方案进行了数值分析模拟。软件优势:GEO5建模方便快捷,同一文件的不同工况可以分别分析原始边坡和支护后的边坡稳定性情况,使用G2可以分析原始边坡和支护后边坡的可能破坏模式。图1:不平衡推力法隐式解计算结果图2:不平衡推力法显示解计算结果图3:支护设计后正常工况计算结果图4:支护设计后暴雨工况计算结果图5:计算结果汇总及说明图6:G2分析原始边坡结果及说明图7:G2分析锚固后边坡结果及说明 查看全部
<p><strong>项目名称</strong>:某道路边坡滑塌治理设计</p><p><strong>使用软件</strong>:GEO5土质边坡稳定性分析、Optum G2</p><p><strong>项目背景</strong>:该滑坡位于湖北境内某省道一侧,边坡高陡,受强降雨影响发生滑塌破坏。边坡地层结构简单,上部为崩坡积碎石土,下部为志留系砂质页岩夹泥质粉砂岩,一方面土岩结合部位容易形成滑动面,另外基岩风化后表部局部掉块失稳,需要综合治理。最终使用GEO5软件分析原始边坡稳定性,推荐采用锚索+锚杆的支护方式,并验算了支护后的边坡稳定性。同时利用G2对支护方案进行了数值分析模拟。</p><p><strong>软件优势</strong>:GEO5建模方便快捷,同一文件的不同工况可以分别分析原始边坡和支护后的边坡稳定性情况,使用G2可以分析原始边坡和支护后边坡的可能破坏模式。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1591779343283923.png" alt="image.png" width="358" height="407" style="width: 358px; height: 407px;"/></p><p style="text-align: center;">图1:不平衡推力法隐式解计算结果</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1591779407546979.png" alt="image.png" width="1" height="1" style="width: 1px; height: 1px;"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1591779424312731.png" alt="image.png" width="350" height="421" style="width: 350px; height: 421px;"/></p><p style="text-align: center;">图2:不平衡推力法显示解计算结果</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1591779494429523.png" alt="image.png" width="362" height="399" style="width: 362px; height: 399px;"/></p><p style="text-align: center;">图3:支护设计后正常工况计算结果</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1591779556705681.png" alt="image.png" width="359" height="386" style="width: 359px; height: 386px;"/></p><p style="text-align: center;">图4:支护设计后暴雨工况计算结果</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1591779617451723.png" alt="image.png" width="495" height="371" style="width: 495px; height: 371px;"/></p><p style="text-align: center;">图5:计算结果汇总及说明</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1591779697409220.png" alt="image.png" width="505" height="362" style="width: 505px; height: 362px;"/></p><p style="text-align: center;">图6:G2分析原始边坡结果及说明</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1591779759386435.png" alt="image.png" width="470" height="382" style="width: 470px; height: 382px;"/></p><p style="text-align: center;">图7:G2分析锚固后边坡结果及说明</p>

G2中的弹塑性分析时间类型,长期和短期有什么区别?只影响土体排水渗流情况?

库仑产品杨文斌 回答了问题 • 2 人关注 • 2 个回答 • 136 次浏览 • 2020-06-04 09:00 • 来自相关话题

G2中裂隙的输入方法和作用简析

库仑产品库仑张崇波 发表了文章 • 0 个评论 • 114 次浏览 • 2020-05-21 14:34 • 来自相关话题

       使用Optum G2软件可以分析一些复杂的岩土工程问题,一方面在于软件具有的极限分析方法和网格自适应的功能,另一方面还在于软件允许用户对模型进行比较大的干预,其中在岩土材料中定义裂隙面就是这样一种干预方式。G2中的裂隙可以表征岩体结构面及土体内部裂隙等,但这并不是岩土体的竖向拉张裂缝,对于张裂缝包括断层,在G2中一般采用剪切节理的方式来模拟,相关资料可以查看案例10:断层作用下的边坡稳定性和案例70:含裂隙边坡稳定性,本文主要对岩土体内部裂隙的输入方法和作用进行简要介绍。1、裂隙的输入方式       首先,岩土材料的本构模型需要选择摩尔-库仑模型,只有选择了摩尔-库仑模型,才能在材料参数中定义裂隙面:然后,在“裂隙”后面的复选框选择是,弹出如下界面:用户可以选择定义一个面或者两个面,分别输入每个面的倾角α,黏聚力c,内摩擦角φ,以及每个面的抗拉强度kt(一般默认为无穷大)。需要说明的是,这里的倾角是从水平面逆时针转向竖直面的角度,如下图所示:2、输入裂隙后对边坡稳定性的影响       这里以一个简单的边坡模型演示加入裂隙后对边坡的稳定性以及破坏模式的影响,模型如下,自然边坡坡角45°,分析方法均采用强度折减法,求解下限解,模型网格数量设置为3000个,每一个模型均设置3次的网格自适应:(1)按均质边坡考虑,边坡坡角45°,破坏模式为圆弧型,安全系数为3.509 (2)在原均质边坡的基础上,考虑一组顺层裂隙面,倾角150°,裂隙面参数c=10kPa,φ=20°,破坏模式近直线型,安全系数为1.353 (3)在原均质边坡的基础上,考虑一组反倾裂隙面,倾角60°,裂隙面参数c=10kPa,φ=20°,破坏模式近折线型,坡角位置有明显的拐弯,安全系数为1.849 (4)在原均质边坡的基础上,考虑两组裂隙面,倾角分别为150°和60°,裂隙面参数c=10kPa,φ=20°,破坏模式近折线型,安全系数为1.213        以上4组对比分析主要是针对不同结构面产状进行对比分析,感兴趣的用户可以通过调整抗剪强度参数以及倾角做进一步的的对比工作。3、输入裂隙后对隧道稳定性的影响       同样,以一个简单的隧道模型演示加入裂隙前后的不同。模型及材料参数如下,分析方法均采用极限分析,求解下限解,模型网格数量设置为3000个,每一个模型均设置3次的网格自适应:(1)考虑为各向均质体,破坏乘数为23.73 (2)输入一组裂隙面,倾角150°,裂隙面参数c=10kPa,φ=20°,破坏乘数为1.28  (3)输入一组裂隙面,倾角60°,裂隙面参数c=10kPa,φ=20°,破坏乘数为2.806 (4)输入两组裂隙面,倾角分别为150°和60°,裂隙面参数c=10kPa,φ=20°,破坏乘数为1.257        通过以上两个简单模型的示例,可以看出当我们在材料中输入了裂隙面之后,对边坡和隧道的稳定性都有很大的影响。针对实际工作中遇到的裂隙面发育的复杂工程问题,大家可以尝试使用G2来进行分析。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;使用Optum G2软件可以分析一些复杂的岩土工程问题,一方面在于软件具有的极限分析方法和网格自适应的功能,另一方面还在于软件允许用户对模型进行比较大的干预,其中在岩土材料中定义裂隙面就是这样一种干预方式。G2中的裂隙可以表征岩体结构面及土体内部裂隙等,但这并不是岩土体的竖向拉张裂缝,对于张裂缝包括断层,在G2中一般采用剪切节理的方式来模拟,相关资料可以查看<a href="http://www.wen.kulunsoft.com/dochelp/180">案例10:断层作用下的边坡稳定性</a>和<a href="http://www.wen.kulunsoft.com/d ... gt%3B案例70:含裂隙边坡稳定性</a>,本文主要对岩土体内部裂隙的输入方法和作用进行简要介绍。</p><p>1、裂隙的输入方式</p><p>&nbsp; &nbsp; &nbsp; &nbsp;首先,岩土材料的本构模型需要选择<strong>摩尔</strong><strong>-</strong><strong>库仑模型</strong>,只有选择了摩尔-库仑模型,才能在材料参数中定义裂隙面:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590028318107705.png" alt="image.png"/></p><p>然后,在“裂隙”后面的复选框选择是,弹出如下界面:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590028529301035.png" alt="image.png" width="287" height="166" style="width: 287px; height: 166px;"/></p><p>用户可以选择定义一个面或者两个面,分别输入每个面的倾角α,黏聚力c,内摩擦角φ,以及每个面的抗拉强度k<sub>t</sub>(一般默认为无穷大)。需要说明的是,这里的倾角是从水平面逆时针转向竖直面的角度,如下图所示:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590030129820916.png" alt="image.png"/></p><p>2、输入裂隙后对边坡稳定性的影响</p><p>&nbsp; &nbsp; &nbsp; &nbsp;这里以一个简单的边坡模型演示加入裂隙后对边坡的稳定性以及破坏模式的影响,模型如下,自然边坡坡角45°,分析方法均采用强度折减法,求解下限解,模型网格数量设置为3000个,每一个模型均设置3次的网格自适应:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590033779856870.png" alt="image.png"/></p><p>(1)按均质边坡考虑,边坡坡角45°,破坏模式为圆弧型,安全系数为3.509</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034095814598.png" alt="image.png" width="304" height="161" style="width: 304px; height: 161px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034121828438.png" alt="image.png" width="305" height="162" style="width: 305px; height: 162px;"/></p><p>(2)在原均质边坡的基础上,考虑一组顺层裂隙面,倾角150°,裂隙面参数c=10kPa,φ=20°,破坏模式近直线型,安全系数为1.353</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034341707371.png" alt="image.png" width="306" height="184" style="width: 306px; height: 184px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034363860006.png" alt="image.png" width="311" height="184" style="width: 311px; height: 184px;"/></p><p>(3)在原均质边坡的基础上,考虑一组反倾裂隙面,倾角60°,裂隙面参数c=10kPa,φ=20°,破坏模式近折线型,坡角位置有明显的拐弯,安全系数为1.849</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034835729252.png" alt="image.png" width="302" height="177" style="width: 302px; height: 177px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034857414028.png" alt="image.png" width="303" height="178" style="width: 303px; height: 178px;"/></p><p>(4)在原均质边坡的基础上,考虑两组裂隙面,倾角分别为150°和60°,裂隙面参数c=10kPa,φ=20°,破坏模式近折线型,安全系数为1.213</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034907514361.png" alt="image.png" width="313" height="186" style="width: 313px; height: 186px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034888513750.png" alt="image.png" width="313" height="185" style="width: 313px; height: 185px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;以上4组对比分析主要是针对不同结构面产状进行对比分析,感兴趣的用户可以通过调整抗剪强度参数以及倾角做进一步的的对比工作。</p><p>3、输入裂隙后对隧道稳定性的影响</p><p>&nbsp; &nbsp; &nbsp; &nbsp;同样,以一个简单的隧道模型演示加入裂隙前后的不同。模型及材料参数如下,分析方法均采用极限分析,求解下限解,模型网格数量设置为3000个,每一个模型均设置3次的网格自适应:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590035765106925.png" alt="image.png"/></p><p>(1)考虑为各向均质体,破坏乘数为23.73</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590039795775965.png" alt="image.png" width="305" height="221" style="width: 305px; height: 221px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590039813593104.png" alt="image.png" width="287" height="222" style="width: 287px; height: 222px;"/></p><p>(2)输入一组裂隙面,倾角150°,裂隙面参数c=10kPa,φ=20°,破坏乘数为1.28<br/></p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590040295632629.png" alt="image.png" width="294" height="214" style="width: 294px; height: 214px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590040336497285.png" alt="image.png" width="285" height="213" style="width: 285px; height: 213px;"/><br/></p><p>(3)输入一组裂隙面,倾角60°,裂隙面参数c=10kPa,φ=20°,破坏乘数为2.806</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590040354755016.png" alt="image.png" width="295" height="210" style="width: 295px; height: 210px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590040393840182.png" alt="image.png" width="288" height="210" style="width: 288px; height: 210px;"/></p><p>(4)输入两组裂隙面,倾角分别为150°和60°,裂隙面参数c=10kPa,φ=20°,破坏乘数为1.257</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590040413504249.png" alt="image.png" width="292" height="224" style="width: 292px; height: 224px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590040436855134.png" alt="image.png" width="293" height="223" style="width: 293px; height: 223px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;通过以上两个简单模型的示例,可以看出当我们在材料中输入了裂隙面之后,对边坡和隧道的稳定性都有很大的影响。针对实际工作中遇到的裂隙面发育的复杂工程问题,大家可以尝试使用G2来进行分析。</p>

在optumG2中双锚板上拉的结果为何和单锚板一致?

库仑产品jingshuju 回答了问题 • 2 人关注 • 2 个回答 • 193 次浏览 • 2020-05-21 09:30 • 来自相关话题

库仑地基固结沉降分析解决方案(GEO5&G2)

岩土工程库仑张崇波 发表了文章 • 0 个评论 • 179 次浏览 • 2020-04-20 23:33 • 来自相关话题

       针对地基固结沉降分析这类问题,在库仑的各产品中,主要有两款软件可以采用,分别是GEO5和Optum G2, 而GEO5中还包含了两个模块,地基固结沉降分析模块及有限元固结分析模块都可以进行分析,所以库仑给各位工程师提供了三种解决方案,不同模块功能略有差异,本文将对三个模块的使用做一简单介绍。1、GEO5地基固结沉降分析模块       GEO5地基固结沉降分析模块基于太沙基的一维固结理论,支持导入DXF文件快速建模,可以得到变形计算深度、地基总沉降、任意加载时间下的固结度和沉降值等结果。如果是分析简单的问题,一维的问题,只关注沉降和固结度的话,推荐使用此模块。      该模块总沉降的计算都是基于分层总和法,具体到参数的选取又包含了7种分析方法,其中压缩模量法和压缩指数法(e-logp曲线)在国内比较常用,至于另外一种国内常用的e-p曲线方法我们也在开发中。另外荷兰规范NEN(Buismann, Ladd)法是这几种方法中唯一可以同时考虑主固结沉降和次固结沉降的方法,而且还能计算超固结土。不同方法的详细介绍参考解读GEO5中计算地基固结沉降的方法。       地基固结沉降分析模块计算变形计算深度时考虑两方面的因素,一是确定变形计算深度的方法,比如国内常用应力比法,国外用结构强度理论。另外用户还可以输入不可压缩地基的深度,如果用户输入了不可压缩地基,那么软件会将两方面因素确定的较小值作为最终的变形计算深度。       需要说明的是,软件第一个工况始终计算的是初始应力,所以要实现固结分析,需要在第二个及之后的工况中通过填方或者施加超载,才能形成附加应力。       在地基固结沉降分析模块中可以得到任意时间下的沉降值:可以得到不同工况的孔隙水压力分布:还可以得到地表处固结度随时间的变化曲线:       需要注意的是,开始分析之前,在最后一个工况中需要勾选复选框后,软件才能进行固结分析计算。在第一个工况之后的工况中软件可以考虑地下水位变化、填方及荷载的变化对固结和沉降的影响。2、GEO5有限元地基固结分析模块       GEO5有限元模块可以进行固结分析,所采用的理论是Boit固结理论,该理论考虑了应力应变和渗流的耦合,所以可以分析一些太沙基一维固结理论无法分析的问题,比如加筋土地基的固结问题。另外有限元是二维分析,可以得到更多的应力应变和孔隙水压力的计算结果,所以如果是分析较复杂的问题,涉及二维的问题,建议使用该模块。       与一维固结分析不同,GEO5有限元固结分析可以得到回填土自身的沉降变形:还可以得到地基水平方向的位移:       与地基固结沉降分析模块不同,在有限元中,不需要指定确定变形计算深度的分析方法,也不需要指定最后一个工况计算总沉降,整个过程,只需要输入工况持续的时间,即可计算任意时刻的变形。此外,GEO5有限元可以采用接触面来模拟排水板,模拟过程可参考GEO5如何模拟有排水板的固结分析:       使用有限元分析,理论更加严格,也可以得到更多的结果,但是分析过程相较于地基固结沉降分析会更加耗时。3、Optum G2固结分析       Optum G2 是库仑的另一款数值分析软件,可以直接进行固结分析,所依据的理论也是Boit固结理论,而且软件也支持DXF文件导入建模。最重要的是,除了基本的固结分析,G2还能计算固结对地基承载力的影响以及填方边坡稳定性等。所以如果是分析复杂问题,还需要对固结地基进行下一步分析的话,推荐使用G2。       G2的固结分析可以实现任意时间土体固结度的计算,此时需要将分析目标设置为固结时间:也能计算达到任意固结度所需要的时间,此时将分析目标设置为某一固结度:        在进行了固结分析之后,可以直接使用G2的极限分析方法,分析不同固结情况下的地基承载力:以及分析不同阶段填方边坡稳定性:也可以在G2中添加排水板:       综上,针对具体的工程问题,用户可以根据实际情况选取合适的模块进行分析。       关于GEO5的地基固结沉降分析模块及有限元固结分析的详细介绍,可以点击此处查看视频教程。关于G2的固结分析及应用,可以点击此处查看视频教程。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;针对地基固结沉降分析这类问题,在库仑的各产品中,主要有两款软件可以采用,分别是GEO5和Optum G2, 而GEO5中还包含了两个模块,地基固结沉降分析模块<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587347551876806.png" alt="image.png" width="25" height="28" style="white-space: normal; width: 25px; height: 28px;"/>及有限元固结分析模块<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587347602436319.png" alt="image.png" width="24" height="24" style="white-space: normal; width: 24px; height: 24px;"/>都可以进行分析,所以库仑给各位工程师提供了三种解决方案,不同模块功能略有差异,本文将对三个模块的使用做一简单介绍。</p><p><strong>1、GEO5地基固结沉降分析模块</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;GEO5地基固结沉降分析模块基于太沙基的一维固结理论,支持导入DXF文件快速建模,可以得到变形计算深度、地基总沉降、任意加载时间下的固结度和沉降值等结果。如果是分析简单的问题,一维的问题,只关注沉降和固结度的话,推荐使用此模块。</p><p><strong>&nbsp; &nbsp; &nbsp;&nbsp;</strong>该模块总沉降的计算都是基于分层总和法,具体到参数的选取又包含了7种分析方法,其中压缩模量法和压缩指数法(e-logp曲线)在国内比较常用,至于另外一种国内常用的e-p曲线方法我们也在开发中。另外荷兰规范NEN(Buismann, Ladd)法是这几种方法中唯一可以同时考虑主固结沉降和次固结沉降的方法,而且还能计算超固结土。不同方法的详细介绍参考<a href="http://www.wen.kulunsoft.com/article/102">解读GEO5中计算地基固结沉降的方法</a>。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587351651576132.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;地基固结沉降分析模块计算变形计算深度时考虑两方面的因素,一是确定变形计算深度的方法,比如国内常用应力比法,国外用结构强度理论。另外用户还可以输入不可压缩地基的深度,如果用户输入了不可压缩地基,那么软件会将两方面因素确定的较小值作为最终的变形计算深度。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587352950858393.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;需要说明的是,软件<strong>第一个工况始终计算的是初始应力</strong>,所以要实现固结分析,需要在第二个及之后的工况中通过填方或者施加超载,才能形成附加应力。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;在地基固结沉降分析模块中可以得到任意时间下的沉降值:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587361724844958.png" alt="image.png"/></p><p>可以得到不同工况的孔隙水压力分布:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587361808531903.png" alt="image.png"/></p><p>还可以得到地表处固结度随时间的变化曲线:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587389704407791.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;需要注意的是,开始分析之前,在最后一个工况中需要勾选<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587390593521828.png" alt="image.png" width="67" height="23" style="width: 67px; height: 23px;"/>复选框后,软件才能进行固结分析计算。在第一个工况之后的工况中软件可以考虑地下水位变化、填方及荷载的变化对固结和沉降的影响。</p><p><strong>2、GEO5有限元地基固结分析模块</strong></p><p><strong>&nbsp; &nbsp; &nbsp; &nbsp;</strong>GEO5有限元模块可以进行固结分析,所采用的理论是Boit固结理论,该理论考虑了应力应变和渗流的耦合,所以可以分析一些太沙基一维固结理论无法分析的问题,比如加筋土地基的固结问题。另外有限元是二维分析,可以得到更多的应力应变和孔隙水压力的计算结果,所以如果是分析较复杂的问题,涉及二维的问题,建议使用该模块。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;与一维固结分析不同,GEO5有限元固结分析可以得到回填土自身的沉降变形:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587391648940291.png" alt="image.png"/></p><p>还可以得到地基水平方向的位移:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587391699749857.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;与地基固结沉降分析模块不同,在有限元中,不需要指定确定变形计算深度的分析方法,也不需要指定最后一个工况计算总沉降,整个过程,只需要输入工况持续的时间,即可计算任意时刻的变形。此外,GEO5有限元可以采用接触面来模拟排水板,模拟过程可参考<a href="http://www.wen.kulunsoft.com/a ... BGEO5如何模拟有排水板的固结分析</a>:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587392126969289.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;使用有限元分析,理论更加严格,也可以得到更多的结果,但是分析过程相较于地基固结沉降分析会更加耗时。</p><p><strong>3、Optum G2固结分析</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp;Optum G2 是库仑的另一款数值分析软件,可以直接进行固结分析,所依据的理论也是Boit固结理论,而且软件也支持DXF文件导入建模。最重要的是,除了基本的固结分析,G2还能计算固结对地基承载力的影响以及填方边坡稳定性等。所以如果是分析复杂问题,还需要对固结地基进行下一步分析的话,推荐使用G2。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587392584402667.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;G2的固结分析可以实现任意时间土体固结度的计算,此时需要将分析目标设置为固结时间:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587393809662611.png" alt="image.png" width="297" height="126" style="width: 297px; height: 126px;"/></p><p>也能计算达到任意固结度所需要的时间,此时将分析目标设置为某一固结度:&nbsp;</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587393775416456.png" alt="image.png" width="298" height="115" style="width: 298px; height: 115px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;在进行了固结分析之后,可以直接使用G2的极限分析方法,分析不同固结情况下的地基承载力:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587394188750926.png" alt="image.png"/></p><p>以及分析不同阶段填方边坡稳定性:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587394327764075.png" alt="image.png"/></p><p>也可以在G2中添加排水板:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1587394491334794.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;综上,针对具体的工程问题,用户可以根据实际情况选取合适的模块进行分析。</p><p>&nbsp; &nbsp; &nbsp; &nbsp;关于GEO5的地基固结沉降分析模块及有限元固结分析的详细介绍,可以<a href="https://ke.qq.com/webcourse/in ... gt%3B点击此处</a>查看视频教程。关于G2的固结分析及应用,可以<a href="https://ke.qq.com/webcourse/in ... gt%3B点击此处</a>查看视频教程。</p><p><br/></p>

OptumG2中运行分析的消息中出现“ Stage4:Edges which are not part of surface are present”是什么意思?

库仑产品库仑沈工 回答了问题 • 2 人关注 • 1 个回答 • 179 次浏览 • 2020-04-07 13:47 • 来自相关话题

OptumG2中摩尔库伦材料中的压缩帽盖有什么作用

库仑产品库仑李建 回答了问题 • 3 人关注 • 2 个回答 • 215 次浏览 • 2020-03-24 15:05 • 来自相关话题

g2能直接获得边坡可靠度吗?

库仑产品库仑张崇波 回答了问题 • 2 人关注 • 1 个回答 • 186 次浏览 • 2020-03-19 17:46 • 来自相关话题

optum G3的边坡安全系数计算问题

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 210 次浏览 • 2020-03-19 14:16 • 来自相关话题

怎么在optum G3实现这个批处理

岩土工程库仑张崇波 回答了问题 • 2 人关注 • 1 个回答 • 187 次浏览 • 2020-03-10 16:21 • 来自相关话题

G2 随机分析

回答

岩土工程库仑张崇波 回答了问题 • 2 人关注 • 1 个回答 • 27 次浏览 • 5 天前 • 来自相关话题

关于Optum G2计算排桩的问题

回答

库仑产品库仑沈工 回答了问题 • 2 人关注 • 1 个回答 • 57 次浏览 • 2020-07-17 10:03 • 来自相关话题

G2中的不同材料之间的接触面采用什么模拟方式及其原理?

