工程案例

工程案例

GEO5深基坑分析中在添加内支撑的的工况中内支撑轴力为什么很小?和前一个工况弯矩、剪力基本无变化,这是什么原因?

库仑产品库仑沈工 回答了问题 • 2 人关注 • 1 个回答 • 58 次浏览 • 2019-11-14 09:47 • 来自相关话题

GEO5深基坑分析中在添加内支撑的的工况轴力很小和前一个工况弯矩、剪力基本无变化,这个怎么解释?

岩土工程库仑沈工 回答了问题 • 2 人关注 • 1 个回答 • 65 次浏览 • 2019-11-14 09:45 • 来自相关话题

锚拉桩设计,加了锚索后反而不稳定

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 296 次浏览 • 2019-05-31 14:42 • 来自相关话题

请问GEO5深基坑支护结构分析中的位移是否是真实数据?

岩土工程库仑吴汶垣 回答了问题 • 3 人关注 • 1 个回答 • 609 次浏览 • 2018-10-31 10:22 • 来自相关话题

模拟基坑开挖过程中,有位移的突变如何处理?

岩土工程库仑李建 回答了问题 • 2 人关注 • 1 个回答 • 460 次浏览 • 2018-10-16 13:45 • 来自相关话题

一个围堰开挖模型,用GEO5计算能通过,用OptumG2计算通不过是为什么?

岩土工程张皎 回答了问题 • 2 人关注 • 2 个回答 • 857 次浏览 • 2018-10-15 13:49 • 来自相关话题

GEO5案例:基坑开挖锚索支护——广西某基坑工程

库仑产品库仑沈工 发表了文章 • 0 个评论 • 898 次浏览 • 2018-05-18 16:54 • 来自相关话题

GEO5案例:基坑开挖锚索支护——广西某基坑工程项目名称:广西某基坑工程使用软件:GEO5深基坑支护结构分析设计方案:墙后地表倾斜,基坑边开挖边锚索支护,分步设计 软件优势:1. 依据真实的施工条件,在基坑顶部通过菜单,设置一弹簧支座,能有效减少基坑变形;2. GEO5可计算墙后倾斜地表。计算工况:工况1::墙体前面土层开挖到深度3.50 m。工况2::墙体前面土层开挖到深度3.50 m,打锚杆。工况3::墙体前面土层开挖到深度6.50 m。工况4::墙体前面土层开挖到深度6.50 m,打锚杆。工况5::墙体前面土层开挖到深度9.50 m。工况6::墙体前面土层开挖到深度9.50 m,打锚杆。工况7::墙体前面土层开挖到深度12.50 m。工况8::墙体前面土层开挖到深度12.50 m,打锚杆。工况9::墙体前面土层开挖到深度14 m。部分计算结果:注:截面强度与外部稳定性验算亦有分析,此处篇幅有限未一一展示 查看全部
<p><strong>GEO5案例:</strong>基坑开挖锚索支护——广西某基坑工程</p><p><strong>项目名称:</strong>广西某基坑工程</p><p><strong>使用软件:</strong>GEO5深基坑支护结构分析</p><p><strong>设计方案:</strong>墙后地表倾斜,基坑边开挖边锚索支护,分步设计</p><p>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1526632430977952.png" alt="blob.png"/></p><p><strong>软件优势:</strong></p><p>1.&nbsp;依据真实的施工条件,在基坑顶部通过<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1526632442461861.png" alt="blob.png"/>菜单,设置一弹簧支座,能有效减少基坑变形;</p><p>2.&nbsp;GEO5可计算墙后倾斜地表。</p><p><strong>计算</strong><strong>工况</strong><strong>:</strong></p><p>工况1::墙体前面土层开挖到深度3.50 m。</p><p>工况2::墙体前面土层开挖到深度3.50 m,打锚杆。</p><p>工况3::墙体前面土层开挖到深度6.50 m。</p><p>工况4::墙体前面土层开挖到深度6.50 m,打锚杆。</p><p>工况5::墙体前面土层开挖到深度9.50 m。</p><p>工况6::墙体前面土层开挖到深度9.50 m,打锚杆。</p><p>工况7::墙体前面土层开挖到深度12.50 m。</p><p>工况8::墙体前面土层开挖到深度12.50 m,打锚杆。</p><p>工况9::墙体前面土层开挖到深度14 m。</p><p><strong>部分</strong><strong>计算结果:</strong></p><p style="text-align: center;"><strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1526633427222055.png" alt="blob.png"/></strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1526633397439396.png" alt="blob.png"/><br/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1526633475280036.png" alt="blob.png"/></p><p>注:截面强度与外部稳定性验算亦有分析,此处篇幅有限未一一展示</p>

GEO5案例:双排桩的内力和变形计算——山东某边坡工程

库仑产品库仑沈工 发表了文章 • 0 个评论 • 2003 次浏览 • 2018-01-22 14:53 • 来自相关话题

项目名称:山东某边坡工程使用软件:GEO5土质边坡稳定分析、GEO5岩土工程有限元分析设计方案:边坡开挖并设置双排桩。设计思路:设计采用「土坡」模块和「有限元」模块。「土坡」模块的目的是分析抗滑桩支护后每一个危险结构面的稳定系数是否符合规范要求,以及边坡作用在抗滑桩上的剩余下滑力,为「有限元」模块分析抗滑桩变形和内力提供荷载参数。「有限元」模块的目的是分析桩身在剩余下滑力的作用下,桩身的弯矩、剪力、变形等数据,为桩身配筋提供内力参数。软件优势:1.多段线建模支持导入dxf图形,2.GEO剪贴板支持岩土材料创建,实现软件两个不同的模块之间很好的数据对接。计算结果:1.利用土质边坡稳定性分析模块计算名称 : 原始坡体稳定性分析工况阶段 : 1 给定滑面的分析。边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 1.07 < 1.35边坡稳定性 不满足要求滑面控制点处倾角变化大于10°,计算结果可能偏危险。滑动面前缘剩余下滑力 Fn = 1037.26 kN/m剩余下滑力倾角 a = 2.05 °名称 :削坡+排桩支护稳定性分析工况阶段 : 2 2岩土工程有限元分析模块有限元建模这里不在赘述 名称 : 初始地应力分析 工况阶段 : 1结果 : 全量; 变量 : 剪应力 XZ; 范围 : <-1316.86; 1870.75> kPa     滑坡体内的抗滑桩部分直接以梁荷载方式输入后排桩桩后滑坡推力和前排桩桩前滑体抗滑力。桩间土和嵌固段均采用弹性模型模拟,和规范中的弹簧模拟近似。以下为有限元分析计内容。 名称 : 桩身内力和位移分析 工况阶段 : 2结果 : 全量; 变量 : 剪应力 XZ; 范围 : <-548.12; 1558.65> kPaM [kNm/m],Q [kN/m]       依据有限元分析结果可得前后排桩以及连梁的最大内力值,据此可依据《混凝土结构设计规范》进行抗剪、抗弯配筋验算,这里不再赘述。  详细理论和计算过程可以参考工程实例手册:门型抗滑桩+锚索(杆)设计——以贵州某边坡工程为例 查看全部
<p><strong>项目名称:</strong>山东某边坡工程</p><p><strong>使用软件:</strong>GEO5土质边坡稳定分析、GEO5岩土工程有限元分析</p><p><strong>设计方案:</strong>边坡开挖并设置双排桩。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603710985436.png" alt="blob.png"/></p><p><strong>设计思路</strong><strong>:</strong>设计采用「土坡」模块和「有限元」模块。「土坡」模块的目的是分析抗滑桩支护后每一个危险结构面的稳定系数是否符合规范要求,以及边坡作用在抗滑桩上的剩余下滑力,为「有限元」模块分析抗滑桩变形和内力提供荷载参数。「有限元」模块的目的是分析桩身在剩余下滑力的作用下,桩身的弯矩、剪力、变形等数据,为桩身配筋提供内力参数。</p><p><strong>软件优势:</strong>1.多段线建模支持导入dxf图形,2.GEO剪贴板支持岩土材料创建,实现软件两个不同的模块之间很好的数据对接。</p><p><strong>计算结果:</strong></p><p>1.利用土质边坡稳定性分析模块计算</p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td><p><strong>名称 : </strong><strong>原始坡体稳定性分析</strong></p></td><td><p><strong>工况阶段 : 1</strong></p></td></tr><tr><td style="word-break: break-all;" rowspan="1" colspan="2">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603747831963.png" alt="blob.png"/><p>给定滑面的分析。</p><p><strong>边坡稳定性验算 (不平衡推力法(隐式))</strong></p><p>安全系数 = 1.07 &lt; 1.35</p><p><strong>边坡稳定性 不满足要求</strong></p><p>滑面控制点处倾角变化大于10°,计算结果可能偏危险。</p><p>滑动面前缘剩余下滑力 Fn&nbsp;= 1037.26 kN/m</p><p>剩余下滑力倾角 a&nbsp;= 2.05 °</p></td></tr></tbody></table><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td style="word-break: break-all;"><p><strong>名称 :</strong><strong>削坡+排桩支护稳定性分析</strong></p></td><td style="word-break: break-all;"><p><strong>工况阶段 : 2</strong></p></td></tr><tr><td rowspan="1" colspan="2" style="word-break: break-all;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603808892835.png" alt="blob.png"/>&nbsp;</td></tr></tbody></table><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603815295673.png" alt="blob.png"/></p><p>2岩土工程有限元分析模块</p><p>有限元建模这里不在赘述</p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td><p>&nbsp;<strong>名称 : </strong><strong>初始地应力分析</strong></p></td><td><p><strong>&nbsp;工况</strong><strong>阶段</strong><strong>&nbsp;: 1</strong></p></td></tr><tr><td rowspan="1" colspan="2" style="word-break: break-all;">结果 : 全量; 变量 : 剪应力&nbsp;XZ; 范围 : &lt;-1316.86; 1870.75&gt; kPa&nbsp;&nbsp;&nbsp;<p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603841734143.png" alt="blob.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603850499727.png" alt="blob.png"/></p></td></tr></tbody></table><p>  滑坡体内的抗滑桩部分直接以梁荷载方式输入后排桩桩后滑坡推力和前排桩桩前滑体抗滑力。桩间土和嵌固段均采用弹性模型模拟,和规范中的弹簧模拟近似。以下为有限元分析计内容。</p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td><p>&nbsp;<strong>名称 : </strong><strong>桩身内力和位移分析</strong></p></td><td><p><strong>&nbsp;工况</strong><strong>阶段</strong><strong>&nbsp;: </strong><strong>2</strong></p></td></tr><tr><td rowspan="1" colspan="2" style="word-break: break-all;"><p>结果 : 全量; 变量 : 剪应力&nbsp;XZ; 范围 : &lt;-548.12; 1558.65&gt; kPa</p><p>M [kNm/m],Q [kN/m]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603886790648.png" alt="blob.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603891536417.png" alt="blob.png"/></p></td></tr></tbody></table><p>  依据有限元分析结果可得前后排桩以及连梁的最大内力值,据此可依据《混凝土结构设计规范》进行抗剪、抗弯配筋验算,这里不再赘述。</p><p>  详细理论和计算过程可以参考工程实例手册:<a href="/dochelp/121" target="_self">门型抗滑桩+锚索(杆)设计——以贵州某边坡工程为例</a></p><p><br/></p>

GEO5案例:混凝土砌块挡土墙设计——某海外码头项目

库仑产品库仑沈工 发表了文章 • 0 个评论 • 856 次浏览 • 2018-01-22 14:45 • 来自相关话题

项目名称:某海外码头项目使用软件:GEO5混凝土砌块挡土墙设计设计方案:软件优势:GEO5企业版内置65种规范,涉及23个国家(中、欧、美)可直接用于海外项目设计,同时支持18种语言及计算书,在国内,「混凝土砌块挡土墙设计」多用于生态挡墙设计。过程与结果:倾覆滑移验算承载能力验算 截面强度验算外部稳定性验算边坡稳定性验算(摩根斯坦法)荷载组合1利用率:77.4%边坡稳定性 满足要求荷载组合2利用率:97.7%边坡稳定性 满足要求 查看全部
<p><strong>项目名称:</strong>某海外码头项目</p><p><strong>使用软件:</strong>GEO5混凝土砌块挡土墙设计</p><p><strong>设计方案:</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603389633288.png" alt="blob.png"/></p><p><strong>软件优势:</strong>GEO5企业版内置65种规范,涉及23个国家(中、欧、美)可直接用于海外项目设计,同时支持18种语言及计算书,在国内,「混凝土砌块挡土墙设计」多用于生态挡墙设计。</p><p><strong>过程与结果:</strong></p><p><strong>倾覆滑移验算</strong></p><p style="text-align: center;"><strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603413662368.png" alt="blob.png"/></strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603419829854.png" alt="blob.png"/></p><p><strong>承载能力验算</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603446333367.png" alt="blob.png"/>&nbsp;</p><p><strong>截面强度验算</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603457579209.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603464383984.png" alt="blob.png"/></p><p><strong>外部稳定性验算</strong></p><p><strong>边坡稳定性验算(摩根斯坦法)</strong></p><p><strong>荷载组合1</strong></p><p>利用率:77.4%</p><p>边坡稳定性 满足要求</p><p><strong>荷载组合2</strong></p><p>利用率:97.7%</p><p>边坡稳定性 满足要求</p><p><br/></p>