回答

库仑产品库仑沈工 回答了问题 • 2 人关注 • 1 个回答 • 124 次浏览 • 2020-06-22 11:08 • 来自相关话题

G2重装系统后激活

回答

库仑产品库仑沈工 回答了问题 • 2 人关注 • 1 个回答 • 87 次浏览 • 2020-06-22 09:11 • 来自相关话题

G2中的弹塑性分析时间类型,长期和短期有什么区别?只影响土体排水渗流情况?

回答

库仑产品杨文斌 回答了问题 • 2 人关注 • 2 个回答 • 136 次浏览 • 2020-06-04 09:00 • 来自相关话题

在optumG2中双锚板上拉的结果为何和单锚板一致?

回答

库仑产品jingshuju 回答了问题 • 2 人关注 • 2 个回答 • 193 次浏览 • 2020-05-21 09:30 • 来自相关话题

OptumG2中运行分析的消息中出现“ Stage4:Edges which are not part of surface are present”是什么意思?

回答

库仑产品库仑沈工 回答了问题 • 2 人关注 • 1 个回答 • 179 次浏览 • 2020-04-07 13:47 • 来自相关话题

OptumG2中摩尔库伦材料中的压缩帽盖有什么作用

回答

库仑产品库仑李建 回答了问题 • 3 人关注 • 2 个回答 • 215 次浏览 • 2020-03-24 15:05 • 来自相关话题

g2能直接获得边坡可靠度吗?

回答

库仑产品库仑张崇波 回答了问题 • 2 人关注 • 1 个回答 • 186 次浏览 • 2020-03-19 17:46 • 来自相关话题

optum G3的边坡安全系数计算问题

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 210 次浏览 • 2020-03-19 14:16 • 来自相关话题

怎么在optum G3实现这个批处理

回答

岩土工程库仑张崇波 回答了问题 • 2 人关注 • 1 个回答 • 187 次浏览 • 2020-03-10 16:21 • 来自相关话题

Optum G2中等效渗透系数Kx和Ky如何选取?

回答

库仑产品库仑张崇波 回答了问题 • 2 人关注 • 1 个回答 • 274 次浏览 • 2020-03-05 10:42 • 来自相关话题

关于春招的问题

回答

岩土工程库仑杨工 回答了问题 • 2 人关注 • 1 个回答 • 188 次浏览 • 2020-03-05 09:37 • 来自相关话题

optumG2随机参数设置

回答

岩土工程冲出银河系 回答了问题 • 2 人关注 • 2 个回答 • 227 次浏览 • 2020-02-27 10:14 • 来自相关话题

optumG2中如何在基础上加倾斜荷载

回答

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 209 次浏览 • 2020-02-17 17:58 • 来自相关话题

optum绘制曲线问题

回答

岩土工程库仑张崇波 回答了问题 • 2 人关注 • 1 个回答 • 229 次浏览 • 2020-02-04 14:46 • 来自相关话题

OptumG2Cmd怎么用?怎么先生成一定数量的输入文件

回答

库仑产品库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 264 次浏览 • 2020-01-13 13:50 • 来自相关话题

求解器状态不可行是什么原因,怎么解决?

回答

岩土工程t13983007248 发起了问题 • 2 人关注 • 0 个回答 • 544 次浏览 • 2020-01-06 09:46 • 来自相关话题

随机分析中像案例57这样的图怎么画?

回答

库仑产品库仑刘工 回答了问题 • 3 人关注 • 1 个回答 • 381 次浏览 • 2019-12-12 19:13 • 来自相关话题

OptumG2——土壤水分特征曲线模型

库仑产品库仑赵 发表了文章 • 0 个评论 • 46 次浏览 • 6 天前 • 来自相关话题

         在OptumG2软件中,涉及到水力分析时有三类水分特征曲线模型:        (1)线性        (2)双曲正切        (3)Van Genuchten         很多初步学习软件的工程师可能不太了解其含义和区别,在这里推荐大家拜读《非饱和土力学》卢宁,William J.L著一书的第12章详细了解其概念和意义。如果想要了解如何进行试验,当然相关的论文是非常多的,这里推荐《非饱和土力学》陈仲颐译。通过阅读能够了解水分特征曲线的含义和获得方法。        OptumG2中给出的三类模型,代表这由单参数线性到多参数曲线的三类模型。此前两种均为单一参数控制斜率的曲线,Van Genuchten为应用非常广泛的双参数模型。在软件的材料手册的第14页,我们能够比较直观地通过曲线进行了解。          上面为线性和双曲正切模型的曲线,可以看见h*是控制斜率的参数,通过这个参数控制曲线拟合试验数据。同样的对于Van Genuchten模型也是相同的道理,只不过是通过两个参数控制相应的模型参数进行拟合。         如果想要了解更多的水分特征曲线模型及他们的对比关系,可以参考《土壤水分特征曲线模型模拟性能评价》王愿斌。通过该文章中的一个表1大家能够获得一个更全面的了解。        相信通过上面的书籍和文献,除此接触此概念的工程师能够对水分特征曲线模型及参数有一个了解,能够从陌生转向熟悉,对OPtumG2软件的使用产生促进作用。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;在OptumG2软件中,涉及到水力分析时有三类水分特征曲线模型:</p><p>&nbsp; &nbsp; &nbsp; &nbsp; (1)线性<br/>&nbsp; &nbsp; &nbsp; &nbsp; (2)双曲正切</p><p>&nbsp; &nbsp; &nbsp; &nbsp; (3)Van Genuchten<br/>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;很多初步学习软件的工程师可能不太了解其含义和区别,在这里推荐大家拜读《非饱和土力学》卢宁,William J.L著一书的第12章详细了解其概念和意义。如果想要了解如何进行试验,当然相关的论文是非常多的,这里推荐《非饱和土力学》陈仲颐译。通过阅读能够了解水分特征曲线的含义和获得方法。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; OptumG2中给出的三类模型,代表这由单参数线性到多参数曲线的三类模型。此前两种均为单一参数控制斜率的曲线,Van Genuchten为应用非常广泛的双参数模型。在软件的材料手册的第14页,我们能够比较直观地通过曲线进行了解。</p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1596725082194111.png" alt="image.png" width="351" height="233" style="width: 351px; height: 233px;"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1596725176330253.png" alt="image.png" width="303" height="220" style="width: 303px; height: 220px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;上面为线性和双曲正切模型的曲线,可以看见h<sup>*</sup>是控制斜率的参数,通过这个参数控制曲线拟合试验数据。同样的对于Van&nbsp;Genuchten模型也是相同的道理,只不过是通过两个参数控制相应的模型参数进行拟合。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;如果想要了解更多的水分特征曲线模型及他们的对比关系,可以参考《土壤水分特征曲线模型模拟性能评价》王愿斌。通过该文章中的一个表1大家能够获得一个更全面的了解。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1596725742695267.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1596725762368062.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1596725782248645.png" alt="image.png"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 相信通过上面的书籍和文献,除此接触此概念的工程师能够对水分特征曲线模型及参数有一个了解,能够从陌生转向熟悉,对OPtumG2软件的使用产生促进作用。</p>

OptumG2 锚杆高边坡设计

库仑产品库仑沈工 发表了文章 • 0 个评论 • 81 次浏览 • 2020-07-08 15:07 • 来自相关话题

1. 项目介绍该边坡位于水库旁,为一高陡的土质边坡,混杂部分坡积碎块石。原有边坡呈六级阶梯状,坡面无防护,在强降雨的影响下易发生滑塌破坏。边坡地层结构简单,上部为坡积碎石土,下部为全风化凝灰岩,在土岩结合面易形成滑动面,且坡面为松散土体,吸水饱和后易发生局部土块掉落,因此需要进行综合治理。2. 计算要求本次采用GEO5软件进行极限平衡分析,并通过G2软件进行数值模拟分析,综合考虑边坡安全性。 2.1. GEO5 (不平衡推力法(隐式))计算结果:  原始坡面天然工况安全系数 = 1.04 < 1.35支护状况下天然工况安全系数 = 1.42 > 1.35  原始坡面地震工况安全系数 = 0.95 < 1.15支护状况下地震工况安全系数 = 1.27 > 1.152.2. OptumG2强度折减法计算结果:  天然工况安全系数 = 1.03支护工况安全系数 = 1.405   地震工况安全系数 =0.942支护地震工况安全系数 =1.276可以更直观的模拟边坡破坏的形式,通过对岩土体变形的综合考虑,可以模拟出岩土体中应力、位移、剪切耗散等破坏情况,便于设计人员更好的把握边坡的稳定性,从而选择更为有效的支护形式。 3. 结果分析通过GEO5和G2软件分别对两种方法进行对比分析,边坡稳定性分析所得的滑面与安全系数基本相同。最终的计算滑面都满足要求。两种不同的计算方法不仅可以相互验证、相互模拟,还能从各自独特的方面对边坡稳定性进行分析,而OptumG2能有效的反映边坡破坏的趋势,能更有针对性的对边坡进行支护,使结果更为精确。注:本案例为库仑G2培训的优秀作业,已对计算模型及报告内容进行简单编辑,在此展示以供大家参考。 查看全部
<p>1.&nbsp;<strong>项目介绍</strong></p><p>该边坡位于水库旁,为一高陡的土质边坡,混杂部分坡积碎块石。原有边坡呈六级阶梯状,坡面无防护,在强降雨的影响下易发生滑塌破坏。边坡地层结构简单,上部为坡积碎石土,下部为全风化凝灰岩,在土岩结合面易形成滑动面,且坡面为松散土体,吸水饱和后易发生局部土块掉落,因此需要进行综合治理。</p><p>2.&nbsp;<strong>计算要求</strong></p><p>本次采用GEO5软件进行极限平衡分析,并通过G2软件进行数值模拟分析,综合考虑边坡安全性。&nbsp;</p><p>2.1.&nbsp;<strong>GEO5 </strong><strong>(不平衡推力法(隐式))</strong><strong>计算结果:</strong></p><table><tbody><tr class="firstRow"><td style="word-break: break-all;"><p>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191285800335.png" alt="image.png"/></p></td><td style="word-break: break-all;"><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191290841615.png" alt="image.png"/>&nbsp;</p></td></tr><tr><td><p>原始坡面天然工况</p><p>安全系数 = 1.04 &lt; 1.35</p></td><td><p>支护状况下天然工况</p><p>安全系数 = 1.42 &gt; 1.35</p></td></tr><tr><td style="word-break: break-all;"><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191298421696.png" alt="image.png"/>&nbsp;</p></td><td style="word-break: break-all;"><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191303205656.png" alt="image.png"/>&nbsp;</p></td></tr><tr><td><p>原始坡面地震工况</p><p>安全系数 = 0.95 &lt; 1.15</p></td><td><p>支护状况下地震工况</p><p>安全系数 = 1.27 &gt; 1.15</p></td></tr></tbody></table><p>2.2.&nbsp;<strong>OptumG2强度折减法</strong><strong>计算结果:</strong></p><table><tbody><tr class="firstRow"><td style="word-break: break-all;"><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191310328271.png" alt="image.png"/>&nbsp;</p></td><td style="word-break: break-all;"><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191314664328.png" alt="image.png"/>&nbsp;</p></td></tr><tr><td><p>天然工况</p><p>安全系数 = 1.03</p></td><td style="word-break: break-all;"><p>支护工况</p><p>安全系数 = 1.405</p></td></tr></tbody></table><p>&nbsp;</p><table><tbody><tr class="firstRow"><td style="word-break: break-all;"><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191360465517.png" alt="image.png"/>&nbsp;</p></td><td style="word-break: break-all;"><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191365168029.png" alt="image.png"/>&nbsp;</p></td></tr><tr><td><p>地震工况</p><p>安全系数 =0.942</p></td><td><p>支护地震工况</p><p>安全系数 =1.276</p></td></tr></tbody></table><p>可以更直观的模拟边坡破坏的形式,通过对岩土体变形的综合考虑,可以模拟出岩土体中应力、位移、剪切耗散等破坏情况,便于设计人员更好的把握边坡的稳定性,从而选择更为有效的支护形式。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594191373555364.png" alt="image.png"/>&nbsp;</p><p>3.&nbsp;<strong>结果分析</strong></p><p>通过GEO5和G2软件分别对两种方法进行对比分析,边坡稳定性分析所得的滑面与安全系数基本相同。最终的计算滑面都满足要求。两种不同的计算方法不仅可以相互验证、相互模拟,还能从各自独特的方面对边坡稳定性进行分析,而OptumG2能有效的反映边坡破坏的趋势,能更有针对性的对边坡进行支护,使结果更为精确。</p><p>注:本案例为库仑G2培训的优秀作业,已对计算模型及报告内容进行简单编辑,在此展示以供大家参考。</p>

Optum G2正确设置板单元参数以模拟混凝土受弯桩

库仑产品库仑沈工 发表了文章 • 0 个评论 • 145 次浏览 • 2020-07-06 10:03 • 来自相关话题

Optum G2软件是一款数值分析软件,使用过程中我们经常需要去模拟各种混凝土桩,钢板桩,型钢桩及钢管组合桩等。G2软件可使用排桩和板单元两种结构进行桩的模拟,而排桩主要是受轴向力为主,板单元受横向力(弯矩与剪力) 为主,所以经常我们用排桩去模拟受压的基础桩,而用板单元模拟受弯矩、剪力为主的抗滑桩等。 模拟抗滑桩当采用板单元模拟桩时,我们可以选择两种类型的参数设置,此处的设置需要简单的换算,本文将进行举例说明,并明确具体的换算关系,以防弄错。 A类型模型参数 B类型模型参数A、B两种类型的模型参数,可以模拟各种混凝土桩,钢板桩,型钢桩及钢管组合桩等。上面截图与桩截面相关的参数给的都是每延米的数值,也就是真实的截面尺寸换算过后要除以桩间距。下面我们将借助GEO5[抗滑桩设计]或[深基坑支护结构分析]模块来快速获取这些数值。钢筋混凝土桩(矩形或者圆形)--选A类参数设置混凝土桩更适合选用A类型的参数设置,这里以A类型为例作说明:打开抗滑桩设计模块,打开GEO5自带例题Demo 01(C:\Program Files (x86)\Fine\GEO5 2020 Examples China,也可能是其他盘)或者其他任意设计好的源文件。在GEO5的【尺寸】菜单下,设置好桩的尺寸和间距就可以查看A与I每延米的数值。 混凝土的弹性模型可直接参考以下截图,也可以在【材料】菜单下,选择不同的混凝土等级,查看对于的弹性模量,如下图:  法向刚度EA(kN/m)=每延米的面积A(m2/m)*弹性模量(MPa)*1000抗弯刚度EI(kNm2/m)=每延米的惯性矩I(m4/m)*弹性模量(MPa)*1000重量w(kg/m/m)=容重(KN/m3)*面积(m2)*1000/9.8(N/kg)此处面积=bh或者π*d^2/4;混凝土容重一般取值25KN/m3。屈服力与屈服弯矩是截面的承载力,正常的混凝土桩都是要配筋的,所以要考虑钢筋的这部分贡献。尺寸与材料设置完成后,点击分析,结构稳定将会有结果弹出,但是如果此时结构不稳定需要调整模型,使之稳定。然后,里面设置具体的配筋数量,然后再点击,查看承载力详细数值Vu,Mu。  屈服力np(kN/m)=Vu(kN)/桩间距a(m)屈服弯矩mp(kNm/m)=Mu(kNm)/桩间距a(m)至此,本文对于钢筋混凝土矩形或圆形桩的板单元建模参数就介绍完了,下一章节我们将介绍如何用板单元去模拟板桩,型钢桩,敬请期待。。。 查看全部
<p>Optum G2软件是一款数值分析软件,使用过程中我们经常需要去模拟各种混凝土桩,钢板桩,型钢桩及钢管组合桩等。G2软件可使用排桩和板单元两种结构进行桩的模拟,而排桩主要是受轴向力为主,板单元受横向力(弯矩与剪力) 为主,所以经常我们用排桩去模拟受压的基础桩,而用板单元模拟受弯矩、剪力为主的抗滑桩等。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000689729544.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">模拟抗滑桩</p><p>当采用板单元模拟桩时,我们可以选择两种类型的参数设置,此处的设置需要简单的换算,本文将进行举例说明,并明确具体的换算关系,以防弄错。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000699508530.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;">A类型模型参数</p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000709471241.png" alt="image.png"/></p><p style="text-align: center;">B类型模型参数</p><p>A、B两种类型的模型参数,可以模拟各种混凝土桩,钢板桩,型钢桩及钢管组合桩等。上面截图与桩截面相关的参数给的都是每延米的数值,也就是真实的截面尺寸换算过后要除以桩间距。下面我们将借助GEO5[抗滑桩设计]或[深基坑支护结构分析]模块来快速获取这些数值。</p><p><strong>钢筋混凝土桩(矩形或者圆形)--选A类参数设置</strong></p><p>混凝土桩更适合选用A类型的参数设置,这里以A类型为例作说明:</p><p>打开抗滑桩设计模块,打开GEO5自带例题Demo 01(C:\Program Files (x86)\Fine\GEO5 2020 Examples China,也可能是其他盘)或者其他任意设计好的源文件。在GEO5的【尺寸】菜单下,设置好桩的尺寸和间距就可以查看A与I每延米的数值。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000719418794.png" alt="image.png"/>&nbsp;</p><p>混凝土的弹性模型可直接参考以下截图,也可以在【材料】菜单下,选择不同的混凝土等级,查看对于的弹性模量,如下图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000728441997.png" alt="image.png"/>&nbsp;</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000738885845.png" alt="image.png"/>&nbsp;</p><p>法向刚度EA(kN/m)=每延米的面积A(m2/m)*弹性模量(MPa)*1000</p><p>抗弯刚度EI(kNm2/m)=每延米的惯性矩I(m4/m)*弹性模量(MPa)*1000</p><p>重量w(kg/m/m)=容重(KN/m3)*面积(m2)*1000/9.8(N/kg)</p><p>此处面积=bh或者π*d^2/4;混凝土容重一般取值25KN/m3。</p><p>屈服力与屈服弯矩是截面的承载力,正常的混凝土桩都是要配筋的,所以要考虑钢筋的这部分贡献。尺寸与材料设置完成后,点击分析,结构稳定将会有结果弹出,但是如果此时结构不稳定需要调整模型,使之稳定。然后<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000747789681.png" alt="image.png"/>,里面设置具体的配筋数量,然后再点击<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000751370551.png" alt="image.png"/>,查看承载力详细数值Vu,Mu。</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000755456448.png" alt="image.png"/>&nbsp;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1594000758952739.png" alt="image.png"/>&nbsp;</p><p>屈服力np(kN/m)=Vu(kN)/桩间距a(m)</p><p>屈服弯矩mp(kNm/m)=Mu(kNm)/桩间距a(m)</p><p>至此,本文对于钢筋混凝土矩形或圆形桩的板单元建模参数就介绍完了,下一章节我们将介绍如何用板单元去模拟板桩,型钢桩,敬请期待。。。</p>

Optum 安装问题:手动安装Microsoft Visual C++2015-2019 Redistributable(x64)

库仑产品库仑沈工 发表了文章 • 0 个评论 • 276 次浏览 • 2020-06-22 15:54 • 来自相关话题

安装Optum 产品的时候,有时候会弹出如下错误:Optum 产品对操作系统的最低要求是64位操作系统,如果您是32位的操作系统,该系列软件将不支持安装及使用。请自行查看下操作系统信息,在桌面右击“此电脑”,点击属性。在弹出的窗口中即可查看系统属性。确定操作系统为64位后,再依据弹窗提示手动安装如下程序,Microsoft Visual C++2015-2019 Redistributable(x64).rar 安装完成后,再重新使用我们optum安装包安装软件即可。 查看全部
<p>安装Optum 产品的时候,有时候会弹出如下错误:<br/></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1592811058567807.png" alt="image.png"/></p><p>Optum 产品对操作系统的最低要求是64位操作系统,如果您是32位的操作系统,该系列软件将不支持安装及使用。请自行查看下操作系统信息,在桌面右击“此电脑”,点击属性。在弹出的窗口中即可查看系统属性。</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1592811741805871.png" alt="image.png"/></p><p>确定操作系统为64位后,再依据弹窗提示手动安装如下程序,</p><p style="line-height: 16px;"><img style="vertical-align: middle; margin-right: 2px;" src="http://www.wen.kulunsoft.com/s ... t%3Ba style="font-size:12px; color:#0066cc;" href="http://www.wen.kulunsoft.com/u ... ot%3B title="Microsoft Visual C++2015-2019 Redistributable(x64).rar">Microsoft Visual C++2015-2019 Redistributable(x64).rar</a>&nbsp;安装完成后,再重新使用我们optum安装包安装软件即可。</p><p><br/></p>

Optum 安装问题:请求被中止:未能创建SSL/TLS安全通道

库仑产品库仑沈工 发表了文章 • 0 个评论 • 101 次浏览 • 2020-06-22 13:57 • 来自相关话题

OPTUM  G2/G3软件在安装过程中,可能会有显示“请求被中止:未能创建SSL/TLS安全通道” 如果使用Windows 7,需要安装部分补丁程序,可以通过“ Windows Update”来更新Windows。也可以直接在这里下载Windows 7(用于基于x64的系统)的补丁:Windows6.1-KB2992611-x64(1).rar 进行安装,更新Windows修复程序后,请重启再打开软件OPTUM G2 / G3。如果补丁安装后,问题仍未得到解决,可能需要使用最新安装包安装软件,1.可截图至G2官方交流群反馈问题并索要最新安装包,如下:2.可截图以邮件的形式发送至support@kulunsoft.com官方交流群反馈问题并索要最新安装包。 查看全部
<p>OPTUM&nbsp; G2/G3软件在安装过程中,可能会有显示“请求被中止:未能创建SSL/TLS安全通道”</p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1592804413217778.png" alt="image.png"/></p><p>如果使用Windows 7,需要安装部分补丁程序,可以通过“ Windows Update”来更新Windows。</p><p>也可以直接在这里下载Windows 7(用于基于x64的系统)的补丁:</p><p style="line-height: 16px;"><img style="vertical-align: middle; margin-right: 2px;" src="http://www.wen.kulunsoft.com/s ... t%3Ba style="font-size:12px; color:#0066cc;" href="http://www.wen.kulunsoft.com/u ... ot%3B title="Windows6.1-KB2992611-x64(1).rar">Windows6.1-KB2992611-x64(1).rar</a>&nbsp;进行安装,更新Windows修复程序后,请重启再打开软件OPTUM G2 / G3。</p><p style="line-height: 16px;">如果补丁安装后,问题仍未得到解决,可能需要使用最新安装包安装软件,</p><p style="line-height: 16px;">1.可截图至G2官方交流群反馈问题并索要最新安装包,如下:</p><p style="line-height: 16px;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1592805374247348.png" alt="image.png"/></p><p style="line-height: 16px;">2.可截图以邮件的形式发送至support@kulunsoft.com官方交流群反馈问题并索要最新安装包。</p>