GEO5案例:上下游翼墙——某悬臂式挡土墙项目

库仑产品库仑沈工 发表了文章 • 0 个评论 • 1591 次浏览 • 2018-01-22 14:37 • 来自相关话题

项目名称:某悬臂式挡土墙项目使用软件:GEO5悬臂式挡土墙设计设计方案:软件优势:GEO5墙后填土软件可供多种选择过程与结果:倾覆滑移稳定性验算倾覆稳定性验算抗倾覆力矩 Mres = 9583.28 kNm/m倾覆力矩 Movr = 2747.21 kNm/m安全系数 = 3.49 > 1.60倾覆稳定性验算 满足要求滑移稳定性验算抗滑力(平行基底) Hres = 439.57 kN/m滑动力(平行基底) Hact = 337.92 kN/m安全系数 = 1.30 > 1.30滑移稳定性验算 满足要求倾覆滑移验算 满足要求承载力验算 截面强度验算墙踵验算截面强度验算和配筋验算16 钢筋直径 22.0mm,保护层 30.0mm截面宽度 = 1.00 m 截面高度 = 1.00 m 配筋率 ρ = 0.63 % > 0.20 % = ρmin中和轴位置 x/β1 = 0.19 m < 0.62 m = ξbh0/β1截面受剪承载力设计值 Vu = 963.79 kN > 468.68 kN = V截面受弯承载力设计值 Mu = 1932.83 kNm > 1882.46 kNm = M截面满足要求。墙趾验算截面强度验算和配筋验算8 钢筋直径 18.0mm,保护层 30.0mm截面宽度 = 1.00 m 截面高度 = 1.00 m 配筋率 ρ = 0.21 % > 0.20 % = ρmin中和轴位置 x/β1 = 0.06 m < 0.62 m = ξbh0/β1截面受剪承载力设计值 Vu = 965.80 kN > 357.93 kN = V截面受弯承载力设计值 Mu = 685.58 kNm > 395.47 kNm = M截面满足要求。墙身验算(墙址墙踵台阶顶截面)截面强度验算和配筋验算10 钢筋直径 22.0mm,保护层 30.0mm截面宽度 = 1.00 m 截面高度 = 0.90 m 配筋率 ρ = 0.44 % > 0.20 % = ρmin中和轴位置 x/β1 = 0.12 m < 0.56 m = ξbh0/β1截面受剪承载力设计值 Vu = 863.29 kN > 318.58 kN = V截面受弯承载力设计值 Mu = 1110.30 kNm > 766.98 kNm = M截面满足要求。名称 :外部稳定性分析工况阶段 : 1自动搜索后的滑动面 边坡稳定性验算 (毕肖普法(Bishop)) 滑面上下滑力的总和 :Fa =1263.41kN/m滑面上抗滑力的总和 :Fp =2260.75kN/m下滑力矩 :Ma =18597.44kNm/m抗滑力矩 :Mp =33278.22kNm/m安全系数 = 1.79 > 1.30  边坡稳定性 满足要求   注:当抗滑移验算不能满足要求,同时挡墙尺寸改变受限时,可采用【基底锚固】,基底锚固将产生一个竖向向下的力,但是该力对于基底应力的验算是不利的。此外,也可以采用桩基础,设计成挡墙+桩基组合结构,参考这里。 查看全部
<p><strong>项目名称:</strong>某悬臂式挡土墙项目</p><p><strong>使用软件:</strong>GEO5悬臂式挡土墙设计</p><p><strong>设计方案:</strong></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516602855314478.png" alt="blob.png"/></p><p><strong>软件优势:</strong>GEO5墙后填土软件可供多种选择</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516602903572402.png" alt="blob.png"/></p><p><strong>过程与结果:</strong></p><p><strong>倾覆滑移稳定性验算</strong></p><p><strong>倾覆稳定性验算</strong></p><p>抗倾覆力矩&nbsp;Mres&nbsp;=&nbsp;9583.28&nbsp;kNm/m</p><p>倾覆力矩&nbsp;Movr&nbsp;=&nbsp;2747.21&nbsp;kNm/m</p><p>安全系数 = 3.49 &gt; 1.60</p><p>倾覆稳定性验算 满足要求</p><p><strong>滑移稳定性验算</strong></p><p>抗滑力(平行基底)&nbsp;Hres&nbsp;=&nbsp;439.57&nbsp;kN/m</p><p>滑动力(平行基底)&nbsp;Hact&nbsp;=&nbsp;337.92&nbsp;kN/m</p><p>安全系数 = 1.30 &gt; 1.30</p><p>滑移稳定性验算 满足要求</p><p>倾覆滑移验算 满足要求</p><p><strong>承载力验算</strong></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516602912631059.png" alt="blob.png"/>&nbsp;</p><p><strong>截面强度验算</strong></p><p><strong>墙踵验算</strong></p><p>截面强度验算和配筋验算</p><p>16 钢筋直径 22.0mm,保护层 30.0mm</p><p>截面宽度&nbsp;=&nbsp;1.00&nbsp;m&nbsp;</p><p>截面高度&nbsp;=&nbsp;1.00&nbsp;m&nbsp;</p><p>配筋率&nbsp;ρ&nbsp;=&nbsp;0.63&nbsp;%&nbsp;&gt;&nbsp;0.20&nbsp;%&nbsp;=&nbsp;ρmin</p><p>中和轴位置&nbsp;x/β1&nbsp;=&nbsp;0.19&nbsp;m&nbsp;&lt;&nbsp;0.62&nbsp;m&nbsp;=&nbsp;ξbh0/β1</p><p>截面受剪承载力设计值&nbsp;Vu&nbsp;=&nbsp;963.79&nbsp;kN&nbsp;&gt;&nbsp;468.68&nbsp;kN&nbsp;=&nbsp;V</p><p>截面受弯承载力设计值&nbsp;Mu&nbsp;=&nbsp;1932.83&nbsp;kNm&nbsp;&gt;&nbsp;1882.46&nbsp;kNm&nbsp;=&nbsp;M</p><p>截面满足要求。</p><p><strong>墙趾验算</strong></p><p>截面强度验算和配筋验算</p><p>8 钢筋直径 18.0mm,保护层 30.0mm</p><p>截面宽度&nbsp;=&nbsp;1.00&nbsp;m&nbsp;</p><p>截面高度&nbsp;=&nbsp;1.00&nbsp;m&nbsp;</p><p>配筋率&nbsp;ρ&nbsp;=&nbsp;0.21&nbsp;%&nbsp;&gt;&nbsp;0.20&nbsp;%&nbsp;=&nbsp;ρmin</p><p>中和轴位置&nbsp;x/β1&nbsp;=&nbsp;0.06&nbsp;m&nbsp;&lt;&nbsp;0.62&nbsp;m&nbsp;=&nbsp;ξbh0/β1</p><p>截面受剪承载力设计值&nbsp;Vu&nbsp;=&nbsp;965.80&nbsp;kN&nbsp;&gt;&nbsp;357.93&nbsp;kN&nbsp;=&nbsp;V</p><p>截面受弯承载力设计值&nbsp;Mu&nbsp;=&nbsp;685.58&nbsp;kNm&nbsp;&gt;&nbsp;395.47&nbsp;kNm&nbsp;=&nbsp;M</p><p>截面满足要求。</p><p><strong>墙身验算(墙址墙踵台阶顶截面)</strong></p><p>截面强度验算和配筋验算</p><p>10 钢筋直径 22.0mm,保护层 30.0mm</p><p>截面宽度&nbsp;=&nbsp;1.00&nbsp;m&nbsp;</p><p>截面高度&nbsp;=&nbsp;0.90&nbsp;m&nbsp;</p><p>配筋率&nbsp;ρ&nbsp;=&nbsp;0.44&nbsp;%&nbsp;&gt;&nbsp;0.20&nbsp;%&nbsp;=&nbsp;ρmin</p><p>中和轴位置&nbsp;x/β1&nbsp;=&nbsp;0.12&nbsp;m&nbsp;&lt;&nbsp;0.56&nbsp;m&nbsp;=&nbsp;ξbh0/β1</p><p>截面受剪承载力设计值&nbsp;Vu&nbsp;=&nbsp;863.29&nbsp;kN&nbsp;&gt;&nbsp;318.58&nbsp;kN&nbsp;=&nbsp;V</p><p>截面受弯承载力设计值&nbsp;Mu&nbsp;=&nbsp;1110.30&nbsp;kNm&nbsp;&gt;&nbsp;766.98&nbsp;kNm&nbsp;=&nbsp;M</p><p>截面满足要求。</p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td><p><strong>名称 :</strong><strong>外部稳定性分析</strong></p></td><td><p><strong>工况阶段 : </strong><strong>1</strong></p></td></tr><tr><td style="word-break: break-all;" rowspan="1" colspan="2"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516602955216908.png" alt="blob.png"/></td></tr></tbody></table><p>自动搜索后的滑动面&nbsp;</p><p><strong>边坡稳定性验算 (毕肖普法(Bishop)) </strong></p><p>滑面上下滑力的总和 :Fa =1263.41kN/m</p><p>滑面上抗滑力的总和 :Fp =2260.75kN/m</p><p>下滑力矩 :Ma =18597.44kNm/m</p><p>抗滑力矩 :Mp =33278.22kNm/m</p><p>安全系数 = 1.79 &gt; 1.30 &nbsp;</p><p>边坡稳定性 满足要求 &nbsp;<strong>&nbsp;</strong></p><p>注:当抗滑移验算不能满足要求,同时挡墙尺寸改变受限时,可采用【基底锚固】,基底锚固将产生一个竖向向下的力,但是该力对于基底应力的验算是不利的。此外,也可以采用桩基础,设计成挡墙+桩基组合结构,参考<a href="/dochelp/1603" target="_self">这里</a>。</p><p><br/></p>