G2中裂隙的输入方法和作用简析

库仑产品库仑张崇波 发表了文章 • 0 个评论 • 114 次浏览 • 2020-05-21 14:34 • 来自相关话题

       使用Optum G2软件可以分析一些复杂的岩土工程问题,一方面在于软件具有的极限分析方法和网格自适应的功能,另一方面还在于软件允许用户对模型进行比较大的干预,其中在岩土材料中定义裂隙面就是这样一种干预方式。G2中的裂隙可以表征岩体结构面及土体内部裂隙等,但这并不是岩土体的竖向拉张裂缝,对于张裂缝包括断层,在G2中一般采用剪切节理的方式来模拟,相关资料可以查看案例10:断层作用下的边坡稳定性和案例70:含裂隙边坡稳定性,本文主要对岩土体内部裂隙的输入方法和作用进行简要介绍。1、裂隙的输入方式       首先,岩土材料的本构模型需要选择摩尔-库仑模型,只有选择了摩尔-库仑模型,才能在材料参数中定义裂隙面:然后,在“裂隙”后面的复选框选择是,弹出如下界面:用户可以选择定义一个面或者两个面,分别输入每个面的倾角α,黏聚力c,内摩擦角φ,以及每个面的抗拉强度kt(一般默认为无穷大)。需要说明的是,这里的倾角是从水平面逆时针转向竖直面的角度,如下图所示:2、输入裂隙后对边坡稳定性的影响       这里以一个简单的边坡模型演示加入裂隙后对边坡的稳定性以及破坏模式的影响,模型如下,自然边坡坡角45°,分析方法均采用强度折减法,求解下限解,模型网格数量设置为3000个,每一个模型均设置3次的网格自适应:(1)按均质边坡考虑,边坡坡角45°,破坏模式为圆弧型,安全系数为3.509 (2)在原均质边坡的基础上,考虑一组顺层裂隙面,倾角150°,裂隙面参数c=10kPa,φ=20°,破坏模式近直线型,安全系数为1.353 (3)在原均质边坡的基础上,考虑一组反倾裂隙面,倾角60°,裂隙面参数c=10kPa,φ=20°,破坏模式近折线型,坡角位置有明显的拐弯,安全系数为1.849 (4)在原均质边坡的基础上,考虑两组裂隙面,倾角分别为150°和60°,裂隙面参数c=10kPa,φ=20°,破坏模式近折线型,安全系数为1.213        以上4组对比分析主要是针对不同结构面产状进行对比分析,感兴趣的用户可以通过调整抗剪强度参数以及倾角做进一步的的对比工作。3、输入裂隙后对隧道稳定性的影响       同样,以一个简单的隧道模型演示加入裂隙前后的不同。模型及材料参数如下,分析方法均采用极限分析,求解下限解,模型网格数量设置为3000个,每一个模型均设置3次的网格自适应:(1)考虑为各向均质体,破坏乘数为23.73 (2)输入一组裂隙面,倾角150°,裂隙面参数c=10kPa,φ=20°,破坏乘数为1.28  (3)输入一组裂隙面,倾角60°,裂隙面参数c=10kPa,φ=20°,破坏乘数为2.806 (4)输入两组裂隙面,倾角分别为150°和60°,裂隙面参数c=10kPa,φ=20°,破坏乘数为1.257        通过以上两个简单模型的示例,可以看出当我们在材料中输入了裂隙面之后,对边坡和隧道的稳定性都有很大的影响。针对实际工作中遇到的裂隙面发育的复杂工程问题,大家可以尝试使用G2来进行分析。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp;使用Optum G2软件可以分析一些复杂的岩土工程问题,一方面在于软件具有的极限分析方法和网格自适应的功能,另一方面还在于软件允许用户对模型进行比较大的干预,其中在岩土材料中定义裂隙面就是这样一种干预方式。G2中的裂隙可以表征岩体结构面及土体内部裂隙等,但这并不是岩土体的竖向拉张裂缝,对于张裂缝包括断层,在G2中一般采用剪切节理的方式来模拟,相关资料可以查看<a href="http://www.wen.kulunsoft.com/dochelp/180">案例10:断层作用下的边坡稳定性</a>和<a href="http://www.wen.kulunsoft.com/d ... gt%3B案例70:含裂隙边坡稳定性</a>,本文主要对岩土体内部裂隙的输入方法和作用进行简要介绍。</p><p>1、裂隙的输入方式</p><p>&nbsp; &nbsp; &nbsp; &nbsp;首先,岩土材料的本构模型需要选择<strong>摩尔</strong><strong>-</strong><strong>库仑模型</strong>,只有选择了摩尔-库仑模型,才能在材料参数中定义裂隙面:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590028318107705.png" alt="image.png"/></p><p>然后,在“裂隙”后面的复选框选择是,弹出如下界面:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590028529301035.png" alt="image.png" width="287" height="166" style="width: 287px; height: 166px;"/></p><p>用户可以选择定义一个面或者两个面,分别输入每个面的倾角α,黏聚力c,内摩擦角φ,以及每个面的抗拉强度k<sub>t</sub>(一般默认为无穷大)。需要说明的是,这里的倾角是从水平面逆时针转向竖直面的角度,如下图所示:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590030129820916.png" alt="image.png"/></p><p>2、输入裂隙后对边坡稳定性的影响</p><p>&nbsp; &nbsp; &nbsp; &nbsp;这里以一个简单的边坡模型演示加入裂隙后对边坡的稳定性以及破坏模式的影响,模型如下,自然边坡坡角45°,分析方法均采用强度折减法,求解下限解,模型网格数量设置为3000个,每一个模型均设置3次的网格自适应:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590033779856870.png" alt="image.png"/></p><p>(1)按均质边坡考虑,边坡坡角45°,破坏模式为圆弧型,安全系数为3.509</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034095814598.png" alt="image.png" width="304" height="161" style="width: 304px; height: 161px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034121828438.png" alt="image.png" width="305" height="162" style="width: 305px; height: 162px;"/></p><p>(2)在原均质边坡的基础上,考虑一组顺层裂隙面,倾角150°,裂隙面参数c=10kPa,φ=20°,破坏模式近直线型,安全系数为1.353</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034341707371.png" alt="image.png" width="306" height="184" style="width: 306px; height: 184px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034363860006.png" alt="image.png" width="311" height="184" style="width: 311px; height: 184px;"/></p><p>(3)在原均质边坡的基础上,考虑一组反倾裂隙面,倾角60°,裂隙面参数c=10kPa,φ=20°,破坏模式近折线型,坡角位置有明显的拐弯,安全系数为1.849</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034835729252.png" alt="image.png" width="302" height="177" style="width: 302px; height: 177px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034857414028.png" alt="image.png" width="303" height="178" style="width: 303px; height: 178px;"/></p><p>(4)在原均质边坡的基础上,考虑两组裂隙面,倾角分别为150°和60°,裂隙面参数c=10kPa,φ=20°,破坏模式近折线型,安全系数为1.213</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034907514361.png" alt="image.png" width="313" height="186" style="width: 313px; height: 186px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590034888513750.png" alt="image.png" width="313" height="185" style="width: 313px; height: 185px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;以上4组对比分析主要是针对不同结构面产状进行对比分析,感兴趣的用户可以通过调整抗剪强度参数以及倾角做进一步的的对比工作。</p><p>3、输入裂隙后对隧道稳定性的影响</p><p>&nbsp; &nbsp; &nbsp; &nbsp;同样,以一个简单的隧道模型演示加入裂隙前后的不同。模型及材料参数如下,分析方法均采用极限分析,求解下限解,模型网格数量设置为3000个,每一个模型均设置3次的网格自适应:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590035765106925.png" alt="image.png"/></p><p>(1)考虑为各向均质体,破坏乘数为23.73</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590039795775965.png" alt="image.png" width="305" height="221" style="width: 305px; height: 221px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590039813593104.png" alt="image.png" width="287" height="222" style="width: 287px; height: 222px;"/></p><p>(2)输入一组裂隙面,倾角150°,裂隙面参数c=10kPa,φ=20°,破坏乘数为1.28<br/></p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590040295632629.png" alt="image.png" width="294" height="214" style="width: 294px; height: 214px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590040336497285.png" alt="image.png" width="285" height="213" style="width: 285px; height: 213px;"/><br/></p><p>(3)输入一组裂隙面,倾角60°,裂隙面参数c=10kPa,φ=20°,破坏乘数为2.806</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590040354755016.png" alt="image.png" width="295" height="210" style="width: 295px; height: 210px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590040393840182.png" alt="image.png" width="288" height="210" style="width: 288px; height: 210px;"/></p><p>(4)输入两组裂隙面,倾角分别为150°和60°,裂隙面参数c=10kPa,φ=20°,破坏乘数为1.257</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590040413504249.png" alt="image.png" width="292" height="224" style="width: 292px; height: 224px;"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1590040436855134.png" alt="image.png" width="293" height="223" style="width: 293px; height: 223px;"/></p><p>&nbsp; &nbsp; &nbsp; &nbsp;通过以上两个简单模型的示例,可以看出当我们在材料中输入了裂隙面之后,对边坡和隧道的稳定性都有很大的影响。针对实际工作中遇到的裂隙面发育的复杂工程问题,大家可以尝试使用G2来进行分析。</p>

“模量”大荟萃——GEO5和G2常见模量参数简介

岩土工程库仑张崇波 发表了文章 • 0 个评论 • 554 次浏览 • 2020-02-13 09:43 • 来自相关话题

        在使用GEO5或G2进行计算分析的时候,我们经常会遇到要输入各种模量参数,很多用户不知道这些模量到底是什么意思,该怎么取值,所以本文做一个简单梳理,以便于各位用户更好的使用软件。        模量是指材料在受力状态下应力和应变的比值,量纲是L-1MT-2,常用单位是MPa和GPa。如果在应力和应变上加上限定条件和修饰词语,就会衍生出不同的模量,比如最常用的弹性模量E(或杨氏模量),是指材料在弹性变形阶段正应力与正应变的比值,如图1就是低碳钢拉伸过程的应力-应变曲线图,图中Oa段为弹性变形,该段的斜率值即为弹性模量。图1:低碳钢拉伸过程的应力-应变曲线图        在弹性变形阶段剪切应力与剪切应变的比值,则称为切变模量G(或剪切模量)。此外,还有一种体积模量K,指的是材料在弹性变形范围内,平均应力(某一点三个主应力的平均值)和体积应变的比值,与弹性模量的关系可表示为,其中μ为泊松比。        以上三个概念在弹性力学或线弹性材料当中应用比较广泛。除了弹性模量,切变模量和体积模量这两个模量在岩土分析当中则用的比较少。        实际上,我们在用软件分析岩土问题的时候,遇到最多的是弹性模量E、压缩模量Es和变形模量E0。弹性模量的概念在上文中已给出,而对于压缩模量和变形模量,笔者在查阅资料之前,认为二者的区别主要在于压缩模量是室内试验得到的结果,变形模量是野外原位测试的结果。然而这种认识是不准确的,实际上二者最大的区别在于试验条件是否完全侧限(即不允许侧向变形)。压缩模量是指土在完全侧限条件下,竖向正应力与相应的变形稳定情况下正应变的比值,一般通过室内固结试验测得。变形模量则是指土体在侧向自由膨胀条件下,正应力与相应正应变的比值,既可通过现场原位试验(比如平板载荷试验、扁铲侧胀试验、旁压试验等)测得,也可以通过室内三轴压缩试验获得。               与弹性模量不同,测量压缩模量和变形模量的应力-应变曲线是非线性的。如图2所示,在侧限压缩条件下,压缩模量随竖向应力的增加而增加;在常规三轴条件下,变形模量随偏差应力的增加而减小。由此可见压缩模量和变形模量都具有分段性,不同压力范围有不同的取值。因此也就衍生出不同取值方法下的模量参数,如图3展示的就是变形模量的不同取值,包括了切线模量和割线模量。      图2:两种室内试验的应力-应变关系曲线                       图3:变形模量的不同模量类型               典型的切线模量是初始切线模量(或叫初始弹性模量),是土体应力-应变曲线初始段切线斜率最大的部分,可以用来表征土体弹性变形阶段的模量。典型的割线模量是E50,对应土体峰值应力(破坏时的应力)一半时的应力与相应应变的比值,如图4。        从图4和图5可知,土体在荷载的作用下产生变形,在外荷载卸除后,土的应力-应变关系并没有回到原点,变形中有一部分是可以恢复的,而另一部分是不可恢复的,这个过程说明了土体材料典型的弹塑性。土体回弹和再加载过程一般可以用一个模量表示,即回弹模量Eur,假设能够回弹的变形都是弹性变形,那么回弹模量近似等于初始弹性模量,根据经验,土体初始弹性模量约为变形模量的3~5倍,所以当没有试验资料时,回弹模量一般按变形模量的3~5倍取值。这个经验十分有用,比如在使用GEO5有限元分析模块定义修正线弹性模型、Mohr-Coulomb弹塑性模型或者D-P模型时,以及使用G2定义HMC(硬化摩尔库仑)材料时,都需要输入材料的回弹模量。图4:割线模量E50图5:土的加载-卸载应力应变曲线        在假定相同起始状态的条件下,三轴压缩的变形模量E0和侧限压缩试验中的压缩模量Es可以通过广义胡克定律推导出二者的关系,公式如下:其中μ为泊松比。上式是基于线弹性假定的理论关系式,但土体并不是理想弹性体,所以按上述公式换算在大部分土体中都不太符合。在GEO5的帮助文档中也提到:实践经验表明由变形模量推导而来的压缩模量和由现场实测荷载沉降曲线得到的压缩模量往往会出现很大的不同,甚至处于不同的数量级。一般来说结构性较弱的软土比较符合这个公式。        此外,当使用G2分析,选择Tresca材料时,需要输入不排水变形模量Eu,该值可通过室内不排水三轴压缩试验或野外原位测试试验获得。另外,GEO5有限元分析模块进行应力应变分析时,允许用户定义随深度增加的材料刚度,即土体不同深度处具有不同的模量,如图6所示,可以输入弹性模量随深度的变化率,相关理论可参考http://www.wen.kulunsoft.com/question/865。图6:GEO5有限元模块岩土材料参数中定义随深度变化的弹性模量        综上所述,那么应该何时采用何种模量呢。本文建议,在一维沉降分析时,比如利用分层总和法计算沉降或者固结分析时,建议土体采用压缩模量进行分析;而在进行三维变形分析,比如边坡稳定性分析和基坑开挖分析时,土体则可以采用变形模量;而岩体和混凝土结构一般采用弹性模量进行分析。土体的初始弹性模量主要用于计算瞬时沉降。        以上介绍的各种模量都应当通过可靠的实验来测得,如果没有试验资料,可参考地区经验取值或参考GEO5帮助文档给出的建议值。 查看全部
<p>&nbsp; &nbsp; &nbsp; &nbsp; 在使用GEO5或G2进行计算分析的时候,我们经常会遇到要输入各种模量参数,很多用户不知道这些模量到底是什么意思,该怎么取值,所以本文做一个简单梳理,以便于各位用户更好的使用软件。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 模量是指材料在受力状态下应力和应变的比值,量纲是L<sup>-1</sup>MT<sup>-2</sup>,常用单位是MPa和GPa。如果在应力和应变上加上限定条件和修饰词语,就会衍生出不同的模量,比如最常用的弹性模量E(或杨氏模量),是指材料在弹性变形阶段正应力与正应变的比值,如图1就是低碳钢拉伸过程的应力-应变曲线图,图中Oa段为弹性变形,该段的斜率值即为弹性模量。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557109311427.png" alt="image.png" width="346" height="294" style="width: 346px; height: 294px;"/></p><p style="text-align: center;"><strong>图1:低碳钢拉伸过程的应力-应变曲线图</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 在弹性变形阶段剪切应力与剪切应变的比值,则称为切变模量G(或剪切模量)。此外,还有一种体积模量K,指的是材料在弹性变形范围内,平均应力(某一点三个主应力的平均值)和体积应变的比值,与弹性模量的关系可表示为<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557215789774.png" alt="image.png"/>,其中μ为泊松比。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 以上三个概念在弹性力学或线弹性材料当中应用比较广泛。除了弹性模量,切变模量和体积模量这两个模量在岩土分析当中则用的比较少。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 实际上,我们在用软件分析岩土问题的时候,遇到最多的是弹性模量E、压缩模量E<sub>s</sub>和变形模量E<sub>0</sub>。弹性模量的概念在上文中已给出,而对于压缩模量和变形模量,笔者在查阅资料之前,认为二者的区别主要在于压缩模量是室内试验得到的结果,变形模量是野外原位测试的结果。然而这种认识是不准确的,实际上二者最大的区别在于试验条件是否完全侧限(即不允许侧向变形)。压缩模量是指土在完全侧限条件下,竖向正应力与相应的变形稳定情况下正应变的比值,一般通过室内固结试验测得。变形模量则是指土体在侧向自由膨胀条件下,正应力与相应正应变的比值,既可通过现场原位试验(比如平板载荷试验、扁铲侧胀试验、旁压试验等)测得,也可以通过室内三轴压缩试验获得。&nbsp; &nbsp; &nbsp; &nbsp;</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 与弹性模量不同,测量压缩模量和变形模量的应力-应变曲线是非线性的。如图2所示,在侧限压缩条件下,压缩模量随竖向应力的增加而增加;在常规三轴条件下,变形模量随偏差应力的增加而减小。由此可见压缩模量和变形模量都具有分段性,不同压力范围有不同的取值。因此也就衍生出不同取值方法下的模量参数,如图3展示的就是变形模量的不同取值,包括了切线模量和割线模量。</p><p style="text-align: left;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557487410256.png" alt="image.png" width="302" height="279" style="width: 302px; height: 279px;"/>&nbsp; &nbsp;&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557505750853.png" alt="image.png" width="295" height="257" style="width: 295px; height: 257px;"/></p><p style="text-align: left;"><strong>&nbsp; 图2:两种室内试验的应力-应变关系曲线&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>图3:变形模量的不同模量类型</strong> &nbsp; &nbsp; &nbsp;&nbsp;</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 典型的切线模量是初始切线模量(或叫初始弹性模量),是土体应力-应变曲线初始段切线斜率最大的部分,可以用来表征土体弹性变形阶段的模量。典型的割线模量是E<sub>50</sub>,对应土体峰值应力(破坏时的应力)一半时的应力与相应应变的比值,如图4。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 从图4和图5可知,土体在荷载的作用下产生变形,在外荷载卸除后,土的应力-应变关系并没有回到原点,变形中有一部分是可以恢复的,而另一部分是不可恢复的,这个过程说明了土体材料典型的弹塑性。土体回弹和再加载过程一般可以用一个模量表示,即回弹模量E<sub>ur</sub>,假设能够回弹的变形都是弹性变形,那么回弹模量近似等于初始弹性模量,根据经验,土体初始弹性模量约为变形模量的3~5倍,所以当没有试验资料时,回弹模量一般按变形模量的3~5倍取值。这个经验十分有用,比如在使用GEO5有限元分析模块定义修正线弹性模型、Mohr-Coulomb弹塑性模型或者D-P模型时,以及使用G2定义HMC(硬化摩尔库仑)材料时,都需要输入材料的回弹模量。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557620968014.png" alt="image.png"/></p><p style="text-align: center;"><strong>图4:割线模量E<sub>50</sub></strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557723957844.png" alt="image.png"/></p><p style="text-align: center;"><strong>图5:土的加载-卸载应力应变曲线</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 在假定相同起始状态的条件下,三轴压缩的变形模量E<sub>0</sub>和侧限压缩试验中的压缩模量E<sub>s</sub>可以通过广义胡克定律推导出二者的关系,公式如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557766519790.png" alt="image.png"/></p><p>其中μ为泊松比。上式是基于线弹性假定的理论关系式,但土体并不是理想弹性体,所以按上述公式换算在大部分土体中都不太符合。在GEO5的帮助文档中也提到:实践经验表明由变形模量推导而来的压缩模量和由现场实测荷载沉降曲线得到的压缩模量往往会出现很大的不同,甚至处于不同的数量级。一般来说结构性较弱的软土比较符合这个公式。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 此外,当使用G2分析,选择Tresca材料时,需要输入不排水变形模量E<sub>u</sub>,该值可通过室内不排水三轴压缩试验或野外原位测试试验获得。另外,GEO5有限元分析模块进行应力应变分析时,允许用户定义随深度增加的材料刚度,即土体不同深度处具有不同的模量,如图6所示,可以输入弹性模量随深度的变化率,相关理论可参考<a href="http://www.wen.kulunsoft.com/q ... gt%3B。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1581557821740421.png" alt="image.png"/></p><p style="text-align: center;"><strong>图6:GEO5有限元模块岩土材料参数中定义随深度变化的弹性模量</strong></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 综上所述,那么应该何时采用何种模量呢。本文建议,在一维沉降分析时,比如利用分层总和法计算沉降或者固结分析时,建议土体采用压缩模量进行分析;而在进行三维变形分析,比如边坡稳定性分析和基坑开挖分析时,土体则可以采用变形模量;而岩体和混凝土结构一般采用弹性模量进行分析。土体的初始弹性模量主要用于计算瞬时沉降。</p><p>&nbsp; &nbsp; &nbsp; &nbsp; 以上介绍的各种模量都应当通过可靠的实验来测得,如果没有试验资料,可参考地区经验取值或参考GEO5帮助文档给出的建议值。</p>

OptumG2——极限分析上限解和美标计算结果的对比

库仑产品库仑赵 发表了文章 • 0 个评论 • 596 次浏览 • 2019-07-26 17:13 • 来自相关话题

      很多工程师对于G2极限分析的方法非常感兴趣,但对其计算结果的依据有一定疑问。在这里以地基极限破坏下的荷载作用为例,通过美标 ANSI API RP 2GEO-2011 (2014) 计算做一个对比:         上述为规范计算方法和各项参数的取值详解。然后我们建模进行对比,2m宽的条形基础的极限荷载求解,其中基底强度3kpa,梯度1.5kpa/m。   (1)规范计算结果        (2)G2计算结果              最终的荷载乘数为39.79,总竖向集中荷载极限值为39.79*0.5*2=39.79KN。总结:      从此条形基础上覆荷载的极限值计算,通过API规范和G2对比,可以看出,G2对于上限解的求解是非常准确的,同时其破坏模式和土力学中经典的破坏模式一致。       查看全部
<p>&nbsp; &nbsp; &nbsp; 很多工程师对于G2极限分析的方法非常感兴趣,但对其计算结果的依据有一定疑问。在这里以地基极限破坏下的荷载作用为例,通过美标&nbsp;ANSI API RP 2GEO-2011 (2014) 计算做一个对比:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1564132275396670.png" alt="image.png"/></p><p style="text-align: center;">&nbsp; &nbsp; &nbsp;&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1564132363674440.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1564132560372466.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1564132606884097.png" alt="image.png"/><br/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1564132622766736.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1564132649795434.png" alt="image.png"/></p><p>&nbsp; &nbsp;上述为规范计算方法和各项参数的取值详解。然后我们建模进行对比,2m宽的条形基础的极限荷载求解,其中基底强度3kpa,梯度1.5kpa/m。</p><p>&nbsp; &nbsp;(1)规范计算结果</p><p><br/></p><p style="text-align: center;">&nbsp; &nbsp; &nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1564133346473585.png" alt="image.png"/></p><p><br/></p><p>&nbsp; &nbsp;(2)G2计算结果</p><p><br/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1564132966627395.png" alt="image.png"/></p><p style="text-align: center;">&nbsp; &nbsp; &nbsp;&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1564133032131269.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1564133734225707.png" alt="image.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1564133489943913.png" alt="image.png"/></p><p><br/></p><p>&nbsp; &nbsp; &nbsp; &nbsp; 最终的荷载乘数为39.79,总竖向集中荷载极限值为39.79*0.5*2=39.79KN。</p><p><br/></p><p>总结:</p><p>&nbsp; &nbsp; &nbsp; 从此条形基础上覆荷载的极限值计算,通过API规范和G2对比,可以看出,G2对于上限解的求解是非常准确的,同时其破坏模式和土力学中经典的破坏模式一致。<br/>&nbsp; &nbsp; &nbsp;&nbsp;</p>

OptumG2工程实例:九州某高边坡稳定性分析

库仑产品库仑李建 发表了文章 • 0 个评论 • 1695 次浏览 • 2018-11-28 14:14 • 来自相关话题

本项目主要对九州的某高边坡进行稳定性分析以及发生滑动对建筑物的影响,同时对边坡采取相应的支护措施,并对支护后的边坡稳定性进行分析。在本次计算分析中,共计算了两个剖面:剖面2-2和剖面5-5,本文主要介绍剖面5-5。1 剖面尺寸剖面5-5的模型宽度为294.575m,高度为142.4m,岩土材料主要以片岩、马兰黄土、离石黄土和卵石为主,模型中添加荷载位置为房屋所在处,如图1.1所示为剖面5-5的初始模型。图1.1 剖面5-5模型对于原始边坡,采取了一定的支护措施,主要以施加锚杆锚索为主,支护后的模型如图1.2所示。图1.2 剖面5-5支护后的模型2  岩土参数根据勘察报告可知,剖面5-5中出现了六种岩土材料:片岩、马兰黄土、离石黄土、卵石、粉土和素填土,分析时共分析了三种工况:天然工况、暴雨工况和地震工况。岩土层的相关岩土参数见下表2.1。表2.1 岩土材料参数工况地层重度 γkN/m3粘聚力 ckPa内摩擦角 φ°弹性模量 EMPa泊松比 v天然工况马兰黄土14.514.928.2200.44离石黄土15.628.829.8200.44片石20104050000.25卵石1825361500.2粉土172528120.3素填土18283080.25暴雨工况马兰黄土15.613.526.6200.44离石黄土16.527.227.3200.44片石20104050000.25卵石1825361500.2粉土172528120.3素填土18283080.25地震工况地震设防烈度为 Ⅷ 度,水平地震加速度取 0.2g注:1、在建模时,岩土层采用的是Mohr-Coulomb模型,强度参数需要输入粘聚力和内摩擦角。2、水平地震加速度为0.2g,那么软件中采用的为设计水平加速度,值为0.05g。3  结构参数在项目中,采用的支护结构包括挡土墙、锚杆、锚索和锚杆框架,建模时挡土墙采用的是重度为24kN/m3的刚体进行模拟,锚杆、锚索采用土工格栅和连接件来模拟(连接件与土体不起作用,只作为连接锚固段和板单元的作用),模拟框架采用的是重度为0的刚性板,具体结构参数见表3.1。表3.1 结构单元参数剖面结构单元长度,m刚度 EA,kN/m屈服力 np,kN/m间距,m剖面5-5土工格栅(锚固段)1550360001连接件-注:屈服力依据的是抗拉强度设计值360×103kPa,刚度为杨氏模量E与截面面积A的乘积。4  边界条件和网格划分4.1 边界条件在本次分析中,边界条件选用OptumG2默认标准边界条件,即模型左右边界限制x方向(水平方向)的位移,模型底边界同时限制x方向和z方向的位移。该边界条件也是有限元平面应变分析中最常用的边界条件。进行边坡稳定性分析时,建模时必须将完整的坡面表达出来。尽管在本次分析中,拟分析区域处于边坡的上部,但采用上述的边界条件完全是合理的。4.2 网格划分在OptumG2中,可以采用网格自适应功能来便捷的划分网格,扇形网格,局部网格大小设置等等功能可以更加提高网格划分的质量。扇形网格主要用于多条线段相交的节点处,或者尖锐的节点处,这是对于局部尖端模型最常用、最合理的划分网格方式。本次分析的网格划分如下图4.1所示,采用的网格单元数量为5000,同时使用了软件自带的网格自适应功能。图4.1 剖面5-5网格划分效果图5  破坏模式分析作为OptumG2实用且强大的优势功能,破坏模式分析对了解边坡的破坏机制以及采用何种支护方式具有非常有意义的作用。进行破坏模式分析时,软件采用的是强度折减法,需要注意的是,OptumG2中的强度折减法的每一步都是极限分析。此外,强度折减法中是对实体,即对岩土体进行折减,对支护的结构单元(包括锚杆、板单元等)不进行折减。5.1 天然工况在天然工况下,剖面5-5的破坏模式如下图5.1所示,可以发现剖面的破坏模式稍微有点复杂,虽近似为圆弧滑动,但有一部分滑面是沿着马兰黄土和离石黄土层分界面的,最危险滑面主要处于马兰黄土层中。通过强度折减法计算,得到的计算安全系数为1.063,说明5-5剖面在天然工况下的稳定状态为基本稳定。图5.1 剖面5-5天然工况下的剪切耗散图5.2 暴雨工况在暴雨工况下,剖面5-5中的各岩土材料参数发生了一定的变化,得到的破坏模式如下图5.2所示,可以发现剖面的破坏模式与天然工况类似,稍微有点复杂,虽近似为圆弧滑动,但有一部分滑面是沿着马兰黄土和离石黄土层分界面的,最危险滑面主要处于马兰黄土层中。通过强度折减法计算,得到的计算安全系数为0.9647,相比天然工况有了一定的减小,此时剖面的稳定状态为不稳定状态。图5.2 剖面5-5暴雨工况下的剪切耗散图5.3 地震工况在地震工况下,对模型施加了横向体荷载,设定横向加速度大小为0.05g,剖面5-5的破坏模式如下图5.3所示,可以发现剖面的破坏模式与天然工况类似,稍微有点复杂,虽近似为圆弧滑动,但有一部分滑面是沿着马兰黄土和离石黄土层分界面的,最危险滑面主要处于马兰黄土层中。通过强度折减法计算,得到的计算安全系数为0.9738,说明此时该剖面已经达到不稳定状态。图5.3 剖面5-5地震工况下的剪切耗散图5.4 支护后天然工况对于剖面5-5,采用的支护方式为:在坡面上施加锚杆框架和锚杆,在天然工况下,支护后的剖面5-5的破坏模式如下图5.4所示,可以发现剖面的破坏模式为圆弧滑动,最危险滑面往下移动到片岩层中,贯穿整个边坡的土层,且滑面绕过了支护的锚杆锚索。通过强度折减法进行计算,得到的计算安全系数为1.535,相比支护前,安全系数得到很大的增加,此时该剖面达到稳定状态。图5.4 支护后的剖面5-5天然工况下的剪切耗散图5.5 支护后暴雨工况在暴雨工况下,支护后的剖面5-5的破坏模式如下图5.5所示,可以发现剖面的破坏模式与天然工况类似,为圆弧滑动,最危险滑面同样主要位于片岩层中,贯穿边坡的所有土层,且滑面绕过了支护的锚杆锚索。通过强度折减法进行计算,得到的计算安全系数为1.507,相比支护前,安全系数得到很大的增加,此时该剖面达到稳定状态。图5.5 支护后的剖面5-5暴雨工况下的剪切耗散图5.6 支护后地震工况在地震工况下,支护后的剖面5-5的破坏模式如下图5.6所示,可以发现剖面的破坏模式与天然工况类似,为圆弧滑动,最危险滑面同样主要位于片岩层中,贯穿边坡的所有土层,且滑面绕过了支护的锚杆锚索。通过强度折减法进行计算,得到的计算安全系数为1.383,相比支护前,安全系数得到很大的增加,此时该剖面达到稳定状态。图5.6 支护后的剖面5-5地震工况下的剪切耗散图6  变形分析对于本项目,除了对剖面的破坏模式和稳定性进行分析之外,同时采用弹塑性分析,对坡面模型的整体变形进行了分析。对于剖面5-5,分别对初始坡面和支护后的剖面在天然工况、暴雨工况和地震工况下进行了弹塑性分析,分析得到了模型的整体变形情况。6.1 天然工况对剖面5-5天然工况下进行弹塑性分析,得到最大应力为2390 kPa,应变值很小,最大应变仅仅为0.1069,最大变形位移为22.9 mm,如图6.1所示即为剖面5-5在天然工况下的变形云图,变形位置主要位于剖面上部的马兰黄土层中。图6.1 剖面5-5天然工况下的变形云图6.2 暴雨工况在暴雨工况下,剖面5-5中的各岩土材料参数发生了一定的变化。由5.2所知,剖面5-5在暴雨工况下的安全系数为0.9647,此时边坡处于不稳定状态,即边坡已经发生破坏,因此这种情况下计算变形结果是不收敛的,故本节不多加讨论。6.3 地震工况在地震工况下,对模型施加横向体荷载,设定横向加速度大小为0.05g。由5.3所知,剖面5-5在地震工况下的安全系数为0.9738,此时边坡处于不稳定状态,即边坡已经发生破坏,因此这种情况下计算变形结果是不收敛的,故本节不多加讨论。6.4 支护后天工况对于剖面5-5,采用的支护方式为:在坡面上施加锚杆框架和锚杆。对剖面5-5天然工况下进行弹塑性分析,得到最大应力为2417 kPa,应变值很小,最大应变变为3.466×10-2,最大变形位移为18.7 mm,如图6.2所示即为支护后的剖面5-5在天然工况下的变形云图,变形位置主要位于剖面上部的马兰黄土和离石黄土层中。图6.2 支护后的剖面5-5天然工况下的变形云图6.5 支护后暴雨工况对剖面5-5暴雨工况下进行弹塑性分析,得到最大应力为2437 kPa,应变值很小,最大应变仅仅为4.651×10-2,最大变形位移为33.8 mm,如图6.3所示即为支护后的剖面5-5在暴雨工况下的变形云图,变形位置主要位于剖面上部的马兰黄土和离石黄土层中。图6.3 支护后的剖面5-5暴雨工况下的变形云图6.6 支护后地震工况对剖面5-5地震工况下进行弹塑性分析,得到最大应力为2417 kPa,应变值相比天然工况增大很多,最大应变为0.1489,最大变形位移为61.2 mm,如图6.4所示即为支护后的剖面5-5在地震工况下的变形云图,变形位置主要位于剖面上部的马兰黄土和离石黄土层中。图6.4 支护后的剖面5-5地震工况下的变形云图7  结论本文主要对剖面5-5的初始剖面和支护后的剖面进行了分析,并同时考虑了天然工况、暴雨工况和地震工况,不仅采用强度折减法对剖面的破坏模式以及稳定性进行了分析,也采用弹塑性法对剖面的整体变形进行了分析,得到的结果汇总如下表7.1所示: 表7.1 计算结果汇总表剖面剖面支护状况工况阶段稳定性分析变形分析安全系数稳定状态最大位移,mm剖面5-5初始剖面天然工况1.063基本稳定22.9暴雨工况0.9647不稳定发生破坏地震工况0.9738不稳定发生破坏支护后剖面天然工况1.535稳定18.7暴雨工况1.507稳定33.8地震工况1.383稳定61.2由计算结果可知:1、初始剖面5-5,初始稳定性都存在一定的风险,特别是在暴雨工况和地震工况下,因此需要对其采取相应的支护措施;2、支护后的剖面,稳定性得到了很大程度的增强,不管是在天然工况、暴雨工况,还是地震工况下,都可以达到稳定状态,因此采取的支护措施是可行的;3、采取支护措施之后,剖面的变形情况良好,可以避免因边坡失稳对边坡上的房屋造成的损害。4、对于剖面5-5,支护后的剖面稳定性较好,可以考虑将锚索的铺设密度调小一点,看看支护效果。 查看全部
<p style="text-align: justify;">本项目主要对九州的某高边坡进行稳定性分析以及发生滑动对建筑物的影响,同时对边坡采取相应的支护措施,并对支护后的边坡稳定性进行分析。</p><p style="text-align: justify;">在本次计算分析中,共计算了两个剖面:剖面2-2和剖面5-5,本文主要介绍剖面5-5。</p><p style="text-align: justify;"><strong>1 剖面尺寸</strong></p><p style="text-align: justify;">剖面5-5的模型宽度为294.575m,高度为142.4m,岩土材料主要以片岩、马兰黄土、离石黄土和卵石为主,模型中添加荷载位置为房屋所在处,如图1.1所示为剖面5-5的初始模型。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543385157543973.png" alt="image.png"/></p><p style="text-align: center;">图1.1 剖面5-5模型</p><p style="text-align: justify;">对于原始边坡,采取了一定的支护措施,主要以施加锚杆锚索为主,支护后的模型如图1.2所示。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543385244245361.png" alt="image.png"/></p><p style="text-align: center;">图1.2 剖面5-5支护后的模型</p><p style="text-align: justify;"><strong>2&nbsp; 岩土参数</strong></p><p style="text-align: justify;">根据勘察报告可知,剖面5-5中出现了六种岩土材料:片岩、马兰黄土、离石黄土、卵石、粉土和素填土,分析时共分析了三种工况:天然工况、暴雨工况和地震工况。岩土层的相关岩土参数见下表2.1。</p><p style="text-align: center;">表2.1 岩土材料参数</p><p><table data-sort="sortDisabled" align="center" width="659"><tbody><tr class="firstRow"><td valign="middle" align="center" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" width="93">工况</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="93">地层</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="73"><p>重度 <em>γ</em></p><p>kN/m<sup>3</sup></p></td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="89"><p>粘聚力 <em>c</em></p><p>kPa</p></td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="109"><p>内摩擦角<em> φ</em></p><p>°</p></td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="110"><p>弹性模量 <em>E</em></p><p>MPa</p></td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="91">泊松比 <em>v</em></td></tr><tr><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" rowspan="6" colspan="1" align="center" width="93">天然工况</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="93">马兰黄土</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="73">14.5</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="89">14.9</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="109">28.2</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="110">20</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="91">0.44</td></tr><tr><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="93">离石黄土</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="73">15.6</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="89">28.8</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="109">29.8</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="110">20</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="91">0.44</td></tr><tr><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="93">片石</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="73">20</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="89">10</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="109">40</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="110">5000</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="91">0.25</td></tr><tr><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="93">卵石</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="73">18</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="89">25</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="109">36</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="110">150</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="91">0.2</td></tr><tr><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="93">粉土</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="73">17</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="89">25</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="109">28</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="110">12</td><td valign="middle" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="91">0.3</td></tr><tr><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="93">素填土</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="73">18</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="89">28</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="109">30</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="110">8</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="91">0.25</td></tr><tr><td valign="middle" colspan="1" rowspan="6" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="93">暴雨工况</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="93">马兰黄土</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" width="73">15.6</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" width="89">13.5</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" width="109">26.6</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" width="110">20</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" width="91">0.44</td></tr><tr><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="93">离石黄土</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="73">16.5</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="89">27.2</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="109">27.3</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="110">20</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="91">0.44</td></tr><tr><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="93">片石</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="73">20</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="89">10</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="109">40</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="110">5000</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="91">0.25</td></tr><tr><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="93">卵石</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="73">18</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="89">25</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="109">36</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="110">150</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="91">0.2</td></tr><tr><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="93">粉土</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="73">17</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="89">25</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="109">28</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="110">12</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="91">0.3</td></tr><tr><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" width="93">素填土</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="73">18</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="89">28</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="109">30</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="110">8</td><td valign="middle" colspan="1" rowspan="1" align="center" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid;" width="91">0.25</td></tr><tr><td valign="middle" colspan="1" rowspan="1" align="center" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" width="93">地震工况</td><td valign="middle" colspan="6" rowspan="1" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center">地震设防烈度为 Ⅷ 度,水平地震加速度取 0.2g</td></tr></tbody></table><br/></p><blockquote><span style="text-align: justify;">注:</span><p style="text-align: justify;">1、在建模时,岩土层采用的是Mohr-Coulomb模型,强度参数需要输入粘聚力和内摩擦角。</p><p style="text-align: justify;">2、水平地震加速度为0.2g,那么软件中采用的为设计水平加速度,值为0.05g。</p></blockquote><p style="text-align: justify;"><strong>3&nbsp; 结构参数</strong></p><p style="text-align: justify;">在项目中,采用的支护结构包括挡土墙、锚杆、锚索和锚杆框架,建模时挡土墙采用的是重度为24kN/m<sup>3</sup>的刚体进行模拟,锚杆、锚索采用土工格栅和连接件来模拟(连接件与土体不起作用,只作为连接锚固段和板单元的作用),模拟框架采用的是重度为0的刚性板,具体结构参数见表3.1。</p><p style="text-align: center;">表3.1 结构单元参数</p><p><table data-sort="sortDisabled" align="center" width="659"><tbody><tr class="firstRow"><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="76">剖面</td><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="142">结构单元<br/></td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="82">长度,m</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="132">刚度 EA,kN/m</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="142">屈服力 n<sub>p</sub>,kN/m</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="84">间距,m</td></tr><tr><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" rowspan="2" colspan="1" align="center" width="76">剖面5-5</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="142">土工格栅(锚固段)</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="82">1</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="132">550</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="142">36000</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" rowspan="2" colspan="1" align="center" width="84">1</td></tr><tr><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="142">连接件</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" rowspan="1" colspan="3" align="center">-<br/></td></tr></tbody></table><br/></p><blockquote><p style="text-align: justify;">注:屈服力依据的是抗拉强度设计值360×10<sup>3</sup>kPa,刚度为杨氏模量E与截面面积A的乘积。</p></blockquote><p style="text-align: justify;"><strong>4&nbsp; 边界条件和网格划分</strong></p><p style="text-align: justify;"><strong>4.1 边界条件</strong></p><p style="text-align: justify;">在本次分析中,边界条件选用OptumG2默认标准边界条件,即模型左右边界限制x方向(水平方向)的位移,模型底边界同时限制x方向和z方向的位移。该边界条件也是有限元平面应变分析中最常用的边界条件。</p><p style="text-align: justify;">进行边坡稳定性分析时,建模时必须将完整的坡面表达出来。尽管在本次分析中,拟分析区域处于边坡的上部,但采用上述的边界条件完全是合理的。</p><p style="text-align: justify;"><strong>4.2 网格划分</strong></p><p style="text-align: justify;">在OptumG2中,可以采用网格自适应功能来便捷的划分网格,扇形网格,局部网格大小设置等等功能可以更加提高网格划分的质量。扇形网格主要用于多条线段相交的节点处,或者尖锐的节点处,这是对于局部尖端模型最常用、最合理的划分网格方式。</p><p style="text-align: justify;">本次分析的网格划分如下图4.1所示,采用的网格单元数量为5000,同时使用了软件自带的网格自适应功能。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543387113256552.png" alt="image.png"/></p><p style="text-align: center;">图4.1 剖面5-5网格划分效果图</p><p style="text-align: justify;"><strong>5&nbsp; 破坏模式分析</strong><br/></p><p style="text-align: justify;">作为OptumG2实用且强大的优势功能,破坏模式分析对了解边坡的破坏机制以及采用何种支护方式具有非常有意义的作用。进行破坏模式分析时,软件采用的是强度折减法,需要注意的是,OptumG2中的强度折减法的每一步都是极限分析。此外,强度折减法中是对实体,即对岩土体进行折减,对支护的结构单元(包括锚杆、板单元等)不进行折减。</p><p style="text-align: justify;"><strong>5.1 天然工况</strong><br/></p><p style="text-align: justify;">在天然工况下,剖面5-5的破坏模式如下图5.1所示,可以发现剖面的破坏模式稍微有点复杂,虽近似为圆弧滑动,但有一部分滑面是沿着马兰黄土和离石黄土层分界面的,最危险滑面主要处于马兰黄土层中。</p><p style="text-align: justify;">通过强度折减法计算,得到的计算安全系数为1.063,说明5-5剖面在天然工况下的稳定状态为基本稳定。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543387228595870.png" alt="image.png"/></p><p style="text-align: center;">图5.1 剖面5-5天然工况下的剪切耗散图</p><p style="text-align: justify;"><strong>5.2 暴雨工况</strong><br/></p><p style="text-align: justify;">在暴雨工况下,剖面5-5中的各岩土材料参数发生了一定的变化,得到的破坏模式如下图5.2所示,可以发现剖面的破坏模式与天然工况类似,稍微有点复杂,虽近似为圆弧滑动,但有一部分滑面是沿着马兰黄土和离石黄土层分界面的,最危险滑面主要处于马兰黄土层中。</p><p style="text-align: justify;">通过强度折减法计算,得到的计算安全系数为0.9647,相比天然工况有了一定的减小,此时剖面的稳定状态为不稳定状态。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543387332163122.png" alt="image.png"/></p><p style="text-align: center;">图5.2 剖面5-5暴雨工况下的剪切耗散图</p><p style="text-align: justify;"><strong>5.3 地震工况</strong></p><p style="text-align: justify;">在地震工况下,对模型施加了横向体荷载,设定横向加速度大小为0.05g,剖面5-5的破坏模式如下图5.3所示,可以发现剖面的破坏模式与天然工况类似,稍微有点复杂,虽近似为圆弧滑动,但有一部分滑面是沿着马兰黄土和离石黄土层分界面的,最危险滑面主要处于马兰黄土层中。</p><p style="text-align: justify;">通过强度折减法计算,得到的计算安全系数为0.9738,说明此时该剖面已经达到不稳定状态。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543387464746926.png" alt="image.png"/></p><p style="text-align: center;">图5.3 剖面5-5地震工况下的剪切耗散图</p><p style="text-align: justify;"><strong>5.4 支护后天然工况</strong></p><p style="text-align: justify;">对于剖面5-5,采用的支护方式为:在坡面上施加锚杆框架和锚杆,在天然工况下,支护后的剖面5-5的破坏模式如下图5.4所示,可以发现剖面的破坏模式为圆弧滑动,最危险滑面往下移动到片岩层中,贯穿整个边坡的土层,且滑面绕过了支护的锚杆锚索。</p><p style="text-align: justify;">通过强度折减法进行计算,得到的计算安全系数为1.535,相比支护前,安全系数得到很大的增加,此时该剖面达到稳定状态。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543387532547656.png" alt="image.png"/></p><p style="text-align: center;">图5.4 支护后的剖面5-5天然工况下的剪切耗散图</p><p style="text-align: justify;"><strong>5.5 支护后暴雨工况</strong></p><p style="text-align: justify;">在暴雨工况下,支护后的剖面5-5的破坏模式如下图5.5所示,可以发现剖面的破坏模式与天然工况类似,为圆弧滑动,最危险滑面同样主要位于片岩层中,贯穿边坡的所有土层,且滑面绕过了支护的锚杆锚索。</p><p style="text-align: justify;">通过强度折减法进行计算,得到的计算安全系数为1.507,相比支护前,安全系数得到很大的增加,此时该剖面达到稳定状态。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543387610396222.png" alt="image.png"/></p><p style="text-align: center;">图5.5 支护后的剖面5-5暴雨工况下的剪切耗散图</p><p><strong>5.6 支护后地震工况</strong></p><p>在地震工况下,支护后的剖面5-5的破坏模式如下图5.6所示,可以发现剖面的破坏模式与天然工况类似,为圆弧滑动,最危险滑面同样主要位于片岩层中,贯穿边坡的所有土层,且滑面绕过了支护的锚杆锚索。</p><p>通过强度折减法进行计算,得到的计算安全系数为1.383,相比支护前,安全系数得到很大的增加,此时该剖面达到稳定状态。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543387654846689.png" alt="image.png"/></p><p style="text-align: center;">图5.6 支护后的剖面5-5地震工况下的剪切耗散图</p><p style="text-align: justify;"><strong>6&nbsp; 变形分析</strong></p><p style="text-align: justify;">对于本项目,除了对剖面的破坏模式和稳定性进行分析之外,同时采用弹塑性分析,对坡面模型的整体变形进行了分析。</p><p style="text-align: justify;">对于剖面5-5,分别对初始坡面和支护后的剖面在天然工况、暴雨工况和地震工况下进行了弹塑性分析,分析得到了模型的整体变形情况。</p><p style="text-align: justify;"><strong>6.1 天然工况</strong></p><p style="text-align: justify;">对剖面5-5天然工况下进行弹塑性分析,得到最大应力为2390 kPa,应变值很小,最大应变仅仅为0.1069,最大变形位移为22.9 mm,如图6.1所示即为剖面5-5在天然工况下的变形云图,变形位置主要位于剖面上部的马兰黄土层中。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543387782757299.png" alt="image.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543387790150724.png" alt="image.png"/></p><p style="text-align: center;">图6.1 剖面5-5天然工况下的变形云图</p><p style="text-align: justify;"><strong>6.2 暴雨工况</strong></p><p style="text-align: justify;">在暴雨工况下,剖面5-5中的各岩土材料参数发生了一定的变化。</p><p style="text-align: justify;">由5.2所知,剖面5-5在暴雨工况下的安全系数为0.9647,此时边坡处于不稳定状态,即边坡已经发生破坏,因此这种情况下计算变形结果是不收敛的,故本节不多加讨论。</p><p style="text-align: justify;"><strong>6.3 地震工况</strong></p><p style="text-align: justify;">在地震工况下,对模型施加横向体荷载,设定横向加速度大小为0.05g。</p><p style="text-align: justify;">由5.3所知,剖面5-5在地震工况下的安全系数为0.9738,此时边坡处于不稳定状态,即边坡已经发生破坏,因此这种情况下计算变形结果是不收敛的,故本节不多加讨论。</p><p style="text-align: justify;"><strong>6.4 支护后天工况</strong></p><p style="text-align: justify;">对于剖面5-5,采用的支护方式为:在坡面上施加锚杆框架和锚杆。对剖面5-5天然工况下进行弹塑性分析,得到最大应力为2417 kPa,应变值很小,最大应变变为3.466×10<sup>-2</sup>,最大变形位移为18.7 mm,如图6.2所示即为支护后的剖面5-5在天然工况下的变形云图,变形位置主要位于剖面上部的马兰黄土和离石黄土层中。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543387905652304.png" alt="image.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543387912572325.png" alt="image.png"/></p><p style="text-align: center;">图6.2 支护后的剖面5-5天然工况下的变形云图</p><p style="text-align: justify;"><strong>6.5 支护后暴雨工况</strong></p><p style="text-align: justify;">对剖面5-5暴雨工况下进行弹塑性分析,得到最大应力为2437 kPa,应变值很小,最大应变仅仅为4.651×10<sup>-2</sup>,最大变形位移为33.8 mm,如图6.3所示即为支护后的剖面5-5在暴雨工况下的变形云图,变形位置主要位于剖面上部的马兰黄土和离石黄土层中。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543387953840665.png" alt="image.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543387960481541.png" alt="image.png"/></p><p style="text-align: center;">图6.3 支护后的剖面5-5暴雨工况下的变形云图</p><p style="text-align: justify;"><strong>6.6 支护后地震工况</strong></p><p style="text-align: justify;">对剖面5-5地震工况下进行弹塑性分析,得到最大应力为2417 kPa,应变值相比天然工况增大很多,最大应变为0.1489,最大变形位移为61.2 mm,如图6.4所示即为支护后的剖面5-5在地震工况下的变形云图,变形位置主要位于剖面上部的马兰黄土和离石黄土层中。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543388002839454.png" alt="image.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1543388009365759.png" alt="image.png"/></p><p style="text-align: center;">图6.4 支护后的剖面5-5地震工况下的变形云图</p><p style="text-align: justify;"><strong>7&nbsp; 结论</strong></p><p style="text-align: justify;">本文主要对剖面5-5的初始剖面和支护后的剖面进行了分析,并同时考虑了天然工况、暴雨工况和地震工况,不仅采用强度折减法对剖面的破坏模式以及稳定性进行了分析,也采用弹塑性法对剖面的整体变形进行了分析,得到的结果汇总如下表7.1所示:&nbsp;</p><p style="text-align: center;">表7.1 计算结果汇总表</p><p><table data-sort="sortDisabled" align="center" width="659"><tbody><tr class="firstRow"><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" rowspan="2" colspan="1" align="center" width="87">剖面</td><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" rowspan="2" colspan="1" align="center" width="133">剖面支护状况</td><td valign="middle" colspan="1" rowspan="2" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">工况阶段</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" rowspan="1" colspan="2" align="center">稳定性分析</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">变形分析</td></tr><tr><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">安全系数</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="147">稳定状态</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="87">最大位移,mm</td></tr><tr><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" rowspan="6" colspan="1" align="center" width="133">剖面5-5</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" rowspan="3" colspan="1" align="center" width="97">初始剖面</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">天然工况</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">1.063<br/></td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="147">基本稳定</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">22.9</td></tr><tr><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">暴雨工况</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">0.9647</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="147">不稳定</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">发生破坏</td></tr><tr><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">地震工况</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">0.9738</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="147">不稳定</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="133">发生破坏</td></tr><tr><td valign="middle" colspan="1" rowspan="3" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">支护后剖面</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">天然工况</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">1.535</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="147">稳定</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">18.7</td></tr><tr><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">暴雨工况</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">1.507</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="147">稳定</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">33.8</td></tr><tr><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">地震工况</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="97">1.383</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="147">稳定</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="undefined">61.2</td></tr></tbody></table><br/></p><p>由计算结果可知:</p><p>1、初始剖面5-5,初始稳定性都存在一定的风险,特别是在暴雨工况和地震工况下,因此需要对其采取相应的支护措施;</p><p>2、支护后的剖面,稳定性得到了很大程度的增强,不管是在天然工况、暴雨工况,还是地震工况下,都可以达到稳定状态,因此采取的支护措施是可行的;</p><p>3、采取支护措施之后,剖面的变形情况良好,可以避免因边坡失稳对边坡上的房屋造成的损害。</p><p>4、对于剖面5-5,支护后的剖面稳定性较好,可以考虑将锚索的铺设密度调小一点,看看支护效果。</p>