[基坑设计] 双排桩有限元模拟

岩土工程库仑沈工 发表了文章 • 0 个评论 • 1334 次浏览 • 2018-01-22 14:00 • 来自相关话题

  GEO5深基坑支护结构分析模块不久便会加入双排桩设计功能,如果需要进行双排桩设计验算的话,GEO5岩土工程有限元分析模块也是可以满足要求的,这里给大家简单展示一个双排桩有限元分析案例,有需要的朋友可以下载研究一下。图1  z方向位移云图图2  x方向位移云图图3  双排桩桩身弯矩图4  双排桩桩身位移和地表沉降双排桩源文件.zip 查看全部
<p>  GEO5深基坑支护结构分析模块不久便会加入双排桩设计功能,如果需要进行双排桩设计验算的话,GEO5岩土工程有限元分析模块也是可以满足要求的,这里给大家简单展示一个双排桩有限元分析案例,有需要的朋友可以下载研究一下。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516599368908296.png" alt="1.png"/></p><p style="text-align: center;">图1&nbsp;&nbsp;z方向位移云图</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516599420365739.png" alt="2.png"/></p><p style="text-align: center;">图2&nbsp;&nbsp;x方向位移云图</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516599444459577.png" alt="3.png"/></p><p style="text-align: center;">图3&nbsp;&nbsp;双排桩桩身弯矩</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516600186587144.png" alt="4.png"/></p><p style="text-align: center;">图4&nbsp;&nbsp;双排桩桩身位移和地表沉降</p><p style="line-height: 16px;"><img style="vertical-align: middle; margin-right: 2px;" src="http://www.wen.kulunsoft.com/s ... t%3Ba style="font-size:12px; color:#0066cc;" href="http://www.wen.kulunsoft.com/u ... ot%3B title="双排桩源文件.zip">双排桩源文件.zip</a></p>

GEO5案例:导航墙设计-某河堤项目

库仑产品库仑沈工 发表了文章 • 0 个评论 • 587 次浏览 • 2018-01-08 10:14 • 来自相关话题

项目名称:某河堤项目使用软件:GEO5土质边坡稳定性分析设计方案:分别采用了锚杆和抗滑桩支护。和软件优势:GEO5「土质边坡稳定性分析」模块可以分多工况,体现设计过程的同时还能多方案对比。过程与结果:名称 : 原始边坡分析-水位1工况阶段 : 1自动搜索后的滑动面边坡稳定性验算 (摩根斯坦法(Morgenstern-Price))安全系数 = 1.01 < 1.35边坡稳定性 不满足要求名称 : 原始边坡分析-水位2工况阶段 : 2 自动搜索后的滑动面边坡稳定性验算 (摩根斯坦法(Morgenstern-Price))安全系数 = 1.02 < 1.35 边坡稳定性 不满足要求名称 : 水位2下锚杆支护工况阶段 : 3自动搜索后的滑动面边坡稳定性验算 (摩根斯坦法(Morgenstern-Price))安全系数 = 3.63 >1.35边坡稳定性 满足要求名称 : 水位2下抗滑桩支护工况阶段 : 4自动搜索后的滑动面边坡稳定性验算 (摩根斯坦法(Morgenstern-Price))安全系数 = 4.59 >1.35边坡稳定性 满足要求名称 : 水位1下锚杆支护工况阶段 : 5 自动搜索后的滑动面边坡稳定性验算 (摩根斯坦法(Morgenstern-Price))安全系数 = 3.63 >1.35边坡稳定性 满足要求名称 : 水位1下抗滑桩支护工况阶段 : 6自动搜索后的滑动面边坡稳定性验算 (摩根斯坦法(Morgenstern-Price))安全系数 = 4.6>1.35 边坡稳定性 满足要求  两种水位下,加锚杆和抗滑桩都能满足设计要求。 查看全部
<p><strong>项目名称:</strong>某河堤项目</p><p><strong>使用软件:</strong>GEO5土质边坡稳定性分析</p><p><strong>设计方案:</strong>分别采用了锚杆和抗滑桩支护。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1515377301797116.png" alt="blob.png"/></p><p>和</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1515377313664822.png" alt="blob.png"/></p><p><strong>软件优势:</strong>GEO5「土质边坡稳定性分析」模块可以分多工况,体现设计过程的同时还能多方案对比。</p><p><strong>过程与结果:</strong></p><table data-sort="sortDisabled" align="center"><tbody><tr class="firstRow"><td style="border-width: 1px; border-style: solid;"><p><strong>名称 : </strong><strong>原始边坡分析-水位1</strong></p></td><td style="border-width: 1px; border-style: solid;"><p><strong>工况阶段 : </strong><strong>1</strong></p></td></tr><tr><td style="word-break: break-all; border-width: 1px; border-style: solid;" rowspan="1" colspan="2"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1515377356837911.png" alt="blob.png"/></td></tr><tr><td rowspan="1" colspan="2" style="border-width: 1px; border-style: solid;"><p>自动搜索后的滑动面</p></td></tr><tr><td rowspan="1" colspan="2" style="border-width: 1px; border-style: solid;"><p><strong>边坡稳定性验算 (摩根斯坦法(Morgenstern-Price))</strong></p><p>安全系数 = 1.01 &lt; 1.35</p><p><span style="color: #FF0000;"><strong>边坡稳定性 不满足要求</strong></span></p></td></tr></tbody></table><br/><p><table data-sort="sortDisabled" align="center"><tbody><tr class="firstRow"><td style="border-width: 1px; border-style: solid;"><p><strong>名称 : </strong><strong>原始边坡分析-水位2</strong></p></td><td style="border-width: 1px; border-style: solid;"><p><strong>工况阶段 : </strong><strong>2</strong></p></td></tr><tr><td style="word-break: break-all; border-width: 1px; border-style: solid;" rowspan="1" colspan="2"><p>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1515377399699824.png" alt="blob.png"/></p></td></tr><tr><td rowspan="1" colspan="2" style="word-break: break-all; border-width: 1px; border-style: solid;"><p>自动搜索后的滑动面</p></td></tr><tr><td rowspan="1" colspan="2" style="border-width: 1px; border-style: solid;"><p><span style="color: #000000;"><strong>边坡稳定性验算 (摩根斯坦法(Morgenstern-Price))</strong></span></p><p><span style="color: #000000;">安全系数 = 1.02&nbsp;&lt; 1.35</span><span style="color: #FF0000;"> </span></p><p><span style="color: #FF0000;"><strong>边坡稳定性 不满足要求</strong></span></p></td></tr></tbody></table></p><p><br/><table data-sort="sortDisabled" align="center"><tbody><tr class="firstRow"><td style="border-width: 1px; border-style: solid;"><p><strong>名称 : </strong><strong>水位2下锚杆支护</strong></p></td><td style="border-width: 1px; border-style: solid;"><p><strong>工况阶段 : </strong><strong>3</strong></p></td></tr><tr><td style="word-break: break-all; border-width: 1px; border-style: solid;" rowspan="1" colspan="2"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1515377446149570.png" alt="blob.png"/></td></tr><tr><td rowspan="1" colspan="2" style="border-width: 1px; border-style: solid;"><p>自动搜索后的滑动面</p></td></tr><tr><td rowspan="1" colspan="2" style="border-width: 1px; border-style: solid;"><p><strong>边坡稳定性验算 (摩根斯坦法(Morgenstern-Price))</strong></p><p>安全系数 = 3.63 &gt;1.35</p><p><span style="color: #00B050;"><strong>边坡稳定性 满足要求</strong></span></p></td></tr></tbody></table></p><p><br/><table data-sort="sortDisabled" align="center"><tbody><tr class="firstRow"><td style="border-width: 1px; border-style: solid;"><p><strong>名称 : </strong><strong>水位2下抗滑桩支护</strong></p></td><td style="border-width: 1px; border-style: solid;"><p><strong>工况阶段 : </strong><strong>4</strong></p></td></tr><tr><td style="word-break: break-all; border-width: 1px; border-style: solid;" rowspan="1" colspan="2"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1515377484616703.png" alt="blob.png"/></td></tr><tr><td rowspan="1" colspan="2" style="border-width: 1px; border-style: solid;"><p>自动搜索后的滑动面</p></td></tr><tr><td rowspan="1" colspan="2" style="border-width: 1px; border-style: solid;"><p><strong>边坡稳定性验算 (摩根斯坦法(Morgenstern-Price))</strong></p><p>安全系数 = 4.59 &gt;1.35</p><p><span style="color: #00B050;"><strong>边坡稳定性 满足要求</strong></span></p></td></tr></tbody></table></p><table data-sort="sortDisabled" align="center"><tbody><tr class="firstRow"><td style="border-width: 1px; border-style: solid;"><p><strong>名称 : </strong><strong>水位1下锚杆支护</strong></p></td><td style="border-width: 1px; border-style: solid;"><p><strong>工况阶段 : </strong><strong>5</strong></p></td></tr><tr><td style="word-break: break-all; border-width: 1px; border-style: solid;" rowspan="1" colspan="2"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1515377510459969.png" alt="blob.png"/>&nbsp;</td></tr><tr><td rowspan="1" colspan="2" style="border-width: 1px; border-style: solid;"><p>自动搜索后的滑动面</p></td></tr><tr><td rowspan="1" colspan="2" style="border-width: 1px; border-style: solid;"><p><strong>边坡稳定性验算 (摩根斯坦法(Morgenstern-Price))</strong></p><p>安全系数 = 3.63 &gt;1.35</p><p><span style="color: #00B050;"><strong>边坡稳定性 满足要求</strong></span></p></td></tr></tbody></table><br/><p><table data-sort="sortDisabled" align="center"><tbody><tr class="firstRow"><td style="border-width: 1px; border-style: solid;" class="selectTdClass"><p><strong>名称 : </strong><strong>水位1下抗滑桩支护</strong></p></td><td style="border-width: 1px; border-style: solid;" class="selectTdClass"><p><strong>工况阶段 : </strong><strong>6</strong></p></td></tr><tr><td style="word-break: break-all; border-width: 1px; border-style: solid;" rowspan="1" colspan="2" class="selectTdClass"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1515377540556109.png" alt="blob.png"/></td></tr><tr><td rowspan="1" colspan="2" style="border-width: 1px; border-style: solid;" class="selectTdClass"><p>自动搜索后的滑动面</p></td></tr><tr><td rowspan="1" colspan="2" style="border-width: 1px; border-style: solid;" class="selectTdClass"><p><span style="color: #000000;"><strong>边坡稳定性验算 (摩根斯坦法(Morgenstern-Price))</strong></span></p><p><span style="color: #000000;">安全系数 = 4.6&gt;1.35</span><span style="color: #00B050;"> </span></p><p><span style="color: #00B050;"><strong>边坡稳定性 满足要求</strong></span></p></td></tr></tbody></table></p><p>  两种水位下,加锚杆和抗滑桩都能满足设计要求。</p><p><br/></p>