使用OptumG2反算有支挡结构作用下的滑面参数

库仑产品库仑沈工 发表了文章 • 0 个评论 • 727 次浏览 • 2018-07-16 11:12 • 来自相关话题

项目要求:1. 根据原设计断面相应防护(考虑桩基承台挡墙的支挡作用),以及坡体破坏后的情况,反算滑面参数。2. 根据现地面情况进行稳定性分析,评价其稳定性。项目背景:原设计断面施工完成后半年时间内是稳定的,后期可能是在暴雨工况下,改变了土壤参数才造成的失稳破坏。滑面位置已确定。支挡结构中,挡墙完全破坏了,桩也破坏了。现状地形是对原设计断面进行了挖方。几何模型原设计断面OptumG2建模模型说明:土体,挡墙与桩设置强度不折减(挡墙选择线弹性材料,墙下桩基选择为板,按实际截面参数建模,前方未断发桩按刚性板建模),我们在滑面处设置剪切结理输入c,fai值,剪切结理设置成强度可折减,选择强度折减法折减实体进行分析。我们想象得到的结果是滑面处发生大变形,计算得到一个强度折减系数n,然后剪切结理处输入的c=15,fai=12值除以n即为真实的滑面参数。桩基承台挡墙支挡下滑面反算c,fai    最后计算得到强度折减系数1.183,剪切结理输入的c=15,fai=12值除以1.183即为真实的滑面参数c=12.68,fai=10.14,滑面反算已完成。     接下来计算现有地形线下的稳定性系数。各土体参数同上,滑面参数输入是折减后的c,fai,事实上我们的桩基承台挡墙支挡已经破坏了,模型中不用建进去。所有的土体参数设置成强度可折减,选择强度折减法折减实体进行分析。现状地形OptumG2建模现有边坡的最终安全系数为1.073,如下图:现状地形稳定性系数计算 查看全部
<p><strong>项目要求</strong>:</p><p>1.&nbsp;根据原设计断面相应防护(考虑桩基承台挡墙的支挡作用),以及坡体破坏后的情况,反算滑面参数。</p><p>2.&nbsp;根据现地面情况进行稳定性分析,评价其稳定性。</p><p><strong>项目背景</strong>:原设计断面施工完成后半年时间内是稳定的,后期可能是在暴雨工况下,改变了土壤参数才造成的失稳破坏。滑面位置已确定。支挡结构中,挡墙完全破坏了,桩也破坏了。现状地形是对原设计断面进行了挖方。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1531710534529187.png" alt="blob.png"/></p><p style="text-align: center;">几何模型</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1531710555563272.png" alt="blob.png"/></p><p style="text-align: center;">原设计断面OptumG2建模</p><p><strong>模型说明</strong>:土体,挡墙与桩设置强度不折减(挡墙选择线弹性材料,墙下桩基选择为板,按实际截面参数建模,前方未断发桩按刚性板建模),我们在滑面处设置剪切结理输入c,fai值,剪切结理设置成强度可折减,选择强度折减法折减实体进行分析。我们想象得到的结果是滑面处发生大变形,计算得到一个强度折减系数n,然后剪切结理处输入的c=15,fai=12值除以n即为真实的滑面参数。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1531710588300716.png" alt="blob.png"/></p><p style="text-align: center;">桩基承台挡墙支挡下滑面反算c,fai</p><p>&nbsp; &nbsp; 最后计算得到强度折减系数1.183,剪切结理输入的c=15,fai=12值除以1.183即为真实的滑面参数c=12.68,fai=10.14,滑面反算已完成。</p><p>&nbsp; &nbsp; &nbsp;接下来计算现有地形线下的稳定性系数。各土体参数同上,滑面参数输入是<strong>折减后的c,fai</strong>,事实上我们的桩基承台挡墙支挡已经破坏了,模型中不用建进去。所有的土体参数设置成强度可折减,选择强度折减法折减实体进行分析。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1531710678324645.png" alt="blob.png"/></p><p style="text-align: center;">现状地形OptumG2建模</p><p>现有边坡的最终安全系数为1.073,如下图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1531710712190984.png" alt="blob.png"/></p><p style="text-align: center;">现状地形稳定性系数计算</p>

OptumG2土钉墙案例

库仑产品库仑李建 发表了文章 • 0 个评论 • 964 次浏览 • 2018-05-31 10:11 • 来自相关话题

一、OptumG2土钉墙案例1源文件:OptumG2土钉墙案例1.zip采用OptumG2主要模拟了土钉墙的开挖过程,分析了土钉墙的稳定性和对周围建筑物桩基的影响,模型如图1所示。土钉墙喷射混凝土采用板单元模拟的,土钉采用土钉单元模拟,建筑物采用刚体来模拟的,在建筑物下方添加桩单元作为桩基。图1 OptumG2模型工况阶段1为开挖工况,开挖3m,如下图,以及相应的计算结果。图2 工况1:开挖3m图3 开挖引起的土体水平位移图4 土体破坏面,安全系数=1.766工况阶段2施加土钉,如下图,以及相应的计算结果。图5 施加土钉和土体水平位移工况阶段3为开挖工况,再次开挖3m,如下图,以及相应的计算结果。 图6 再次开挖3m和土体水平位移图7 再次开挖3m后的土体破坏模式,安全系数=2.681工况阶段4施加土钉,如下图,以及相应的计算结果。图8 施加土钉和土体水平位移图9 施加第二排土钉后的土体破坏模式,安全系数=2.987图10 开挖完成时建筑无的沉降情况图11 开挖完成时桩基所受弯矩二、OptumG2土钉墙案例2源文件:OptumG2土钉墙案例2.zip本案例主要讨论的是土钉墙在施工过程中,土钉墙的稳定性和对周围建筑物的沉降影响,模型如下图所示。墙是用板单元来进行模拟的,材料为默认的P800,土钉采用软件中自带的土钉单元即可。在墙体上添加了土钉。建筑物采用刚体来模拟的,在建筑物下方添加了桩体。图12 OptumG2模型分析中共设置了两个工况,一个是计算模型的稳定性,还有一个采用弹塑性分析来计算位移和沉降。计算模型的稳定性采用的事强度折减法,得到的破坏模式如下图所示:图13 土体破坏模式      计算位移和沉降,我们采用的是弹塑性分析,竖向位移云图如下图所示:图14 土体竖向位移云图通过弹塑性分析,不仅可以得到整个模型的变形,也可以得到建筑物的沉降情况。从上图中可以看到,在建筑物的底部有一条红线,可以准确读处建筑物的沉降情况,也可以单独得到由于基坑开挖引起的建筑物的桩基内力辩护。对于基坑开挖,在软件中可以选择HMC本构模型,设置分别设置土体的弹性模量(压缩)和回弹模量(回弹),因为土体压缩时采用的弹性模量往往比回弹时的弹性模量更小,这样可以得到更真实的坑外和坑外土体位移情况。此外,如果对于分步施工,比如基坑分步开挖,或者分部放坡的情况,也可以按照施工步骤建立多个工况,逐步分析沉降情况,下图所示的案例是上海的一个基坑分步开挖,分析其对周边建筑物的沉降影响的案例。图15 基坑开挖对周边建筑物影响分析图16 基坑开挖完成时建筑物桩基弯矩分布 查看全部
<p style="text-align: justify;"><strong>一、OptumG2土钉墙案例1</strong></p><p style="text-align: justify;">源文件:<img src="http://www.wen.kulunsoft.com/s ... ot%3B style="vertical-align: middle; margin-right: 2px;"/><a href="http://www.wen.kulunsoft.com/u ... ot%3B title="OptumG2土钉墙案例1.zip" style="font-size: 12px; color: rgb(0, 102, 204);">OptumG2土钉墙案例1.zip</a></p><p style="text-align: justify;">采用OptumG2主要模拟了土钉墙的开挖过程,分析了土钉墙的稳定性和对周围建筑物桩基的影响,模型如图1所示。土钉墙喷射混凝土采用板单元模拟的,土钉采用土钉单元模拟,建筑物采用刚体来模拟的,在建筑物下方添加桩单元作为桩基。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527729836549512.png" alt="blob.png"/></p><p style="text-align: center;">图1 OptumG2模型</p><p style="text-align: justify;">工况阶段1为开挖工况,开挖3m,如下图,以及相应的计算结果。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527729880473160.png" alt="blob.png"/></p><p style="text-align: center;">图2 工况1:开挖3m</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527729894565661.png" alt="blob.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527729902629990.png" alt="blob.png"/></p><p style="text-align: center;">图3 开挖引起的土体水平位移</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527729911119144.png" alt="blob.png"/></p><p style="text-align: center;">图4 土体破坏面,安全系数=1.766</p><p style="text-align: justify;">工况阶段2施加土钉,如下图,以及相应的计算结果。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527729929443390.png" alt="blob.png"/></p><p style="text-align: center;">图5 施加土钉和土体水平位移</p><p style="text-align: justify;">工况阶段3为开挖工况,再次开挖3m,如下图,以及相应的计算结果。</p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527729944661616.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527729958842058.png" alt="blob.png"/></p><p style="text-align: center;">图6 再次开挖3m和土体水平位移</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527729969786406.png" alt="blob.png"/></p><p style="text-align: center;">图7 再次开挖3m后的土体破坏模式,安全系数=2.681</p><p style="text-align: justify;">工况阶段4施加土钉,如下图,以及相应的计算结果。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527729980659660.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527729987809111.png" alt="blob.png"/></p><p style="text-align: center;">图8 施加土钉和土体水平位移</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527730013293779.png" alt="blob.png"/></p><p style="text-align: center;">图9 施加第二排土钉后的土体破坏模式,安全系数=2.987</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527730025133894.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527730031484768.png" alt="blob.png"/></p><p style="text-align: center;">图10 开挖完成时建筑无的沉降情况</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527730037735868.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527730043145277.png" alt="blob.png"/></p><p style="text-align: center;">图11 开挖完成时桩基所受弯矩</p><p style="text-align: justify;"><strong><span style="text-align: justify;">二、OptumG2土钉墙案例2</span></strong></p><p style="text-align: justify;">源文件:<img src="http://www.wen.kulunsoft.com/s ... ot%3B style="vertical-align: middle; margin-right: 2px;"/><a href="http://www.wen.kulunsoft.com/u ... ot%3B title="OptumG2土钉墙案例2.zip" style="font-size: 12px; color: rgb(0, 102, 204);">OptumG2土钉墙案例2.zip</a></p><p style="text-align: justify;">本案例主要讨论的是土钉墙在施工过程中,土钉墙的稳定性和对周围建筑物的沉降影响,模型如下图所示。墙是用板单元来进行模拟的,材料为默认的P800,土钉采用软件中自带的土钉单元即可。在墙体上添加了土钉。建筑物采用刚体来模拟的,在建筑物下方添加了桩体。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527730118908539.png" alt="blob.png"/></p><p style="text-align: center;">图12 OptumG2模型</p><p style="text-align: justify;">分析中共设置了两个工况,一个是计算模型的稳定性,还有一个采用弹塑性分析来计算位移和沉降。</p><p style="text-align: justify;">计算模型的稳定性采用的事强度折减法,得到的破坏模式如下图所示:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527730135248210.png" alt="blob.png"/></p><p style="text-align: center;">图13 土体破坏模式</p><p style="text-align: justify;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 计算位移和沉降,我们采用的是弹塑性分析,竖向位移云图如下图所示:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527730145943436.png" alt="blob.png"/></p><p style="text-align: center;">图14 土体竖向位移云图</p><p style="text-align: justify;">通过弹塑性分析,不仅可以得到整个模型的变形,也可以得到建筑物的沉降情况。从上图中可以看到,在建筑物的底部有一条红线,可以准确读处建筑物的沉降情况,也可以单独得到由于基坑开挖引起的建筑物的桩基内力辩护。</p><p style="text-align: justify;">对于基坑开挖,在软件中可以选择HMC本构模型,设置分别设置土体的弹性模量(压缩)和回弹模量(回弹),因为土体压缩时采用的弹性模量往往比回弹时的弹性模量更小,这样可以得到更真实的坑外和坑外土体位移情况。</p><p style="text-align: justify;">此外,如果对于分步施工,比如基坑分步开挖,或者分部放坡的情况,也可以按照施工步骤建立多个工况,逐步分析沉降情况,下图所示的案例是上海的一个基坑分步开挖,分析其对周边建筑物的沉降影响的案例。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527730182139745.png" alt="blob.png"/></p><p style="text-align: center;">图15 基坑开挖对周边建筑物影响分析</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527730189911261.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1527730201609171.png" alt="blob.png"/></p><p style="text-align: center;">图16 基坑开挖完成时建筑物桩基弯矩分布</p>