国内某岩溶地质隧道开挖分析

库仑产品库仑沈工 发表了文章 • 0 个评论 • 1234 次浏览 • 2018-01-03 14:49 • 来自相关话题

项目名称:国内某岩溶地质隧道开挖分析项目视频教程:岩溶地质隧道开挖建模和分析使用软件:EVS、OptumG2项目背景:本项目为国内某地铁开挖项目,由于地铁穿过一段岩溶地区,因此需要通过三维地质建模技术来进一步查明溶洞的分布情况,并据此进行隧道开挖数值分析。为了简化数值分析,采用收敛约束法,通过二维分析来模拟隧道开挖的三维效应。项目特点:不同于沉积地质,岩溶地质往往不能创建地层模型,需要利用指数克里金方法进行三维空间差值,创建岩性模型(地层模型和岩性模型的区别在视频教程中有详细说明)。溶洞作为一种特殊的地质体参与空间三维差值,这也是岩溶地质建模的常用处理手段。得到岩性模型以后,可以在EVS中进行隧道开挖,并提取剖面进行数值分析。当分析的剖面足够多时,也可以把数值分析对计算结果表达到EVS中。建模和分析流程:  1. 利用EVS创建三维岩性模型  1.1  根据钻孔数据生成pgf文件 – 溶洞作为一种特殊的岩性材料  1.2  利用指数克里金方法生成三维岩性模型  1.3  利用tunnel_cut模块创建隧道  1.4  利用slice模块并结合python脚本沿隧道轴线切得多个计算剖面三维岩性模型(岩溶以实体表示)钻孔分布溶洞分布(绿色实体表示)溶洞和钻孔的相对位置关系计算剖面X = 2516209计算剖面X = 2516170隧道位置和隧道穿过的地层岩性隧道和溶洞的相对位置关系计算剖面X = 2516209(含隧道)计算剖面X = 2516170(含隧道)计算剖面X = 2516136(含隧道)  2. 导入计算剖面至OptumG2进行隧道分析  2.1  计算无溶洞时的地应力分布  2.2  计算有溶洞时的地应力分布,并位移归零  2.3  利用收敛约束法分析隧道注:这里仅分析了岩溶影响最大的剖面X = 2516209X = 2516209剖面(不含溶洞)X = 2516209剖面竖向初始地应力(不含溶洞)X = 2516209剖面(含溶洞)X = 2516209剖面竖向初始地应力(含溶洞)X = 2516209剖面左侧隧道开挖完成引起的竖向土体位移 X = 2516209剖面两侧隧道开挖完成引起的竖向土体位移X = 2516209剖面隧道开挖完成衬砌的弯矩X = 2516209剖面隧道开挖完成衬砌收到的围岩压力 查看全部
<p><strong>项目名称</strong>:国内某岩溶地质隧道开挖分析</p><p><strong>项目视频教程</strong>:<a href="/dochelp/1670" target="_blank" title="岩溶地质隧道开挖建模和分析" textvalue="岩溶地质隧道开挖建模和分析">岩溶地质隧道开挖建模和分析</a></p><p><strong>使用软件</strong>:EVS、OptumG2</p><p><strong>项目背景</strong>:本项目为国内某地铁开挖项目,由于地铁穿过一段岩溶地区,因此需要通过三维地质建模技术来进一步查明溶洞的分布情况,并据此进行隧道开挖数值分析。为了简化数值分析,采用收敛约束法,通过二维分析来模拟隧道开挖的三维效应。</p><p><strong>项目特点</strong>:不同于沉积地质,岩溶地质往往不能创建地层模型,需要利用指数克里金方法进行三维空间差值,创建岩性模型(地层模型和岩性模型的区别在视频教程中有详细说明)。溶洞作为一种特殊的地质体参与空间三维差值,这也是岩溶地质建模的常用处理手段。得到岩性模型以后,可以在EVS中进行隧道开挖,并提取剖面进行数值分析。当分析的剖面足够多时,也可以把数值分析对计算结果表达到EVS中。</p><p><strong>建模和分析流程</strong>:</p><p>  1.&nbsp;利用EVS创建三维岩性模型</p><p>  1.1 &nbsp;根据钻孔数据生成pgf文件 – 溶洞作为一种特殊的岩性材料</p><p>  1.2 &nbsp;利用指数克里金方法生成三维岩性模型</p><p>  1.3 &nbsp;利用tunnel_cut模块创建隧道</p><p>  1.4 &nbsp;利用slice模块并结合python脚本沿隧道轴线切得多个计算剖面</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961323533376.png" alt="blob.png"/></p><p style="text-align: center;">三维岩性模型(岩溶以实体表示)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961338488153.png" alt="blob.png"/></p><p style="text-align: center;">钻孔分布</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961421558760.png" alt="blob.png"/></p><p style="text-align: center;">溶洞分布(绿色实体表示)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961443622125.png" alt="blob.png"/></p><p style="text-align: center;">溶洞和钻孔的相对位置关系</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961463553694.png" alt="blob.png"/></p><p style="text-align: center;">计算剖面X&nbsp;=&nbsp;2516209</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961482845350.png" alt="blob.png"/></p><p style="text-align: center;">计算剖面X&nbsp;=&nbsp;2516170</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961511493922.png" alt="blob.png"/></p><p style="text-align: center;">隧道位置和隧道穿过的地层岩性</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961531984146.png" alt="blob.png"/></p><p style="text-align: center;">隧道和溶洞的相对位置关系</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961623213306.png" alt="blob.png"/></p><p style="text-align: center;">计算剖面X&nbsp;=&nbsp;2516209(含隧道)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961641265510.png" alt="blob.png"/></p><p style="text-align: center;">计算剖面X&nbsp;=&nbsp;2516170(含隧道)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961659957384.png" alt="blob.png"/></p><p style="text-align: center;">计算剖面X&nbsp;=&nbsp;2516136(含隧道)</p><p>  2.&nbsp;导入计算剖面至OptumG2进行隧道分析</p><p>  2.1 &nbsp;计算无溶洞时的地应力分布</p><p>  2.2 &nbsp;计算有溶洞时的地应力分布,并位移归零</p><p>  2.3 &nbsp;利用收敛约束法分析隧道</p><blockquote><p>注:这里仅分析了岩溶影响最大的剖面X&nbsp;=&nbsp;2516209</p></blockquote><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961690289540.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面(不含溶洞)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961714406059.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面竖向初始地应力(不含溶洞)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961736987176.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面(含溶洞)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961758654870.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面竖向初始地应力(含溶洞)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961780642363.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961796183006.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面左侧隧道开挖完成引起的竖向土体位移</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961847107225.png" alt="blob.png"/></p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961862563634.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面两侧隧道开挖完成引起的竖向土体位移</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961889567833.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961900942553.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面隧道开挖完成衬砌的弯矩</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961927273315.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961935314542.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面隧道开挖完成衬砌收到的围岩压力</p><p><br/></p>