OptumG2工程实例:国内某基坑开挖项目——基坑开挖对电塔的影响分析

库仑产品库仑李建 发表了文章 • 0 个评论 • 1667 次浏览 • 2017-12-22 10:23 • 来自相关话题

项目名称:国内某基坑开挖项目——基坑开挖对电塔的影响分析使用软件:OptumG2项目模型注:图中红线为用于方便读取相应位置结果数据的结果截面,对计算没有影响。岩土参数在本次OptumG2计算中,岩土材料采用HMC材料模型来模拟,以考虑土体加载和卸载时不同的弹性变形规律。编号名称重度kN/m3弹性模量MPa回弹模量MPa泊松比粘聚力kPa内摩擦角°1杂填土15.420600.255122可塑-硬塑状粉质黏土15.3401200.2523163稍密-中密状圆砾16802400.252334强风化泥质粉砂岩21.5250075000.323155中等风化泥质粉砂岩223600100000.33520边界条件边界条件选用OptumG2默认标准边界条件,即模型左右边界限制x方向(水平方向)的位移,模型底边界同时限制x方向和z方向的位移。该边界条件也是有限元平面应变分析中最常用的边界条件。结果(1)初始地应力(2)地下连续墙施工施工地下连续墙模型图:施工地下连续墙后整体的位移云图:电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为0.07mm,最大差异沉降约为0.054mm。施工地下连续墙后电塔基础沉降云图:(3)开挖至2.5m基坑开挖2.5m的模型图:基坑开挖2.5m后整体的位移云图:电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为0.08mm,最大差异沉降约为0.054mm。开挖2.5m后电塔基础沉降云图:(4)添加第一道支撑添加第一道支撑模型图:添加第一道支撑后整体的位移云图:电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为0.11mm,最大差异沉降约为0.052mm。添加第一道支撑后电塔基础沉降云图:(5)开挖至8.6m开挖至8.6m的模型图:开挖至8.6m后整体的位移云图:电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为2.28mm,最大差异沉降约为1.71mm。开挖至8.6m后电塔基础沉降云图:(6)添加第二道支撑添加第二道支撑的模型图:添加第二道支撑后整体的位移云图:电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为2.03mm,最大差异沉降约为1.9mm。添加第二道支撑后电塔基础沉降云图:(7)开挖至13.6m开挖至13.6m的模型图:开挖至13.6m后整体的位移云图:电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为3.49mm,最大差异沉降约为2.25mm。开挖至13.6m后电塔基础沉降云图:(8)添加第三道支撑添加第三道支撑的模型图:添加第三道模型图后整体的位移云图:电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为3.54mm,最大差异沉降约为2.27mm。添加第三道支撑后电塔基础沉降云图:(9)完全开挖完全开挖的模型图:完全开挖后整体的位移云图:电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为9.8mm,最大差异沉降约为2.45mm。完全开挖后电塔基础沉降云图:总结总结开挖过程中基础的最大沉降和最大差异沉降值,如下表所示:施工步骤施工名称基础最大沉降,mm基础最大差异沉降,mm0(初始地应力)//1施工地下连续墙0.070.0542开挖至 2.5m0.080.0543添加第一道支撑0.110.0524开挖至 8.6m2.031.715添加第二道支撑2.031.96开挖至 13.6m3.492.257添加第三道支撑3.542.278完全开挖9.82.45从上表可以得出,基础沉降大小和差异沉降均在允许范围内。 查看全部
<p style="text-align: justify;"><strong>项目名称:</strong>国内某基坑开挖项目——基坑开挖对电塔的影响分析</p><p style="text-align: justify;"><strong>使用软件:</strong>OptumG2</p><p style="text-align: justify;"><strong>项目模型</strong></p><p style="text-align: center;"><strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908111745562.png" alt="blob.png"/></strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908145765344.png" alt="blob.png"/></p><blockquote><p style="text-align: justify;">注:图中红线为用于方便读取相应位置结果数据的结果截面,对计算没有影响。</p></blockquote><p style="text-align: justify;"><strong>岩土参数</strong></p><p style="text-align: justify;">在本次OptumG2计算中,岩土材料采用HMC材料模型来模拟,以考虑土体加载和卸载时不同的弹性变形规律。</p><table align="center" width="659"><tbody><tr class="firstRow"><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="51">编号<br/></td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="163">名称</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="63"><p>重度</p><p>kN/m<sup>3</sup></p></td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="82"><p>弹性模量</p><p>MPa</p></td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="82"><p>回弹模量</p><p>MPa</p></td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="67">泊松比</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="67"><p>粘聚力</p><p>kPa</p></td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="83"><p>内摩擦角</p><p>°</p></td></tr><tr><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="51">1</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="163">杂填土</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="63">15.4</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="82">20</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="82">60</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="67">0.25</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="67">5</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="83">12</td></tr><tr><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="51">2</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="163">可塑-硬塑状粉质黏土</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="63">15.3</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="82">40</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="82">120</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="67">0.25</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="67">23</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="83">16</td></tr><tr><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="51">3</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="163">稍密-中密状圆砾</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="63">16</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="82">80</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="82">240</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="67">0.25</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="67">2</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="83">33</td></tr><tr><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="51">4</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="163">强风化泥质粉砂岩</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="63">21.5</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="82">2500</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="82">7500</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="67">0.3</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="67">23</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="83">15</td></tr><tr><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="51">5</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="163">中等风化泥质粉砂岩</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="63">22</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="82">3600</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="82">10000</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="67">0.3</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="67">35</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="83">20</td></tr></tbody></table><p style="text-align: center;"><br/></p><p style="text-align: justify;"><strong>边界条件</strong></p><p style="text-align: justify;">边界条件选用OptumG2默认标准边界条件,即模型左右边界限制x方向(水平方向)的位移,模型底边界同时限制x方向和z方向的位移。该边界条件也是有限元平面应变分析中最常用的边界条件。</p><p style="text-align: justify;"><strong>结果</strong></p><p style="text-align: justify;"><strong>(</strong><strong>1</strong><strong>)初始地应力</strong></p><p style="text-align: center;"><strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908449186097.png" alt="blob.png"/></strong></p><p style="text-align: justify;"><strong>(</strong><strong>2</strong><strong>)地下连续墙施工</strong></p><p style="text-align: justify;">施工地下连续墙模型图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908466379775.png" alt="blob.png"/></p><p style="text-align: justify;">施工地下连续墙后整体的位移云图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908525127172.png" alt="blob.png"/></p><p style="text-align: justify;">电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为0.07mm,最大差异沉降约为0.054mm。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908546410920.png" alt="blob.png"/></p><p style="text-align: justify;">施工地下连续墙后电塔基础沉降云图:</p><p style="text-align: center;"><strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908555212015.png" alt="blob.png"/></strong></p><p style="text-align: justify;"><strong>(</strong><strong>3</strong><strong>)开挖至</strong><strong>2.5m</strong></p><p style="text-align: justify;">基坑开挖2.5m的模型图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908568773811.png" alt="blob.png"/></p><p style="text-align: justify;">基坑开挖2.5m后整体的位移云图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908582803461.png" alt="blob.png"/></p><p style="text-align: justify;">电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为0.08mm,最大差异沉降约为0.054mm。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908594495160.png" alt="blob.png"/></p><p style="text-align: justify;">开挖2.5m后电塔基础沉降云图:</p><p style="text-align: center;"><strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908613858434.png" alt="blob.png"/></strong></p><p style="text-align: justify;"><strong>(</strong><strong>4</strong><strong>)添加第一道支撑</strong></p><p style="text-align: justify;">添加第一道支撑模型图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908623983338.png" alt="blob.png"/></p><p style="text-align: justify;">添加第一道支撑后整体的位移云图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908640165824.png" alt="blob.png"/></p><p style="text-align: justify;">电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为0.11mm,最大差异沉降约为0.052mm。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908650592401.png" alt="blob.png"/></p><p><span style="text-align: justify;">添加第一道支撑后电塔基础沉降云图:</span></p><p style="text-align: center;"><strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908662289948.png" alt="blob.png"/></strong></p><p style="text-align: justify;"><strong>(</strong><strong>5</strong><strong>)开挖至</strong><strong>8.6m</strong></p><p style="text-align: justify;">开挖至8.6m的模型图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908676210258.png" alt="blob.png"/></p><p><span style="text-align: justify;">开挖至8.6m后整体的位移云图:</span></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908692238482.png" alt="blob.png"/></p><p style="text-align: justify;">电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为2.28mm,最大差异沉降约为1.71mm。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908704709456.png" alt="blob.png"/></p><p><span style="text-align: justify;">开挖至8.6m后电塔基础沉降云图:</span></p><p style="text-align: center;"><strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908723591932.png" alt="blob.png"/></strong></p><p style="text-align: justify;"><strong>(</strong><strong>6</strong><strong>)添加第二道支撑</strong></p><p style="text-align: justify;">添加第二道支撑的模型图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908737487206.png" alt="blob.png"/></p><p style="text-align: justify;">添加第二道支撑后整体的位移云图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908770524469.png" alt="blob.png"/></p><p style="text-align: justify;">电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为2.03mm,最大差异沉降约为1.9mm。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908782363476.png" alt="blob.png"/></p><p><span style="text-align: justify;">添加第二道支撑后电塔基础沉降云图:</span></p><p style="text-align: center;"><strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908797694009.png" alt="blob.png"/></strong></p><p style="text-align: justify;"><strong>(</strong><strong>7</strong><strong>)开挖至</strong><strong>13.6m</strong></p><p style="text-align: justify;">开挖至13.6m的模型图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908807969586.png" alt="blob.png"/></p><p><span style="text-align: justify;">开挖至13.6m后整体的位移云图:</span></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908823596535.png" alt="blob.png"/></p><p style="text-align: justify;">电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为3.49mm,最大差异沉降约为2.25mm。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908833404845.png" alt="blob.png"/></p><p style="text-align: justify;">开挖至13.6m后电塔基础沉降云图:</p><p style="text-align: center;"><strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908845113094.png" alt="blob.png"/></strong></p><p style="text-align: justify;"><strong>(</strong><strong>8</strong><strong>)添加第三道支撑</strong></p><p style="text-align: justify;">添加第三道支撑的模型图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908859778877.png" alt="blob.png"/></p><p style="text-align: justify;">添加第三道模型图后整体的位移云图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908873449702.png" alt="blob.png"/></p><p style="text-align: justify;">电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为3.54mm,最大差异沉降约为2.27mm。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513908882487519.png" alt="blob.png"/></p><p style="text-align: justify;">添加第三道支撑后电塔基础沉降云图:</p><p style="text-align: center;"><strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513909240192714.png" alt="blob.png"/></strong></p><p style="text-align: justify;"><strong>(</strong><strong>9</strong><strong>)完全开挖</strong></p><p style="text-align: justify;">完全开挖的模型图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513909274630578.png" alt="blob.png"/></p><p style="text-align: justify;">完全开挖后整体的位移云图:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513909288890949.png" alt="blob.png"/></p><p style="text-align: justify;">电塔基础底部的沉降情况如下图所示,有计算结果和下图可以得到,施工地下连续墙,基础最大沉降为9.8mm,最大差异沉降约为2.45mm。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513909324704692.png" alt="blob.png"/></p><p style="text-align: justify;">完全开挖后电塔基础沉降云图:</p><p style="text-align: center;"><strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1513909341434325.png" alt="blob.png"/></strong></p><p style="text-align: justify;"><strong>总结</strong></p><p style="text-align: justify;">总结开挖过程中基础的最大沉降和最大差异沉降值,如下表所示:</p><table align="center" width="659"><tbody><tr class="firstRow"><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="98">施工步骤<br/></td><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="154">施工名称</td><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="184">基础最大沉降,mm</td><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="222">基础最大差异沉降,mm</td></tr><tr><td valign="middle" colspan="1" rowspan="1" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="98">0</td><td valign="middle" colspan="1" rowspan="1" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="154">(初始地应力)</td><td valign="middle" colspan="1" rowspan="1" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="184">/</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="222">/</td></tr><tr><td valign="middle" colspan="1" rowspan="1" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="98">1</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="154">施工地下连续墙</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="184">0.07</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="222">0.054</td></tr><tr><td valign="middle" colspan="1" rowspan="1" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="98">2</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="154">开挖至 2.5m</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="184">0.08</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="222">0.054</td></tr><tr><td valign="middle" colspan="1" rowspan="1" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="98">3</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="154">添加第一道支撑</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="184">0.11</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="222">0.052</td></tr><tr><td valign="middle" colspan="1" rowspan="1" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="98">4</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="154">开挖至 8.6m</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="184">2.03</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="222">1.71</td></tr><tr><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="98">5</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="154">添加第二道支撑</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="184">2.03</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="222">1.9</td></tr><tr><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="98">6</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="154">开挖至 13.6m</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="184">3.49</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="222">2.25</td></tr><tr><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="98">7</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="154">添加第三道支撑</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="184">3.54</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="222">2.27</td></tr><tr><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="98">8</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="154">完全开挖</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="184">9.8</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="222">2.45</td></tr></tbody></table><p style="text-align: center;"><br/></p><p style="text-align: justify;">从上表可以得出,基础沉降大小和差异沉降均在允许范围内。</p>

边坡+多排抗滑桩案例:GEO5在桥改路3-3剖面中的设计思路

库仑产品库仑李建 发表了文章 • 0 个评论 • 1810 次浏览 • 2017-11-24 10:01 • 来自相关话题

3-3剖面设计:GEO5工况1:无填土,无筋材,无抗滑桩本工况阶段主要用于验算没有进行填方之前原始边坡的天然稳定性。计算得到安全系数为2.44,边坡稳定性满足要求。工况2:加填土本工况阶段主要用于验算添加填方后,填方边坡的稳定性和边坡整体稳定性。由于填土为无黏性土,因此最危险滑面位于边坡表面。这里为了搜索得到更深的滑面,进行滑面约束,即不考虑边坡表面的滑面,得到安全系数为1.09,边坡稳定性不满足要求。工况3:填土加筋材由于填土稳定性不满足要求,该工况阶段我们施加筋材,并验算施加筋材后的边坡稳定性。添加筋材后,使用GEO5的最危险滑面自动搜索功能和搜索区域限制功能,分别对边坡的整体稳定性,第一级台阶稳定性和第二级台阶稳定性进行了计算,安全系数分别为1.24、1.12和1.35,小于设计安全系数1.35,边坡稳定性不满足要求。工况4: 筋材+抗滑桩由于施加筋材后边坡稳定性依然不满足要求,所以考虑施加抗滑桩,并验算边坡整体稳定性。分别验算了滑面穿过三排抗滑桩的整体稳定性、第一个台阶的稳定性和滑面穿过最上面一排抗滑桩桩顶的第二个台阶的稳定性,安全系数分别为1.9、2.02和1.49,大于设计安全系数1.35,边坡稳定性满足要求。在GEO5中设计抗滑桩时分为两步,第一步为概念设计或初步设计,即通过少数且重要的参数判断施加抗滑桩以后对边坡稳定性的影响;第二步为详细设计,即输入更多的参数,从而计算抗滑桩的变形、内力,并据此配筋。在该工况阶段中,我们实际上是通过初略估算抗滑桩能承受的最大下滑力(通常为抗剪承载力)来估算边坡的稳定性,从而快速确定抗滑桩的位置和所需抗滑桩的大致尺寸、间距等几何参数。在下一步工况中我们将进行抗滑桩验算,即详细设计。工况5:抗滑桩验算该工况中,我们对抗滑桩的承载力进行详细验算,得到桩身变形、内力和配筋情况。在土质边坡模块中我们可以计算得到作用在每排抗滑桩上的剩余下滑力和剩余抗滑力,利用得到的荷载,直接在土坡模块中调用「抗滑桩设计」 模块,即可以进行抗滑桩验算。关于GEO5如何处理多排抗滑桩之间推力的分布问题,请查看这里:作用在抗滑桩上的力 - 库仑问答在计算作用在抗滑桩上的推力时,软件无法计算桩顶低于地表的情况,即埋入式抗滑桩。原因在于土坡模块并不知道滑坡推力的分布形式,从而无法确定作用在桩身上的推力大小。处理方法为将桩定位到地表,得到滑坡推力,调用抗滑桩设计后,上移地层即可。根据假设的推力分布,取作用在抗滑桩上的推力部分,出于保守考虑,也可以将所有推力都作用在抗滑桩上。在本案例中,我们仅验算了最后一排抗滑桩。关于在GEO5中进行多排抗滑桩设计的更多资料,请参考本教程:多排抗滑桩优化设计 - 库仑问答  工况6:筋材+抗滑桩+地震最后,我们再对地震工况下的边坡整体稳定性进行验算。添加地震工况,计算安全系数为1.69,大于设计安全系数1.15,边坡稳定性满足要求。这里没有再对地震工况下的抗滑桩单独验算,其验算方法和工况5相同,仅仅是考虑了地震作用。破坏模式和安全系数复核:OptumG2对于复杂支挡结构,边坡的破坏模式往往较为复杂,采用极限平衡法(规范中采用的方法)计算得到的破坏模式或安全系数可能存在错误的情况,因此,本案例中我们还采用OptumG2(极限分析法)对该项目的边坡破坏模式和安全系数进行了复核。关于OptumG2的介绍,请见:OptumG2_南京库仑  关于极限分析方法的详细介绍,请见:入门教程(上) - 库仑问答  工况1:加筋材,无桩采用下限法计算得到边坡整体稳定性安全系数为1.235,和GEO5计算得到的整体稳定性安全系数1.24接近。工况2:加筋材,加桩计算得到安全系数为1.379,最危险滑面位于第二个台阶处,和GEO5计算得到的最危险滑面相同。结论本案例利用GEO5的多工况功能,把6中不同的情况 – 天然原始边坡稳定性、填方后边坡的稳定性、填方后加筋边坡的稳定性、填方后加筋且加抗滑桩边坡的稳定性、地震作用下边坡的稳定性、抗滑桩验算 – 全部整合到了一个软件文件中,可以统一生成设计思路清晰的计算书,大大节省了建模和计算的时间。同时,相比于理正,GEO5可以把所有边坡支护结构(本案例中包括筋材和抗滑桩)全部整合到一个模型中计算整体稳定性,也能单独对抗滑桩或者经常进行验算。最后,我们采用OptumG2中的极限分析方法对GEO5中极限平衡法计算得到的结果进行了复核。对于没有经验的工程师,或者非常复杂的支挡结构,OptumG2中提供的极限分析方法是一个非常好的计算手段。 查看全部
<p><span style="color: #FF0000;"><strong>3-3剖面设计:GEO5</strong></span><br/></p><p><strong>工况1:无填土,无筋材,无抗滑桩</strong></p><p>本工况阶段主要用于验算没有进行填方之前原始边坡的天然稳定性。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488315195854.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488329292141.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488343625640.png" alt="blob.png"/></p><p>计算得到安全系数为2.44,边坡稳定性满足要求。<br/></p><p><strong>工况2:加填土</strong></p><p>本工况阶段主要用于验算添加填方后,填方边坡的稳定性和边坡整体稳定性。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488361496604.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488368311503.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488377947343.png" alt="blob.png"/></p><p>由于填土为无黏性土,因此最危险滑面位于边坡表面。这里为了搜索得到更深的滑面,进行滑面约束,即不考虑边坡表面的滑面,得到安全系数为1.09,边坡稳定性不满足要求。</p><p><strong>工况3:填土加筋材</strong></p><p>由于填土稳定性不满足要求,该工况阶段我们施加筋材,并验算施加筋材后的边坡稳定性。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488401442926.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488409896676.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488419273679.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488429988133.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488447151056.png" alt="blob.png"/></p><p>添加筋材后,使用GEO5的最危险滑面自动搜索功能和搜索区域限制功能,分别对边坡的整体稳定性,第一级台阶稳定性和第二级台阶稳定性进行了计算,安全系数分别为1.24、1.12和1.35,小于设计安全系数1.35,边坡稳定性不满足要求。</p><p><strong>工况4: 筋材+抗滑桩</strong></p><p>由于施加筋材后边坡稳定性依然不满足要求,所以考虑施加抗滑桩,并验算边坡整体稳定性。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488464169172.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488472373794.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488482881494.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488493755742.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488501438452.png" alt="blob.png"/></p><p>分别验算了滑面穿过三排抗滑桩的整体稳定性、第一个台阶的稳定性和滑面穿过最上面一排抗滑桩桩顶的第二个台阶的稳定性,安全系数分别为1.9、2.02和1.49,大于设计安全系数1.35,边坡稳定性满足要求。</p><p>在GEO5中设计抗滑桩时分为两步,第一步为概念设计或初步设计,即通过少数且重要的参数判断施加抗滑桩以后对边坡稳定性的影响;第二步为详细设计,即输入更多的参数,从而计算抗滑桩的变形、内力,并据此配筋。在该工况阶段中,我们实际上是通过初略估算抗滑桩能承受的最大下滑力(通常为抗剪承载力)来估算边坡的稳定性,从而快速确定抗滑桩的位置和所需抗滑桩的大致尺寸、间距等几何参数。</p><p>在下一步工况中我们将进行抗滑桩验算,即详细设计。</p><p style="text-align: left;"><strong>工况5:抗滑桩验算</strong></p><p>该工况中,我们对抗滑桩的承载力进行详细验算,得到桩身变形、内力和配筋情况。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488529910441.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488536378073.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488544117350.png" alt="blob.png"/></p><p>在土质边坡模块中我们可以计算得到作用在每排抗滑桩上的剩余下滑力和剩余抗滑力,利用得到的荷载,直接在土坡模块中调用「抗滑桩设计」 模块,即可以进行抗滑桩验算。</p><p>关于GEO5如何处理多排抗滑桩之间推力的分布问题,请查看这里:<a href="http://www.wen.kulunsoft.com/dochelp/1146" target="_blank">作用在抗滑桩上的力 - 库仑问答</a></p><p>在计算作用在抗滑桩上的推力时,软件无法计算桩顶低于地表的情况,即埋入式抗滑桩。原因在于土坡模块并不知道滑坡推力的分布形式,从而无法确定作用在桩身上的推力大小。处理方法为将桩定位到地表,得到滑坡推力,调用抗滑桩设计后,上移地层即可。根据假设的推力分布,取作用在抗滑桩上的推力部分,出于保守考虑,也可以将所有推力都作用在抗滑桩上。在本案例中,我们仅验算了最后一排抗滑桩。</p><p>关于在GEO5中进行多排抗滑桩设计的更多资料,请参考本教程:<a href="http://www.wen.kulunsoft.com/dochelp/91" target="_blank">多排抗滑桩优化设计 - 库仑问答</a> &nbsp;</p><p><strong>工况6:筋材+抗滑桩+地震</strong></p><p>最后,我们再对地震工况下的边坡整体稳定性进行验算。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488664181298.png" alt="blob.png"/></p><p>添加地震工况,计算安全系数为1.69,大于设计安全系数1.15,边坡稳定性满足要求。这里没有再对地震工况下的抗滑桩单独验算,其验算方法和工况5相同,仅仅是考虑了地震作用。</p><p><span style="color: #FF0000;"><strong>破坏模式和安全系数复核:OptumG2</strong></span></p><p>对于复杂支挡结构,边坡的破坏模式往往较为复杂,采用极限平衡法(规范中采用的方法)计算得到的破坏模式或安全系数可能存在错误的情况,因此,本案例中我们还采用OptumG2(极限分析法)对该项目的边坡破坏模式和安全系数进行了复核。</p><p>关于OptumG2的介绍,请见:<a href="http://www.kulunsoft.com/products/9" target="_blank">OptumG2_南京库仑</a> &nbsp;</p><p>关于极限分析方法的详细介绍,请见:<a href="http://www.wen.kulunsoft.com/dochelp/1587" target="_blank">入门教程(上) - 库仑问答 </a>&nbsp;</p><p><strong>工况1:加筋材,无桩</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488737505687.png" alt="blob.png"/></p><p>采用下限法计算得到边坡整体稳定性安全系数为1.235,和GEO5计算得到的整体稳定性安全系数1.24接近。</p><p><strong>工况2:加筋材,加桩</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488752703128.png" alt="blob.png"/></p><p>计算得到安全系数为1.379,最危险滑面位于第二个台阶处,和GEO5计算得到的最危险滑面相同。</p><p><span style="color: #FF0000;"><strong>结论</strong></span></p><p>本案例利用GEO5的多工况功能,把6中不同的情况 – 天然原始边坡稳定性、填方后边坡的稳定性、填方后加筋边坡的稳定性、填方后加筋且加抗滑桩边坡的稳定性、地震作用下边坡的稳定性、抗滑桩验算 – 全部整合到了一个软件文件中,可以统一生成设计思路清晰的计算书,大大节省了建模和计算的时间。同时,相比于理正,GEO5可以把所有边坡支护结构(本案例中包括筋材和抗滑桩)全部整合到一个模型中计算整体稳定性,也能单独对抗滑桩或者经常进行验算。</p><p>最后,我们采用OptumG2中的极限分析方法对GEO5中极限平衡法计算得到的结果进行了复核。对于没有经验的工程师,或者非常复杂的支挡结构,OptumG2中提供的极限分析方法是一个非常好的计算手段。</p>

OptumG2考虑土体硬化的基坑分析

库仑产品库仑李建 发表了文章 • 0 个评论 • 878 次浏览 • 2017-10-16 14:13 • 来自相关话题

在基坑开挖过程中,实际上是一个土体卸载的过程,对于软黏性土会存在明显的土体硬化特征,且卸载过程中坑外和坑内的土体变形比较难合理考虑,因此在对基坑开挖进行数值模拟时需要准确的选取本构模型。对于土体卸载回弹和再压缩的特性,如图1所示。土体从A点开始分级加载,压缩至B点后,分级卸载回弹至C点,再分级加载让土体压缩。在卸载时,土体不是沿着初始压缩曲线,而是沿曲线BC回弹,说明土体的变形是由可恢复的弹性变形和不可恢复的塑性变形两部分组成。回弹曲线和再压缩曲线构成一回滞环,这是土体不是完全弹性体的有一表征。在同样的压力范围内,回弹和再压缩曲线要比初始圧缩曲线平缓得多,说明在回弹或再压缩范围内,土的压缩性大大降低。当再加载时的压力超过B点所对应的压力时,再压缩曲线就趋于初始压缩曲线的延长线。图1 土体的卸载回弹-再压缩曲线由于土体不是完全弹性体,存在土体硬化的因素,在模拟基坑开挖过程的时候,墙体前面进行加载,墙后发生卸载,分析坑外和坑内的土体变形,考虑土体的卸载回弹是非常有必要的。因此,OptumG2软件中的HMC模型则非常适合,它能够分别运行初始弹塑性加载和后续的弹性卸载过程的刚度模量。下面以OptumG2案例手册中的案例39为例,简单介绍一下HMC模型的应用。模型中对砂土进行开挖,开挖时采用板桩墙对其进行支撑,如图2所示。安置好钢板桩之后,开挖过程为:第一步先开挖墙前4m,第二步再开挖4m,第三步先在地下2m插入支撑,之后再开挖4m,此时总的开挖深度为12m;第四步给支撑添加500kN/m的预应力;第五步再开挖4m,最终的总开挖深度为16m。图2 模型及砂土开挖过程为了测试土体的整体破坏模式对于本构模型选取的敏感性,特别是刚度模量的选择,在分析过程中分别采用了HMC模型和MC模型进行对比。HMC模型中采用的参考刚度模量E50,ref = 25MPa,Eur,ref = 125MPa,MC模型中采用的两个固定的杨氏模量E = 25MPa,E = 125MPa。关于两者采用的详细参数,如表1所示。表1 HMC模型和MC模型的详细参数对于HMC模型和MC模型,分析采用的方法是弹塑性分析,计算采用的网格数量均为1000,网格类型为6-高斯节点。如图3和图4所示,为基坑开挖8m和12m之后的墙体位移和墙体弯矩,大体可以看出,不管土体采用的是HMC模型,还是不同参数的MC模型,墙体的位移和弯矩之间的差别很小,结果具有良好的一致性,即基坑开挖时,土体的模型选取对墙体的稳定性影响不大,对结构的影响作用很小。图3 基坑开挖8m后墙体的位移(左)和弯矩(右)图4 基坑开挖12m后墙体的位移(左)和弯矩(右)如图5所示,为基坑开挖4m后墙后和墙前的地表位移,总体来看,采用HMC模型和MC模型得到的结果差别比较明显。对于墙前的地表位移,开挖时墙前为加载过程,HMC模型与MC模型的结果一致,土体模量越大,墙前的位移也越大。对于墙后的地表位移,开挖时墙后为卸载的过程,HMC模型可以准确的显示离墙越远,地表位移越小的特性;而MC模型显示的墙后地表位移存在一个明显的拱起,模量越小拱起越明显,显然这是存在一定的问题的。图5 基坑开挖4m后墙后(左)和墙前(右)的地表位移对于基坑开挖问题,如果只是计算墙体,即结构稳定性的话,不管是采用HMC模型还是标准的MC模型,计算得到的结果都是没有问题的。但是如果要考虑土体的整体稳定性,需要采用HMC模型来进行计算,如果采用MC模型的话,由于基坑开挖过程是一个卸载的过程,土体存在一个回弹的过程,而MC模型在计算时是无法考虑这一因素的,因此计算得到的结果是不准确的,而HMC模型则会避免该因素的影响,进行准确的计算分析。 查看全部
<p style="text-align: justify;">在基坑开挖过程中,实际上是一个土体卸载的过程,对于软黏性土会存在明显的土体硬化特征,且卸载过程中坑外和坑内的土体变形比较难合理考虑,因此在对基坑开挖进行数值模拟时需要准确的选取本构模型。<br/></p><p style="text-align: justify;">对于土体卸载回弹和再压缩的特性,如图1所示。土体从A点开始分级加载,压缩至B点后,分级卸载回弹至C点,再分级加载让土体压缩。在卸载时,土体不是沿着初始压缩曲线,而是沿曲线BC回弹,说明土体的变形是由可恢复的弹性变形和不可恢复的塑性变形两部分组成。回弹曲线和再压缩曲线构成一回滞环,这是土体不是完全弹性体的有一表征。在同样的压力范围内,回弹和再压缩曲线要比初始圧缩曲线平缓得多,说明在回弹或再压缩范围内,土的压缩性大大降低。当再加载时的压力超过B点所对应的压力时,再压缩曲线就趋于初始压缩曲线的延长线。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508134011423714.png" alt="image.png"/></p><p style="text-align: center;">图1 土体的卸载回弹-再压缩曲线</p><p style="text-align: justify;">由于土体不是完全弹性体,存在土体硬化的因素,在模拟基坑开挖过程的时候,墙体前面进行加载,墙后发生卸载,分析坑外和坑内的土体变形,考虑土体的卸载回弹是非常有必要的。因此,OptumG2软件中的HMC模型则非常适合,它能够分别运行初始弹塑性加载和后续的弹性卸载过程的刚度模量。</p><p style="text-align: justify;">下面以OptumG2案例手册中的<a href="/dochelp/1629" target="_blank">案例39</a>为例,简单介绍一下HMC模型的应用。</p><p style="text-align: justify;">模型中对砂土进行开挖,开挖时采用板桩墙对其进行支撑,如图2所示。安置好钢板桩之后,开挖过程为:第一步先开挖墙前4m,第二步再开挖4m,第三步先在地下2m插入支撑,之后再开挖4m,此时总的开挖深度为12m;第四步给支撑添加500kN/m的预应力;第五步再开挖4m,最终的总开挖深度为16m。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508134169145761.png" alt="image.png"/></p><p style="text-align: center;">图2 模型及砂土开挖过程</p><p style="text-align: justify;">为了测试土体的整体破坏模式对于本构模型选取的敏感性,特别是刚度模量的选择,在分析过程中分别采用了HMC模型和MC模型进行对比。HMC模型中采用的参考刚度模量<em>E</em><sub>50,ref</sub> = 25MPa,<em>E</em><sub>ur,ref</sub> = 125MPa,MC模型中采用的两个固定的杨氏模量<em>E</em> = 25MPa,<em>E</em> = 125MPa。关于两者采用的详细参数,如表1所示。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508134190793179.png" alt="image.png"/></p><p style="text-align: center;">表1 HMC模型和MC模型的详细参数</p><p style="text-align: justify;">对于HMC模型和MC模型,分析采用的方法是弹塑性分析,计算采用的网格数量均为1000,网格类型为6-高斯节点。</p><p style="text-align: justify;">如图3和图4所示,为基坑开挖8m和12m之后的墙体位移和墙体弯矩,大体可以看出,不管土体采用的是HMC模型,还是不同参数的MC模型,墙体的位移和弯矩之间的差别很小,结果具有良好的一致性,即基坑开挖时,土体的模型选取对墙体的稳定性影响不大,对结构的影响作用很小。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508134208720531.png" alt="1508134208720531.png" width="540" height="280" border="0" vspace="0" style="width: 540px; height: 280px;"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508134217830554.png" alt="image.png"/></p><p style="text-align: center;">图3 基坑开挖8m后墙体的位移(左)和弯矩(右)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508134304713392.png" alt="1508134304713392.png" width="540" height="283" border="0" vspace="0" style="width: 540px; height: 283px;"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508134313659578.png" alt="image.png"/></p><p style="text-align: center;">图4 基坑开挖12m后墙体的位移(左)和弯矩(右)</p><p style="text-align: justify;">如图5所示,为基坑开挖4m后墙后和墙前的地表位移,总体来看,采用HMC模型和MC模型得到的结果差别比较明显。对于墙前的地表位移,开挖时墙前为加载过程,HMC模型与MC模型的结果一致,土体模量越大,墙前的位移也越大。对于墙后的地表位移,开挖时墙后为卸载的过程,HMC模型可以准确的显示离墙越远,地表位移越小的特性;而MC模型显示的墙后地表位移存在一个明显的拱起,模量越小拱起越明显,显然这是存在一定的问题的。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508134362521473.png" alt="1508134362521473.png" width="600" height="191" border="0" vspace="0" style="width: 600px; height: 191px;"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508134377610644.png" alt="image.png"/></p><p style="text-align: center;">图5 基坑开挖4m后墙后(左)和墙前(右)的地表位移</p><p style="text-align: justify;">对于基坑开挖问题,如果只是计算墙体,即结构稳定性的话,不管是采用HMC模型还是标准的MC模型,计算得到的结果都是没有问题的。但是如果要考虑土体的整体稳定性,需要采用HMC模型来进行计算,如果采用MC模型的话,由于基坑开挖过程是一个卸载的过程,土体存在一个回弹的过程,而MC模型在计算时是无法考虑这一因素的,因此计算得到的结果是不准确的,而HMC模型则会避免该因素的影响,进行准确的计算分析。</p>

CFG桩复合地基承载力模拟计算

岩土工程库仑李建 发表了文章 • 2 个评论 • 1710 次浏览 • 2017-09-15 17:21 • 来自相关话题

CFG桩是水泥粉煤灰碎石桩的简称(即Cement Flying-ash Gravel Pile),是由水泥、粉煤灰、碎石、石屑或砂加水拌和形成的高粘结强度桩,和桩间土、褥垫层一起形成复合地基。由于CFG桩的作用使复合地基承载力提高,变形减小,再加上CFG桩不需要配筋,桩体利用工业废料粉煤灰作为掺和料,大大降低了工程造价。复合地基设计中,基础与桩和桩间土之间设置一定厚度散体粒状材料组成的褥垫层,是复合地基的一个核心技术。基础下是否设置褥垫层,对复合地基受力影响很大。若不设置褥垫层,复合地基承载特性与桩基础相似,桩间土承载能力难以发挥,不能成为复合地基。基础下设置褥垫层,桩间土载力的发挥就不单纯依赖于桩的沉降,即使桩端落在好土层上,也能保证荷载通过褥垫层作用到桩间土上,使桩土共同承担荷载。本文采用岩土分析软件OptumG2对CFG桩复合地基进行了模拟,探讨了CFG桩复合地基的承载力特性,模拟分析采用的是有限元极限分析法。图1 CFG桩复合地基单桩模型图2 CFG桩复合地基群桩模型如图1、图2所示的分别为建立的CFG桩复合地基单桩模型和群桩模型,土体采用软件自带的Mohr-Coulomb模型「可塑黏土-MC」,CFG桩采用线弹性模型进行模拟,褥垫层和筏板均采用重度为0的刚性体模拟,具体材料参数见表1。CFG桩桩径0.5m,桩间距为1.5m,桩长10m,褥垫层厚度0.3m,筏板的厚度为1m,筏板的平面尺寸为1.5m×1.5m。表1 CFG桩复合地基模型材料参数在模型的左右两侧和底部设置标准边界条件,考虑到CFG桩和土体的粘结耦合比较好,因此在桩土界面不需要单独设置接触面。对于模型进行分析时,采用软件自带的网格自适应功能,网格单元数量为4000,自适应迭代次数为3;同时,在褥垫层的左右两个端点处设置扇形网格,网格大小设置为0.1,网格划分情况如图3所示。图3 网格划分图采用有限元极限分析法对CFG桩复合地基单桩模型和群桩模型进行分析计算,分别计算相应工况的上限解和下限解,承载力的计算结果见表2。表2 CFG桩复合地基的承载力结果通过将OptumG2的计算结果与规范的计算结果进行对比可以发现,OptumG2当中CFG桩复合地基群桩模型计算得到的结果为1026.75kPa,这是极限值,通常规范规定承载力的极限值大概是特征值的两倍,而规范计算得到的是特征值,为521.11kPa,这样的话规范中群桩计算结果的两倍和OptumG2中的结果基本接近。如图4、图5所示,显示了CFG桩复合地基单桩模型和群桩模型的网格划分情况和破坏模式,可以明显看出,不管是单桩模型还是群桩模型,桩体和周边的土体粘结的非常好,均形成了一个整体,这与复合地基的概念是吻合的。从破坏模式看出,当土体发生破坏时,群桩就像一个整体的深基础,形成了非常典型的地基破坏面,复合地基是作为一个整体发生破坏的,而不是发生桩周的局部破坏。图4 CFG桩复合地基单桩模型的网格划分及破坏模式图5 CFG桩复合地基群桩模型的破坏模式及剪切耗散图通过本案例,可以说明OptumG2软件可以很好地模拟CFG桩复合地基,同时,对CFG桩复合地基的承载力可以进行准确的计算。 查看全部
<p style="text-align: justify;">CFG桩是水泥粉煤灰碎石桩的简称(即Cement Flying-ash Gravel Pile),是由水泥、粉煤灰、碎石、石屑或砂加水拌和形成的高粘结强度桩,和桩间土、褥垫层一起形成复合地基。由于CFG桩的作用使复合地基承载力提高,变形减小,再加上CFG桩不需要配筋,桩体利用工业废料粉煤灰作为掺和料,大大降低了工程造价。<br/></p><p style="text-align: justify;">复合地基设计中,基础与桩和桩间土之间设置一定厚度散体粒状材料组成的褥垫层,是复合地基的一个核心技术。基础下是否设置褥垫层,对复合地基受力影响很大。若不设置褥垫层,复合地基承载特性与桩基础相似,桩间土承载能力难以发挥,不能成为复合地基。基础下设置褥垫层,桩间土载力的发挥就不单纯依赖于桩的沉降,即使桩端落在好土层上,也能保证荷载通过褥垫层作用到桩间土上,使桩土共同承担荷载。</p><p style="text-align: justify;">本文采用岩土分析软件OptumG2对CFG桩复合地基进行了模拟,探讨了CFG桩复合地基的承载力特性,模拟分析采用的是有限元极限分析法。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505467010542805.png" alt="image.png"/></p><p style="text-align: center;">图1 CFG桩复合地基单桩模型</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505467021858269.png" alt="image.png"/></p><p style="text-align: center;">图2 CFG桩复合地基群桩模型</p><p style="text-align: justify;">如图1、图2所示的分别为建立的CFG桩复合地基单桩模型和群桩模型,土体采用软件自带的Mohr-Coulomb模型「可塑黏土-MC」,CFG桩采用线弹性模型进行模拟,褥垫层和筏板均采用重度为0的刚性体模拟,具体材料参数见表1。CFG桩桩径0.5m,桩间距为1.5m,桩长10m,褥垫层厚度0.3m,筏板的厚度为1m,筏板的平面尺寸为1.5m×1.5m。</p><p style="text-align: center;">表1 CFG桩复合地基模型材料参数</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505467196456917.png" alt="1505467196456917.png" width="500" height="152" border="0" vspace="0" style="width: 500px; height: 152px;"/></p><p style="text-align: justify;">在模型的左右两侧和底部设置标准边界条件,考虑到CFG桩和土体的粘结耦合比较好,因此在桩土界面不需要单独设置接触面。对于模型进行分析时,采用软件自带的网格自适应功能,网格单元数量为4000,自适应迭代次数为3;同时,在褥垫层的左右两个端点处设置扇形网格,网格大小设置为0.1,网格划分情况如图3所示。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505467079888828.png" alt="image.png"/></p><p style="text-align: center;">图3 网格划分图</p><p style="text-align: justify;"><span style="text-align: justify;">采用有限元极限分析法对CFG桩复合地基单桩模型和群桩模型进行分析计算,分别计算相应工况的上限解和下限解,承载力的计算结果见表2。</span></p><p style="text-align: center;">表2 CFG桩复合地基的承载力结果</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505800694638061.png" alt="1505800694638061.png" width="600" height="189" border="0" vspace="0" style="width: 600px; height: 189px;"/></p><p style="text-align: justify;"><span style="text-align: justify;">通过将OptumG2的计算结果与规范的计算结果进行对比可以发现,OptumG2当中CFG桩复合地基群桩模型计算得到的结果为1026.75kPa,这是极限值,通常规范规定承载力的极限值大概是特征值的两倍,而规范计算得到的是特征值,为521.11kPa,这样的话规范中群桩计算结果的两倍和OptumG2中的结果基本接近。</span></p><p style="text-align: justify;"><span style="text-align: justify;">如图4、图5所示,显示了CFG桩复合地基单桩模型和群桩模型的网格划分情况和破坏模式,可以明显看出,不管是单桩模型还是群桩模型,桩体和周边的土体粘结的非常好,均形成了一个整体,这与复合地基的概念是吻合的。从破坏模式看出,当土体发生破坏时,群桩就像一个整体的深基础,形成了非常典型的地基破坏面,复合地基是作为一个整体发生破坏的,而不是发生桩周的局部破坏。</span></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505467117443611.png" alt="image.png"/></p><p style="text-align: center;">图4 CFG桩复合地基单桩模型的网格划分及破坏模式</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505467127966288.png" alt="image.png"/></p><p style="text-align: center;">图5 CFG桩复合地基群桩模型的破坏模式及剪切耗散图</p><p style="text-align: justify;"><span style="text-align: justify;">通过本案例,可以说明OptumG2软件可以很好地模拟CFG桩复合地基,同时,对CFG桩复合地基的承载力可以进行准确的计算。</span></p>

OptumG2计算时提示某些面没有赋值材料

库仑产品库仑戚工 发表了文章 • 0 个评论 • 895 次浏览 • 2017-08-30 09:47 • 来自相关话题

  用户运行OptumG2软件计算时,软件提示某些面没有赋值材料,错误提示如下:  仔细检查模型后,肉眼并未发现未赋值材料的面,出现这种错误提示的根本原因为导入的dxf文件本身有问题。针对这种情况,启用软件选择框功能检查点,如果右侧性质面板中显示有两个及两个以上的点,则必须删除掉多余的点,才能保证软件正常运行,选择框检查正常点和非正常点分别如下所示:非正常点正常点解决方案一:利用GEO5土质边坡模块dxf文件模板功能,描绘好多段线后导出成dxf文件,使用到optumG2中(推荐)。  GEO5土质边坡模块支持dxf文件以模板形式导入,也支持dxf文件以多段线形式导入,当您不确定您的dxf文件是否有问题时,可先将该dxf文件用模板形式导入至GEO5土质边坡模块中,描绘好多段线后,将该文件导出成dxf文件。之后用新导出的dxf文件直接应用到OptumG2软件中。解决方法二:直接在AutoCAD中处理原有dxf文件(推荐)。  在AutoCAD中锁定原有地层线,新建图层,在新图层中人工重新描摹地层线,描摹完成后保存该文件,导入optumG2时仅导入描摹地层线的图层。注意:最好是一层一层的描摹,同时对于一些不必要的地方适当的简化,特别是起伏不大的地方建议简化成一条线,有利于optumG2软件提高后期划分网格质量和模型的计算效率。解决方法三:在optumG2中一一查别有问题的节点或线条,将其改正之后再计算(不推荐)。  直接在optumG2中采用软件选择框功能检查点或者线段,将显示有问题的节点或线条改好之后重新计算,一般情况下模型中节点比较多,这种方法比较费时,因此不推荐采用此种方法。 查看全部
<p>  用户运行OptumG2软件计算时,软件提示某些面没有赋值材料,错误提示如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504057183302100.png" alt="blob.png"/></p><p>  仔细检查模型后,肉眼并未发现未赋值材料的面,出现这种错误提示的根本原因为导入的dxf文件本身有问题。针对这种情况,启用软件选择框功能检查点,如果右侧性质面板中显示有两个及两个以上的点,则必须删除掉多余的点,才能保证软件正常运行,选择框检查正常点和非正常点分别如下所示:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504057329223108.png" alt="blob.png"/></p><p style="text-align: center;">非正常点</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504057343289054.png" alt="blob.png"/></p><p style="text-align: center;">正常点</p><p><strong><span style="color: #FF0000;">解决方案一:</span></strong>利用GEO5土质边坡模块dxf文件模板功能,描绘好多段线后导出成dxf文件,使用到optumG2中(推荐)。</p><p>  GEO5土质边坡模块支持dxf文件以模板形式导入,也支持dxf文件以多段线形式导入,当您不确定您的dxf文件是否有问题时,可先将该dxf文件用模板形式导入至GEO5土质边坡模块中,描绘好多段线后,将该文件导出成dxf文件。之后用新导出的dxf文件直接应用到OptumG2软件中。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504057389668653.png" alt="blob.png"/></p><p><span style="color: #FF0000;"><strong>解决方法二:</strong></span>直接在AutoCAD中处理原有dxf文件(推荐)。</p><p>  在AutoCAD中锁定原有地层线,新建图层,在新图层中人工重新描摹地层线,描摹完成后保存该文件,导入optumG2时仅导入描摹地层线的图层。</p><blockquote><p>注意:最好是一层一层的描摹,同时对于一些不必要的地方适当的简化,特别是起伏不大的地方建议简化成一条线,有利于optumG2软件提高后期划分网格质量和模型的计算效率。</p></blockquote><p><strong><span style="color: #FF0000;">解决方法三:</span></strong>在optumG2中一一查别有问题的节点或线条,将其改正之后再计算(不推荐)。</p><p>  直接在optumG2中采用软件选择框功能检查点或者线段,将显示有问题的节点或线条改好之后重新计算,一般情况下模型中节点比较多,这种方法比较费时,因此不推荐采用此种方法。</p><p><br/></p>

OptumG2实例:隧道开挖——国内某轨道交通项目

库仑产品库仑李建 发表了文章 • 0 个评论 • 1073 次浏览 • 2017-08-04 16:46 • 来自相关话题

项目名称:国内某轨道交通项目使用软件:岩土分析软件OptumG2项目信息:图1 隧道和地表建筑物的相对关系图2 隧道和地表建筑物的相对关系(纵断面)项目建模:图3 模型建立注:图中红线为用于方便读取相应位置结果数据的结果截面,对计算没有影响。为了避免边界条件的对隧道周围岩土体的影响,边界范围取为距隧道中心的距离为隧道宽度的6倍。岩土材料采用Mohr-Coulomb材料模型来模拟,衬砌采用板单元来模拟。表1 岩土参数编号名称重度kN/m3弹性模量MPa泊松比粘聚力kPa内摩擦角1素填土20800.252302泥质砂岩25.616010.251632.5表2 衬砌参数成熟状态单元类型厚度m混凝土型号最大网格大小未成熟板单元0.28C25 未成熟0.2成熟板单元0.35C250.2表3 锚杆参数长度m环相间距m纵向间距m屈服力kN/m锚杆和土体间的粘结力kPa3.00.60.530018图4 锚杆和衬砌支护图开挖步骤:采用台阶法进行隧道开挖,大致开挖步骤如下:(1)隧道范围分为左、右洞错开挖掘,先开挖右洞上台阶;(2)上台阶进约4-5m后,开挖右洞下台阶;(3)待右洞整个断面掘进30m后,再开挖左洞上台阶;(4)同样,之后再开挖左洞的下台阶。对单独的每一步开挖采用如下流程进行:(1)开挖隧道,并对洞壁约束松弛30%;(2)对洞壁约束松弛70%,同时施加锚杆和喷射混凝土,混凝土采用未成熟,即强度较低的C25混凝土;(3)对洞壁约束松弛100%,即移除约束,提高混凝土强度,降混凝土强度提升至C25标准强度。具体开挖流程如下图所示:   开挖(1)                                                      开挖(2)开挖(3)开挖(4)图5 隧道开挖步骤地表沉降结果: (1)开挖右洞上台阶                                            (2)开挖右洞下台阶 (3)开挖左洞上台阶                                            (4)开挖左洞下台阶图6 隧道开挖地表沉降结果图7 隧道开挖地层沉降云图地表水平位移结果: (1)开挖右洞上台阶                                            (2)开挖右洞下台阶 (3)开挖左洞上台阶                                            (4)开挖左洞下台阶图8 隧道开挖地表水平位移结果基础沉降:隧道开挖引起的地层位移范围内受影响建筑的基础最大沉降如下图所示。其中:(1)A – 水平方向1.7mm,竖直方向37.5mm(2)泵 – 水平方向-17.2mm,竖直方向31.6mm(3)B – 水平方向-13.8mm,竖直方向21.2mm(4)C – 水平方向-1.4mm,竖直方向-0.5mm图9 隧道开挖基础沉降根据《建筑地基基础设计规范》GB 50007-2011表5.3.4中的规定,体型简单的高层建筑基础的允许平均沉降量为200mm。若考虑安全系数为2,那么受影响的地表建筑基础最大沉降为75mm,小于允许沉降,因此,建筑基础受隧道开挖的影响在规范允许范围内。 查看全部
<p style="text-align: justify;"><strong>项目名称</strong>:国内某轨道交通项目</p><p style="text-align: justify;"><strong>使用软件</strong>:岩土分析软件OptumG2</p><p style="text-align: justify;"><strong>项目信息</strong>:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501838387134549.png" alt="image.png"/></p><p style="text-align: center;">图1 隧道和地表建筑物的相对关系</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501838667166905.png" alt="image.png"/></p><p style="text-align: center;">图2 隧道和地表建筑物的相对关系(纵断面)</p><p style="text-align: justify;"><strong>项目建模</strong>:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836160107902.png" alt="image.png"/></p><p style="text-align: center;">图3 模型建立</p><blockquote><p style="text-align: justify;">注:图中红线为用于方便读取相应位置结果数据的结果截面,对计算没有影响。</p></blockquote><p style="text-align: justify;">为了避免边界条件的对隧道周围岩土体的影响,边界范围取为距隧道中心的距离为隧道宽度的6倍。</p><p style="text-align: justify;">岩土材料采用Mohr-Coulomb材料模型来模拟,衬砌采用板单元来模拟。</p><p style="text-align: center;">表1 岩土参数</p><table align="center" width="659"><tbody><tr class="firstRow"><td valign="middle" style="word-break: break-all; border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127);" align="center" width="68">编号</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="108">名称</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="87"><p>重度</p><p>kN/m3</p></td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="108"><p>弹性模量</p><p>MPa</p></td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="88">泊松比</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="89"><p>粘聚力</p><p>kPa</p></td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="110">内摩擦角</td></tr><tr><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="68">1</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="108">素填土</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="87">20</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="108">80</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="88">0.25</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="89">2</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="110">30</td></tr><tr><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="68">2</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="108">泥质砂岩</td><td valign="middle" colspan="1" rowspan="1" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="87">25.6</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="108">1601</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="88">0.2</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="89">516</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="110">32.5</td></tr></tbody></table><p style="text-align: center;"><span style="text-align: center;">表2 衬砌参数</span></p><table align="center" width="659"><tbody><tr class="firstRow"><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="126">成熟状态<br/></td><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="126">单元类型</td><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="79"><p>厚度</p><p>m</p></td><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="153">混凝土型号</td><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="174">最大网格大小</td></tr><tr><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="126">未成熟</td><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="126">板单元</td><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="79">0.28</td><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="153">C25 未成熟</td><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="174">0.2</td></tr><tr><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="126">成熟</td><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="126">板单元</td><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="79">0.35</td><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="153">C25</td><td valign="middle" style="border-color: rgb(127, 127, 127); border-width: 1px; border-style: solid; word-break: break-all;" align="center" width="174">0.2</td></tr></tbody></table><p style="text-align: center;">表3 锚杆参数</p><table align="center" width="659"><tbody><tr class="firstRow"><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="74"><p>长度</p><p>m</p></td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="118"><p>环相间距</p><p>m</p></td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="118"><p>纵向间距</p><p>m</p></td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="96"><p>屈服力</p><p>kN/m</p></td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="252"><p>锚杆和土体间的粘结力</p><p>kPa</p></td></tr><tr><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="74">3.0</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="118">0.6</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="118">0.5</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="96">300</td><td valign="middle" style="border-width: 1px; border-style: solid; border-color: rgb(127, 127, 127); word-break: break-all;" align="center" width="252">18</td></tr></tbody></table><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836216363068.png" alt="image.png"/></p><p style="text-align: center;">图4 锚杆和衬砌支护图</p><p style="text-align: justify;"><strong>开挖步骤</strong>:</p><p style="text-align: justify;">采用台阶法进行隧道开挖,大致开挖步骤如下:</p><p style="text-align: justify;">(1)隧道范围分为左、右洞错开挖掘,先开挖右洞上台阶;</p><p style="text-align: justify;">(2)上台阶进约4-5m后,开挖右洞下台阶;</p><p style="text-align: justify;">(3)待右洞整个断面掘进30m后,再开挖左洞上台阶;</p><p style="text-align: justify;">(4)同样,之后再开挖左洞的下台阶。</p><p style="text-align: justify;">对单独的每一步开挖采用如下流程进行:</p><p style="text-align: justify;">(1)开挖隧道,并对洞壁约束松弛30%;</p><p style="text-align: justify;">(2)对洞壁约束松弛70%,同时施加锚杆和喷射混凝土,混凝土采用未成熟,即强度较低的C25混凝土;</p><p style="text-align: justify;">(3)对洞壁约束松弛100%,即移除约束,提高混凝土强度,降混凝土强度提升至C25标准强度。</p><p style="text-align: justify;">具体开挖流程如下图所示:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836238327815.png" alt="image.png"/>&nbsp; &nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836244593097.png" alt="image.png"/></p><p style="text-align: center;">开挖(1)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 开挖(2)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836260757933.png" alt="image.png"/></p><p style="text-align: center;">开挖(3)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836272312093.png" alt="image.png"/></p><p style="text-align: center;">开挖(4)</p><p style="text-align: center;">图5 隧道开挖步骤</p><p style="text-align: justify;"><strong>地表沉降结果</strong>:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836285954330.png" alt="image.png"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836291746498.png" alt="image.png"/></p><p style="text-align: center;">(1)开挖右洞上台阶&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; (2)开挖右洞下台阶</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836301984846.png" alt="image.png"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836306648546.png" alt="image.png"/></p><p style="text-align: center;">(3)开挖左洞上台阶&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; (4)开挖左洞下台阶</p><p style="text-align: center;">图6 隧道开挖地表沉降结果</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836318726171.png" alt="image.png"/></p><p style="text-align: center;">图7 隧道开挖地层沉降云图</p><p style="text-align: justify;"><strong>地表水平位移结果</strong>:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836328657743.png" alt="image.png"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836332655208.png" alt="image.png"/></p><p style="text-align: center;">(1)开挖右洞上台阶&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; (2)开挖右洞下台阶</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836337795733.png" alt="image.png"/>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501836341357766.png" alt="image.png"/></p><p style="text-align: center;">(3)开挖左洞上台阶&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; (4)开挖左洞下台阶</p><p style="text-align: center;">图8 隧道开挖地表水平位移结果</p><p style="text-align: justify;"><strong>基础沉降</strong>:</p><p style="text-align: justify;">隧道开挖引起的地层位移范围内受影响建筑的基础最大沉降如下图所示。其中:</p><p style="text-align: justify;">(1)A&nbsp;– 水平方向1.7mm,竖直方向37.5mm</p><p style="text-align: justify;">(2)泵 – 水平方向-17.2mm,竖直方向31.6mm</p><p style="text-align: justify;">(3)B&nbsp;– 水平方向-13.8mm,竖直方向21.2mm</p><p style="text-align: justify;">(4)C&nbsp;– 水平方向-1.4mm,竖直方向-0.5mm</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1501838826328147.png" alt="image.png"/></p><p style="text-align: center;">图9 隧道开挖基础沉降</p><p style="text-align: justify;">根据《建筑地基基础设计规范》GB 50007-2011表5.3.4中的规定,体型简单的高层建筑基础的允许平均沉降量为200mm。若考虑安全系数为2,那么受影响的地表建筑基础最大沉降为75mm,小于允许沉降,因此,建筑基础受隧道开挖的影响在规范允许范围内。</p>