边坡+多排抗滑桩案例:GEO5在桥改路3-3剖面中的设计思路

库仑产品库仑李建 发表了文章 • 0 个评论 • 1464 次浏览 • 2017-11-24 10:01 • 来自相关话题

3-3剖面设计:GEO5工况1:无填土,无筋材,无抗滑桩本工况阶段主要用于验算没有进行填方之前原始边坡的天然稳定性。计算得到安全系数为2.44,边坡稳定性满足要求。工况2:加填土本工况阶段主要用于验算添加填方后,填方边坡的稳定性和边坡整体稳定性。由于填土为无黏性土,因此最危险滑面位于边坡表面。这里为了搜索得到更深的滑面,进行滑面约束,即不考虑边坡表面的滑面,得到安全系数为1.09,边坡稳定性不满足要求。工况3:填土加筋材由于填土稳定性不满足要求,该工况阶段我们施加筋材,并验算施加筋材后的边坡稳定性。添加筋材后,使用GEO5的最危险滑面自动搜索功能和搜索区域限制功能,分别对边坡的整体稳定性,第一级台阶稳定性和第二级台阶稳定性进行了计算,安全系数分别为1.24、1.12和1.35,小于设计安全系数1.35,边坡稳定性不满足要求。工况4: 筋材+抗滑桩由于施加筋材后边坡稳定性依然不满足要求,所以考虑施加抗滑桩,并验算边坡整体稳定性。分别验算了滑面穿过三排抗滑桩的整体稳定性、第一个台阶的稳定性和滑面穿过最上面一排抗滑桩桩顶的第二个台阶的稳定性,安全系数分别为1.9、2.02和1.49,大于设计安全系数1.35,边坡稳定性满足要求。在GEO5中设计抗滑桩时分为两步,第一步为概念设计或初步设计,即通过少数且重要的参数判断施加抗滑桩以后对边坡稳定性的影响;第二步为详细设计,即输入更多的参数,从而计算抗滑桩的变形、内力,并据此配筋。在该工况阶段中,我们实际上是通过初略估算抗滑桩能承受的最大下滑力(通常为抗剪承载力)来估算边坡的稳定性,从而快速确定抗滑桩的位置和所需抗滑桩的大致尺寸、间距等几何参数。在下一步工况中我们将进行抗滑桩验算,即详细设计。工况5:抗滑桩验算该工况中,我们对抗滑桩的承载力进行详细验算,得到桩身变形、内力和配筋情况。在土质边坡模块中我们可以计算得到作用在每排抗滑桩上的剩余下滑力和剩余抗滑力,利用得到的荷载,直接在土坡模块中调用「抗滑桩设计」 模块,即可以进行抗滑桩验算。关于GEO5如何处理多排抗滑桩之间推力的分布问题,请查看这里:作用在抗滑桩上的力 - 库仑问答在计算作用在抗滑桩上的推力时,软件无法计算桩顶低于地表的情况,即埋入式抗滑桩。原因在于土坡模块并不知道滑坡推力的分布形式,从而无法确定作用在桩身上的推力大小。处理方法为将桩定位到地表,得到滑坡推力,调用抗滑桩设计后,上移地层即可。根据假设的推力分布,取作用在抗滑桩上的推力部分,出于保守考虑,也可以将所有推力都作用在抗滑桩上。在本案例中,我们仅验算了最后一排抗滑桩。关于在GEO5中进行多排抗滑桩设计的更多资料,请参考本教程:多排抗滑桩优化设计 - 库仑问答  工况6:筋材+抗滑桩+地震最后,我们再对地震工况下的边坡整体稳定性进行验算。添加地震工况,计算安全系数为1.69,大于设计安全系数1.15,边坡稳定性满足要求。这里没有再对地震工况下的抗滑桩单独验算,其验算方法和工况5相同,仅仅是考虑了地震作用。破坏模式和安全系数复核:OptumG2对于复杂支挡结构,边坡的破坏模式往往较为复杂,采用极限平衡法(规范中采用的方法)计算得到的破坏模式或安全系数可能存在错误的情况,因此,本案例中我们还采用OptumG2(极限分析法)对该项目的边坡破坏模式和安全系数进行了复核。关于OptumG2的介绍,请见:OptumG2_南京库仑  关于极限分析方法的详细介绍,请见:入门教程(上) - 库仑问答  工况1:加筋材,无桩采用下限法计算得到边坡整体稳定性安全系数为1.235,和GEO5计算得到的整体稳定性安全系数1.24接近。工况2:加筋材,加桩计算得到安全系数为1.379,最危险滑面位于第二个台阶处,和GEO5计算得到的最危险滑面相同。结论本案例利用GEO5的多工况功能,把6中不同的情况 – 天然原始边坡稳定性、填方后边坡的稳定性、填方后加筋边坡的稳定性、填方后加筋且加抗滑桩边坡的稳定性、地震作用下边坡的稳定性、抗滑桩验算 – 全部整合到了一个软件文件中,可以统一生成设计思路清晰的计算书,大大节省了建模和计算的时间。同时,相比于理正,GEO5可以把所有边坡支护结构(本案例中包括筋材和抗滑桩)全部整合到一个模型中计算整体稳定性,也能单独对抗滑桩或者经常进行验算。最后,我们采用OptumG2中的极限分析方法对GEO5中极限平衡法计算得到的结果进行了复核。对于没有经验的工程师,或者非常复杂的支挡结构,OptumG2中提供的极限分析方法是一个非常好的计算手段。 查看全部
<p><span style="color: #FF0000;"><strong>3-3剖面设计:GEO5</strong></span><br/></p><p><strong>工况1:无填土,无筋材,无抗滑桩</strong></p><p>本工况阶段主要用于验算没有进行填方之前原始边坡的天然稳定性。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488315195854.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488329292141.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488343625640.png" alt="blob.png"/></p><p>计算得到安全系数为2.44,边坡稳定性满足要求。<br/></p><p><strong>工况2:加填土</strong></p><p>本工况阶段主要用于验算添加填方后,填方边坡的稳定性和边坡整体稳定性。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488361496604.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488368311503.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488377947343.png" alt="blob.png"/></p><p>由于填土为无黏性土,因此最危险滑面位于边坡表面。这里为了搜索得到更深的滑面,进行滑面约束,即不考虑边坡表面的滑面,得到安全系数为1.09,边坡稳定性不满足要求。</p><p><strong>工况3:填土加筋材</strong></p><p>由于填土稳定性不满足要求,该工况阶段我们施加筋材,并验算施加筋材后的边坡稳定性。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488401442926.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488409896676.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488419273679.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488429988133.