桩土挤出分析:OptumG2-土拱效应模拟

库仑产品库仑李建 发表了文章 • 2 个评论 • 1329 次浏览 • 2017-06-13 10:50 • 来自相关话题

例题源文件:桩土挤出-土拱效应01.zip土拱效应是岩土工程中一个很普遍的现象。在土力学领域,土拱是用来描述应力转移的一种现象,这种应力转移是通过土体抗剪强度的发挥而实现的。太沙基(1936)通过活动门试验证实了土拱效应的存在。土拱作用是指支撑刚度较大而围护结构刚度较小,墙后土压力局部增大的现象。局部土体产生移动,而其余部分保持原来的位置不动,土中的这种相对运动受到土体抗剪强度的阻抗,使移动部分土体的压力减小,而不动部分上的压力增加。为了能够更直观的弄清楚桩土挤出时的土拱效应,通过南京库仑公司旗下的岩土分析软件OptumG2进行了模拟,模拟分析采用的是「极限分析法」。注:关于什么是极限分析,以及极限分析的优势,请参考:http://www.wen.kulunsoft.com/dochelp/160如图1所示为俯视图下的桩土模型,上方添加的是乘数分布荷载(乘数分布荷载是指从初始值逐渐增加到结构破坏时对应的破坏荷载(极限荷载)),用来模拟土压力;土体采用Mohr-Coulomb本构模型「可塑黏土-MC」,黏聚力 c = 10kPa,内摩擦角 Φ = 20°,重度取0(俯视图上竖向上没有土体重力作用);桩采用刚体材料来模拟,重度同样取0,桩径为2m,桩间距为10m。图1 俯视图下的桩土模型在模型的左右两侧和桩的四周设置边界条件,桩土接触面采用剪切节理来模拟桩土相互接触作用。在物理性质上,可以认为「剪切节理」是一种无限薄的实体材料。在OptumG2中,接触面即是采用这种方法模拟的,因此,适用于实体材料的参数均适用于「剪切节理」。在本模型中,我们采用的是「软塑黏土-MC」来模拟的接触面。为了能够更好的划分网格,在桩的下方接触点处采用扇形网格,同时设置桩周网格的大小为0.1m,如图1所示。采用极限分析法进行分析,对工况阶段进行计算,得到下限乘数,即荷载为92.17kN/m2。分析结果默认显示的是网格划分结果,如图2所示。OptumG2 中并不需要在单独的工况阶段中划分网格,网格划分是自动包含在分析过程中的。剪切耗散图如图3所示,可以看到桩土挤出时的土拱效应非常明显。图2 网格划分图图3 剪切耗散云图(上)和土体挤出破坏(下)为了考虑到土压力的分布规律,我们将模型的尺寸加长,即乘数分布荷载作用面距离桩的距离加大(模型如图4所示),再次采用极限分析法进行了模拟分析。图4 尺寸修改后的桩土模型对尺寸修改之后的模型进行分析之后,得到的极限荷载为92.18kN/m2,与之前得到的结果92.17kN/m2基本保持一致。尺寸修改之后的模型网格划分图和剪切耗散图分别如图5和6所示。图5 尺寸修改之后的模型网格划分图图6 尺寸修改之后的模型剪切耗散云图得到桩土挤出时的极限荷载,我们就可以对土体是否从桩间挤出进行判断了。对于均质土,土压力的分布通常我们假设是三角形分布的,而此处我们得到的乘数荷载在沿桩长方向上实际上上是均匀分布的,如图7所示。图7 矩形分布和三角形分布的土压力虽然,两者的分布不同,但是我们可以对其合力进行比较,且这种近似是合理的。如图7,若三角形分布底端处的土压力大于矩形分布,根据极限分析结果,那么底端处的土体就会从桩间挤出,但是由于底端处上方的土体受到的土压力小于矩形分布,由于相对运动的影响,所以底端处的土体还会受到上方土体的摩擦力作用,从而导致土压力重分布,即底端处的土压力将由上部土体分担一部分,如图8所示。因此,近似比较两种不同分布合力的方法是合理的。图8 沿桩长方向上土体相对运动引起的土压力重分布机理假设基坑深度H = 8m,土层为均质的可塑黏土,黏聚力 c = 10kPa,内摩擦角 Φ = 20°,重度 γ = 20kN/m3。采用GEO5岩土软件的土压力计算模块,求得土压力合力:(土压力分布如图9所示)Ea = 211.75 kN/m而模拟得到的乘数荷载合力为:E = 92.04 kN/m2×8 m = 736.32 kN/m可以看出:E > 1.3Ea由此可以判断,此时土体并不会从桩间挤出。注:这里取安全系数为1.3。图9 土压力分布图 查看全部
<p style="text-align: justify;">例题源文件<a>:</a><img src="http://www.wen.kulunsoft.com/s ... ot%3B style="vertical-align: middle; margin-right: 2px;"/><a href="http://wen.kulunsoft.com/uploa ... ot%3B title="桩土挤出-土拱效应01.zip" style="font-size: 12px; color: rgb(0, 102, 204);">桩土挤出-土拱效应01.zip</a></p><p style="text-align: justify;">土拱效应是岩土工程中一个很普遍的现象。</p><p style="text-align: justify;">在土力学领域,土拱是用来描述应力转移的一种现象,这种应力转移是通过土体抗剪强度的发挥而实现的。太沙基(1936)通过活动门试验证实了土拱效应的存在。土拱作用是指支撑刚度较大而围护结构刚度较小,墙后土压力局部增大的现象。局部土体产生移动,而其余部分保持原来的位置不动,土中的这种相对运动受到土体抗剪强度的阻抗,使移动部分土体的压力减小,而不动部分上的压力增加。</p><p style="text-align: justify;">为了能够更直观的弄清楚桩土挤出时的土拱效应,通过南京库仑公司旗下的岩土分析软件OptumG2进行了模拟,模拟分析采用的是「极限分析法」。</p><blockquote><p style="text-align: justify;">注:关于什么是极限分析,以及极限分析的优势,请参考:</p><p style="text-align: justify;"><a href="http://www.wen.kulunsoft.com/d ... t%3Bp style="text-align: justify;">如图1所示为俯视图下的桩土模型,上方添加的是乘数分布荷载(乘数分布荷载是指从初始值逐渐增加到结构破坏时对应的破坏荷载(极限荷载)),用来模拟土压力;土体采用Mohr-Coulomb本构模型「可塑黏土-MC」,黏聚力 <em>c</em>&nbsp;= 10kPa,内摩擦角 <em>Φ</em>&nbsp;= 20°,重度取0(俯视图上竖向上没有土体重力作用);桩采用刚体材料来模拟,重度同样取0,桩径为2m,桩间距为10m。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1497321872411247.png" alt="blob.png"/></p><p style="text-align: center;">图1 俯视图下的桩土模型</p><p style="text-align: justify;">在模型的左右两侧和桩的四周设置边界条件,桩土接触面采用剪切节理来模拟桩土相互接触作用。在物理性质上,可以认为「剪切节理」是一种无限薄的实体材料。在OptumG2中,接触面即是采用这种方法模拟的,因此,适用于实体材料的参数均适用于「剪切节理」。在本模型中,我们采用的是「软塑黏土-MC」来模拟的接触面。为了能够更好的划分网格,在桩的下方接触点处采用扇形网格,同时设置桩周网格的大小为0.1m,如图1所示。</p><p style="text-align: justify;">采用极限分析法进行分析,对工况阶段进行计算,得到下限乘数,即荷载为92.17kN/m<sup>2</sup>。分析结果默认显示的是网格划分结果,如图2所示。OptumG2 中并不需要在单独的工况阶段中划分网格,网格划分是自动包含在分析过程中的。剪切耗散图如图3所示,可以看到桩土挤出时的土拱效应非常明显。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1497321913126863.png" alt="blob.png"/></p><p style="text-align: center;">图2 网格划分图</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1497321925133144.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1497321930128098.png" alt="blob.png"/></p><p style="text-align: center;">图3 剪切耗散云图(上)和土体挤出破坏(下)</p><p style="text-align: justify;">为了考虑到土压力的分布规律,我们将模型的尺寸加长,即乘数分布荷载作用面距离桩的距离加大(模型如图4所示),再次采用极限分析法进行了模拟分析。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1497321946263721.png" alt="blob.png"/></p><p style="text-align: center;">图4 尺寸修改后的桩土模型</p><p style="text-align: justify;">对尺寸修改之后的模型进行分析之后,得到的极限荷载为92.18kN/m<sup>2</sup>,与之前得到的结果92.17kN/m<sup>2</sup>基本保持一致。尺寸修改之后的模型网格划分图和剪切耗散图分别如图5和6所示。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1497321986658348.png" alt="blob.png"/></p><p style="text-align: center;">图5 尺寸修改之后的模型网格划分图</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1497321995799690.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1497322003699617.png" alt="blob.png"/></p><p style="text-align: center;">图6 尺寸修改之后的模型剪切耗散云图</p><p style="text-align: justify;">得到桩土挤出时的极限荷载,我们就可以对土体是否从桩间挤出进行判断了。对于均质土,土压力的分布通常我们假设是三角形分布的,而此处我们得到的乘数荷载在沿桩长方向上实际上上是均匀分布的,如图7所示。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1497322018374727.png" alt="blob.png"/></p><p style="text-align: center;">图7 矩形分布和三角形分布的土压力</p><p><span style="text-align: justify;">虽然,两者的分布不同,但是我们可以对其合力进行比较,且这种近似是合理的。如图7,若三角形分布底端处的土压力大于矩形分布,根据极限分析结果,那么底端处的土体就会从桩间挤出,但是由于底端处上方的土体受到的土压力小于矩形分布,由于相对运动的影响,所以底端处的土体还会受到上方土体的摩擦力作用,从而导致土压力重分布,即底端处的土压力将由上部土体分担一部分,如图8所示。因此,近似比较两种不同分布合力的方法是合理的。</span></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1497322041392191.png" alt="1497322041392191.png" width="569" height="100" border="0" vspace="0" style="width: 569px; height: 100px;"/></p><p style="text-align: center;">图8 沿桩长方向上土体相对运动引起的土压力重分布机理</p><p style="text-align: justify;">假设基坑深度H = 8m,土层为均质的可塑黏土,黏聚力 <em>c</em>&nbsp;= 10kPa,内摩擦角 <em>Φ</em>&nbsp;= 20°,重度 <em>γ</em>&nbsp;= 20kN/m<sup>3</sup>。</p><p style="text-align: justify;">采用GEO5岩土软件的土压力计算模块,求得土压力合力:(土压力分布如图9所示)</p><p style="text-align: center;">E<sub>a</sub> = 211.75 kN/m</p><p style="text-align: justify;">而模拟得到的乘数荷载合力为:</p><p style="text-align: center;">E = 92.04 kN/m<sup>2</sup>×8 m = 736.32 kN/m</p><p style="text-align: justify;">可以看出:</p><p style="text-align: center;">E &gt; 1.3E<sub>a</sub></p><p style="text-align: justify;">由此可以判断,此时土体并不会从桩间挤出。</p><blockquote><p style="text-align: justify;">注:这里取安全系数为1.3。</p></blockquote><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1497322144585674.png" alt="blob.png"/></p><p style="text-align: center;">图9 土压力分布图</p>

OptumG2案例:填方堆载对附近桩基的影响——湖南某工厂

库仑产品库仑吴汶垣 发表了文章 • 0 个评论 • 957 次浏览 • 2017-05-12 10:41 • 来自相关话题

 项目名称:湖南某工厂桩基设计使用软件:OptumG2分析内容:拟建工厂旁已有约600m*1200m的大型填方堆载,已堆载高度约16m,预计未来10年来堆载高度达到50m。工厂外墙据填方坡脚仅40m,最近的桩基据坡脚仅48m。分析未来堆载达到50m是地基承载力情况以及对工厂桩基产生的水平附加荷载。剖面模型如下图:分析思路和计算结果:工况阶段1:初始地应力分析工阶段说明:分析未进行堆载前现场的初始地应力。基本模型:初始应力计算初始应力分析: 初始竖向应力工况阶段2:极限状态分析工阶段说明: 后期堆载部分采用没有重度的刚性材料模拟,并增加乘数体荷载(基准:-1kN/m3),逐渐增大体荷载的大小直到破坏。这里已堆积部分岩土体采用原始材料,即考虑已堆积部分在无支护条件下的破坏。分析方法采用极限分析下限法。基本模型:极限状态分析极限状态分析: 网格划分极限状态分析: 极限状态时的破坏面,剪切耗散分布极限状态分析: 极限状态时的破坏变形图总结最终破坏时的乘数大小为160.6,即新增堆载部分的重度为160.6kN/m3时地基才会发生破坏。土体重度通常取20kN/m3(偏保守),地基承载力特征值和极限值之间的安全系数通常取2,因此堆载后的安全系数大小为 Fs=160.6/20/2=4.015,即完全堆载后并不会发生地基破坏。软件找到的破坏模式中可以看出右侧坡脚和距离坡脚约40m处出现明显的破坏面剪出口,滑动面最大深度达到粉质粘土7和粉土8的接触面,并沿该接触面分布。工况阶段3:弹塑性分析工阶段说明:后期堆载部分采用重度20kN/m3的刚性材料模拟,其他材料同已有勘察数据,采用Mohr-Coulomb本构模型。模型在每根桩的位置添加一个竖向截面(桩间距按9m考虑),用于读取该处应力和应变数据。分析方法采用有限元弹塑性分析。基本模型:弹塑性分析弹塑性分析: 网格划分弹塑性分析: 潜在破坏面,塑性乘数分布弹塑性分析: 结构变形图,塑性乘数分布弹塑性分析: 竖向位移弹塑性分析: 水平位移弹塑性分析: 水平应力厂区地表沉降变化图中离坡脚最近处的地表隆起高度约为0.1m,随着远离坡脚,隆起程度逐渐降低,直至距离坡脚约460m处趋近于零。图中有两处变化不符合此规律:1)一处是距离坡脚约45m处,地表陡然隆起到接近0.33m,原因在于此处地层坡面有一个尖角,导致应力集中,因为出现了很大的变形,如下图。由于地层测量的误差,此处计算误差为数值计算方法引起,可以忽略。2)另一处是厂区东面边界处再次出现了约0.01m左右的隆起,这是由于边界效应引起的,并不符合实际情况,可以忽略。厂区地表水平位移变化图中离坡脚最近处的地表水平位移约为0.34m,随着远离坡脚,水平位移逐渐降低,直至距离坡脚约300m处趋近于零。厂区桩基水平荷载增量的计算计算说明:利用软件中提供的「结果截面」功能,分别读出桩位置在初始地应力阶段和弹塑性分析阶段的地基水平应力,利用两者之差求解得到堆载后桩基受到的水平荷载。这里给出距离坡脚46m处的水平应力增量如下图: 查看全部
<p>&nbsp;<strong style="line-height: 1.5em;">项目名称</strong><span style="line-height: 1.5em;">:湖南某工厂桩基设计</span></p><p><strong>使用软件</strong>:OptumG2</p><p><strong>分析内容</strong>:拟建工厂旁已有约600m*1200m的大型填方堆载,已堆载高度约16m,预计未来10年来堆载高度达到50m。工厂外墙据填方坡脚仅40m,最近的桩基据坡脚仅48m。分析未来堆载达到50m是地基承载力情况以及对工厂桩基产生的水平附加荷载。剖面模型如下图:</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556618633254.png" alt="blob.png"/></p><p><strong>分析思路和计算结果:</strong></p><p style="text-align: center;"><strong>工况阶段1</strong><strong>:初始地应力分析</strong></p><p>工阶段说明:分析未进行堆载前现场的初始地应力。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556628138488.png" alt="blob.png"/></p><p>基本模型<strong>:</strong>初始应力计算</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556644541845.png" alt="blob.png"/></p><p>初始应力分析: 初始竖向应力</p><p style="text-align: center;"><strong>工况阶段2</strong><strong>:极限状态分析</strong></p><p>工阶段说明<strong>: </strong>后期堆载部分采用没有重度的刚性材料模拟,并增加乘数体荷载(基准:-1kN/m<sup>3</sup>),逐渐增大体荷载的大小直到破坏。这里已堆积部分岩土体采用原始材料,即考虑已堆积部分在无支护条件下的破坏。分析方法采用极限分析下限法。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556662107089.png" alt="blob.png"/></p><p>基本模型<strong>:</strong>极限状态分析</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556671419270.png" alt="blob.png"/></p><p>极限状态分析: 网格划分</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556680100727.png" alt="blob.png"/></p><p>极限状态分析<strong>: </strong>极限状态时的破坏面,剪切耗散分布</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556693116150.png" alt="blob.png"/></p><p>极限状态分析<strong>: </strong>极限状态时的破坏变形图</p><p>总结</p><p>最终破坏时的乘数大小为160.6,即新增堆载部分的重度为160.6kN/m<sup>3</sup>时地基才会发生破坏。土体重度通常取20kN/m<sup>3</sup>(偏保守),地基承载力特征值和极限值之间的安全系数通常取2,因此堆载后的安全系数大小为 Fs=160.6/20/2=4.015,即完全堆载后并不会发生地基破坏。</p><p>软件找到的破坏模式中可以看出右侧坡脚和距离坡脚约40m处出现明显的破坏面剪出口,滑动面最大深度达到粉质粘土7和粉土8的接触面,并沿该接触面分布。</p><p style="text-align: center;"><strong>工况阶段3</strong><strong>:弹塑性分析</strong></p><p>工阶段说明<strong>:</strong>后期堆载部分采用重度20kN/m<sup>3</sup>的刚性材料模拟,其他材料同已有勘察数据,采用Mohr-Coulomb本构模型。模型在每根桩的位置添加一个竖向截面(桩间距按9m考虑),用于读取该处应力和应变数据。分析方法采用有限元弹塑性分析。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556707497109.png" alt="blob.png"/></p><p>基本模型:弹塑性分析</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556716767355.png" alt="blob.png"/></p><p>弹塑性分析: 网格划分</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556724962154.png" alt="blob.png"/></p><p>弹塑性分析:<strong> </strong>潜在破坏面,塑性乘数分布</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556734392330.png" alt="blob.png"/></p><p>弹塑性分析:<strong> </strong>结构变形图,塑性乘数分布</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556744102281.png" alt="blob.png"/></p><p>弹塑性分析: 竖向位移</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556754461233.png" alt="blob.png"/></p><p>弹塑性分析:<strong> </strong>水平位移</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556764726714.png" alt="blob.png"/></p><p>弹塑性分析: 水平应力</p><p style="text-align: center;"><strong>厂区地表沉降变化</strong></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556776351689.png" alt="blob.png"/></p><p>图中离坡脚最近处的地表隆起高度约为0.1m,随着远离坡脚,隆起程度逐渐降低,直至距离坡脚约460m处趋近于零。图中有两处变化不符合此规律:</p><p>1)一处是距离坡脚约45m处,地表陡然隆起到接近0.33m,原因在于此处地层坡面有一个尖角,导致应力集中,因为出现了很大的变形,如下图。由于地层测量的误差,此处计算误差为数值计算方法引起,可以忽略。</p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556790578860.png" alt="blob.png"/></p><p>2)另一处是厂区东面边界处再次出现了约0.01m左右的隆起,这是由于边界效应引起的,并不符合实际情况,可以忽略。</p><p style="text-align: center;"><strong>厂区地表水平位移变化</strong></p><p style="text-align: center;"><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556807123973.png" alt="blob.png"/></p><p>图中离坡脚最近处的地表水平位移约为0.34m,随着远离坡脚,水平位移逐渐降低,直至距离坡脚约300m处趋近于零。</p><p style="text-align: center;"><strong>厂区桩基水平荷载增量的计算</strong></p><p>计算说明:利用软件中提供的「结果截面」功能,分别读出桩位置在初始地应力阶段和弹塑性分析阶段的地基水平应力,利用两者之差求解得到堆载后桩基受到的水平荷载。</p><p>这里给出距离坡脚46m处的水平应力增量如下图:</p><p><img src="http://wen.kulunsoft.com/uploa ... ot%3B title="1494556821331359.png" alt="blob.png"/></p>
操作简单,建模迅速、支持CAD文件导入,能自动加密网格;支持有限元极限分析,收敛性强