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488447151056.png" alt="blob.png"/></p><p>添加筋材后,使用GEO5的最危险滑面自动搜索功能和搜索区域限制功能,分别对边坡的整体稳定性,第一级台阶稳定性和第二级台阶稳定性进行了计算,安全系数分别为1.24、1.12和1.35,小于设计安全系数1.35,边坡稳定性不满足要求。</p><p><strong>工况4: 筋材+抗滑桩</strong></p><p>由于施加筋材后边坡稳定性依然不满足要求,所以考虑施加抗滑桩,并验算边坡整体稳定性。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488464169172.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488472373794.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488482881494.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488493755742.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488501438452.png" alt="blob.png"/></p><p>分别验算了滑面穿过三排抗滑桩的整体稳定性、第一个台阶的稳定性和滑面穿过最上面一排抗滑桩桩顶的第二个台阶的稳定性,安全系数分别为1.9、2.02和1.49,大于设计安全系数1.35,边坡稳定性满足要求。</p><p>在GEO5中设计抗滑桩时分为两步,第一步为概念设计或初步设计,即通过少数且重要的参数判断施加抗滑桩以后对边坡稳定性的影响;第二步为详细设计,即输入更多的参数,从而计算抗滑桩的变形、内力,并据此配筋。在该工况阶段中,我们实际上是通过初略估算抗滑桩能承受的最大下滑力(通常为抗剪承载力)来估算边坡的稳定性,从而快速确定抗滑桩的位置和所需抗滑桩的大致尺寸、间距等几何参数。</p><p>在下一步工况中我们将进行抗滑桩验算,即详细设计。</p><p style="text-align: left;"><strong>工况5:抗滑桩验算</strong></p><p>该工况中,我们对抗滑桩的承载力进行详细验算,得到桩身变形、内力和配筋情况。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488529910441.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488536378073.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488544117350.png" alt="blob.png"/></p><p>在土质边坡模块中我们可以计算得到作用在每排抗滑桩上的剩余下滑力和剩余抗滑力,利用得到的荷载,直接在土坡模块中调用「抗滑桩设计」 模块,即可以进行抗滑桩验算。</p><p>关于GEO5如何处理多排抗滑桩之间推力的分布问题,请查看这里:<a href="http://www.wen.kulunsoft.com/dochelp/1146" target="_blank">作用在抗滑桩上的力 - 库仑问答</a></p><p>在计算作用在抗滑桩上的推力时,软件无法计算桩顶低于地表的情况,即埋入式抗滑桩。原因在于土坡模块并不知道滑坡推力的分布形式,从而无法确定作用在桩身上的推力大小。处理方法为将桩定位到地表,得到滑坡推力,调用抗滑桩设计后,上移地层即可。根据假设的推力分布,取作用在抗滑桩上的推力部分,出于保守考虑,也可以将所有推力都作用在抗滑桩上。在本案例中,我们仅验算了最后一排抗滑桩。</p><p>关于在GEO5中进行多排抗滑桩设计的更多资料,请参考本教程:<a href="http://www.wen.kulunsoft.com/dochelp/91" target="_blank">多排抗滑桩优化设计 - 库仑问答</a> &nbsp;</p><p><strong>工况6:筋材+抗滑桩+地震</strong></p><p>最后,我们再对地震工况下的边坡整体稳定性进行验算。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488664181298.png" alt="blob.png"/></p><p>添加地震工况,计算安全系数为1.69,大于设计安全系数1.15,边坡稳定性满足要求。这里没有再对地震工况下的抗滑桩单独验算,其验算方法和工况5相同,仅仅是考虑了地震作用。</p><p><span style="color: #FF0000;"><strong>破坏模式和安全系数复核:OptumG2</strong></span></p><p>对于复杂支挡结构,边坡的破坏模式往往较为复杂,采用极限平衡法(规范中采用的方法)计算得到的破坏模式或安全系数可能存在错误的情况,因此,本案例中我们还采用OptumG2(极限分析法)对该项目的边坡破坏模式和安全系数进行了复核。</p><p>关于OptumG2的介绍,请见:<a href="http://www.kulunsoft.com/products/9" target="_blank">OptumG2_南京库仑</a> &nbsp;</p><p>关于极限分析方法的详细介绍,请见:<a href="http://www.wen.kulunsoft.com/dochelp/1587" target="_blank">入门教程(上) - 库仑问答 </a>&nbsp;</p><p><strong>工况1:加筋材,无桩</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488737505687.png" alt="blob.png"/></p><p>采用下限法计算得到边坡整体稳定性安全系数为1.235,和GEO5计算得到的整体稳定性安全系数1.24接近。</p><p><strong>工况2:加筋材,加桩</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1511488752703128.png" alt="blob.png"/></p><p>计算得到安全系数为1.379,最危险滑面位于第二个台阶处,和GEO5计算得到的最危险滑面相同。</p><p><span style="color: #FF0000;"><strong>结论</strong></span></p><p>本案例利用GEO5的多工况功能,把6中不同的情况 – 天然原始边坡稳定性、填方后边坡的稳定性、填方后加筋边坡的稳定性、填方后加筋且加抗滑桩边坡的稳定性、地震作用下边坡的稳定性、抗滑桩验算 – 全部整合到了一个软件文件中,可以统一生成设计思路清晰的计算书,大大节省了建模和计算的时间。同时,相比于理正,GEO5可以把所有边坡支护结构(本案例中包括筋材和抗滑桩)全部整合到一个模型中计算整体稳定性,也能单独对抗滑桩或者经常进行验算。</p><p>最后,我们采用OptumG2中的极限分析方法对GEO5中极限平衡法计算得到的结果进行了复核。对于没有经验的工程师,或者非常复杂的支挡结构,OptumG2中提供的极限分析方法是一个非常好的计算手段。</p>

土质边坡,抗滑桩分析

岩土工程库仑吴汶垣 回答了问题 • 2 人关注 • 1 个回答 • 869 次浏览 • 2017-10-21 23:17 • 来自相关话题

GEO5案例:高边坡抗滑桩支护——四川某边坡

库仑产品库仑戚工 发表了文章 • 0 个评论 • 1838 次浏览 • 2017-10-16 14:36 • 来自相关话题

项目名称:四川某边坡支护项目使用软件:GEO5土质边坡稳定分析设计方案:边坡采用抗滑桩支护,边坡高度约40米,岩土材料分别为填土、填土(饱和)、含碎石粉质粘土、含碎石粉质粘土(饱和)、碎块石、碎块石(饱和)、千枚岩。项目特点:边坡坡度较陡,并且需要考虑地震和暴雨的影响。软件优势:GEO5「土质边坡稳定分析」模块可通过添加多工况模拟地震和暴雨的影响,并且在该模块中直接调用「抗滑桩设计」模块对抗滑桩进行验算。计算结果:边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 1.09 < 1.35边坡稳定性 不满足要求滑动面前缘剩余下滑力 Fn = 167.09 kN/m剩余下滑力倾角 a = 12.10 °边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 1.58 > 1.35边坡稳定性 满足要求边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 0.99 < 1.15边坡稳定性 不满足要求滑动面前缘剩余下滑力 Fn = 112.23 kN/m剩余下滑力倾角 a = 14.08 °边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 1.25 > 1.15边坡稳定性 满足要求边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 0.94 < 1.15边坡稳定性 不满足要求滑动面前缘剩余下滑力 Fn = 215.48 kN/m剩余下滑力倾角 a = 5.66 °边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 1.17 > 1.15边坡稳定性 满足要求结构内力最大值剪力最大值=132.49kN/m弯矩最大值=220.60kNm/m位移最大值=3.7mm岩石地基承载力验算桩的最大横向压应力s=241.76kPa岩石地基横向容许承载力Rd=360.00kPa岩石地基横向承载力 满足要求验算钢筋混凝土结构截面 (排桩 d = 1.50 m; a = 5.00 m)对所有工况阶段进行分析。作用基本组合的综合分项系数 = 1.00截面抗弯验算:钢筋数量10 钢筋直径30.0 mm; 保护层厚度 40.0 mm结构类型 (配筋率) : 按梁计算配筋率 r = 0.20 % < 0.200 % = rmin截面不满足要求(少筋),请提高配筋率。截面抗剪验算:截面受剪承载力设计值: Vu = 1591.92 kN > 662.47 kN = V截面满足要求。总验算: 截面 满足要求 查看全部
<p><strong>项目名称:</strong>四川某边坡支护项目</p><p><strong>使用软件:</strong>GEO5土质边坡稳定分析</p><p><strong>设计方案:</strong>边坡采用抗滑桩支护,边坡高度约40米,岩土材料分别为填土、填土(饱和)、含碎石粉质粘土、含碎石粉质粘土(饱和)、碎块石、碎块石(饱和)、千枚岩。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508135076148313.png" alt="blob.png"/></p><p><strong>项目特点:</strong>边坡坡度较陡,并且需要考虑地震和暴雨的影响。</p><p><strong>软件优势:</strong>GEO5「土质边坡稳定分析」模块可通过添加多工况模拟地震和暴雨的影响,并且在该模块中直接调用「抗滑桩设计」模块对抗滑桩进行验算。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508135129790006.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508135144361294.png" alt="blob.png"/></p><p>计算结果:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508135274280937.png" alt="1.png"/></p><p><strong>边坡稳定性验算 (不平衡推力法(隐式))</strong></p><p>安全系数 = 1.09 &lt; 1.35</p><p>边坡稳定性 不满足要求</p><p>滑动面前缘剩余下滑力 Fn&nbsp;= 167.09 kN/m</p><p>剩余下滑力倾角 a = 12.10 °</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508135323175911.png" alt="2.png"/></p><p><strong>边坡稳定性验算 (不平衡推力法(隐式))</strong></p><p>安全系数 = 1.58 &gt; 1.35</p><p>边坡稳定性 满足要求</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508135374958257.png" alt="3.png"/></p><p><strong>边坡稳定性验算 (不平衡推力法(隐式))</strong></p><p>安全系数 = 0.99 &lt; 1.15</p><p>边坡稳定性 不满足要求</p><p>滑动面前缘剩余下滑力 Fn = 112.23 kN/m</p><p>剩余下滑力倾角 a = 14.08 °</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508135428574130.png" alt="4.png"/></p><p><strong>边坡稳定性验算 (不平衡推力法(隐式))</strong></p><p>安全系数 = 1.25 &gt; 1.15</p><p>边坡稳定性 满足要求</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508135492580083.png" alt="5.png"/></p><p><strong>边坡稳定性验算 (不平衡推力法(隐式))</strong></p><p>安全系数 = 0.94 &lt; 1.15</p><p>边坡稳定性 不满足要求</p><p>滑动面前缘剩余下滑力 Fn = 215.48 kN/m</p><p>剩余下滑力倾角 a = 5.66 °</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508135601665351.png" alt="6.png"/></p><p><strong>边坡稳定性验算 (不平衡推力法(隐式))</strong></p><p>安全系数 = 1.17 &gt; 1.15</p><p>边坡稳定性 满足要求</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508135660601466.png" alt="7.png"/></p><p><strong>结构内力最大值</strong></p><table><tbody><tr class="firstRow"><td><p>剪力最大值</p></td><td><p>=</p></td><td><p>132.49</p></td><td><p>kN/m</p></td></tr><tr><td><p>弯矩最大值</p></td><td><p>=</p></td><td><p>220.60</p></td><td><p>kNm/m</p></td></tr><tr><td><p>位移最大值</p></td><td><p>=</p></td><td><p>3.7</p></td><td><p>mm</p></td></tr></tbody></table><p>岩石地基承载力验算</p><table><tbody><tr class="firstRow"><td><p>桩的最大横向压应力</p></td><td><p>s</p></td><td><p>=</p></td><td><p>241.76</p></td><td><p>kPa</p></td></tr><tr><td><p>岩石地基横向容许承载力</p></td><td><p>Rd</p></td><td><p>=</p></td><td><p>360.00</p></td><td><p>kPa</p></td></tr></tbody></table><p>岩石地基横向承载力 满足要求</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1508135709502284.png" alt="8.png"/></p><p><strong>验算钢筋混凝土结构截面 (排桩 d = 1.50 m; a = 5.00 m)</strong></p><p>对所有工况阶段进行分析。</p><p>作用基本组合的综合分项系数 = 1.00</p><p><strong>截面抗弯验算:</strong></p><p>钢筋数量10 钢筋直径30.0 mm; 保护层厚度 40.0 mm</p><p>结构类型 (配筋率) : 按梁计算</p><p>配筋率 r = 0.20 % &lt; 0.200 % = rmin</p><p>截面不满足要求(少筋),请提高配筋率。</p><p><strong>截面抗剪验算:</strong></p><p>截面受剪承载力设计值: Vu = 1591.92 kN &gt; 662.47 kN = V</p><p>截面满足要求。</p><p>总验算: 截面 满足要求</p><p><br/></p>

GEO5案例:边坡挖方+锚杆支护

库仑产品库仑沈工 发表了文章 • 0 个评论 • 832 次浏览 • 2017-09-26 09:14 • 来自相关话题

项目名称:某边坡项目使用软件:GEO5土质边坡稳定性分析设计方案:锚杆支护,岩土材料从上之下分别为素填土、粉质粘土1、粉质粘土2软、粘质粉土3硬。 项目特点:边坡较陡(最陡的部分长约27.5m,高约18m),挖除部分素填土并采取锚杆支护。软件优势:GEO5「土质边坡稳定性分析」模块的多工况阶段可以体现设计过程。过程与结果:名称 : 原有边坡分析工况阶段 : 1自动搜索后的滑动面边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 0.65 < 1.35边坡稳定性 不满足要求滑动面前缘剩余下滑力 Fn =371.67 kN/m剩余下滑力倾角 α= 28.37 °初始方案:名称 : 抗滑桩+锚杆分析工况阶段 : 2自动搜索后的滑动面边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 1.49 > 1.35边坡稳定性 满足要求这里的安全系数为1.49,有富余,我们去掉抗滑桩再计算一下方案调整:去掉抗滑桩名称 : 纯锚杆支护分析工况阶段 : 3自动搜索后的滑动面边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 1.37 > 1.35边坡稳定性 满足要求上面分析可以看出,抗滑桩的作用是增加边坡的安全储备,不设置抗滑桩安全系数依然满足要求。 查看全部
<p><strong>项目名称:</strong>某边坡项目</p><p><strong>使用软件:</strong>GEO5土质边坡稳定性分析</p><p><strong>设计方案</strong>:锚杆支护,岩土材料从上之下分别为素填土、粉质粘土1、粉质粘土2软、粘质粉土3硬。</p><p>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1506388309563968.png" alt="blob.png"/></p><p><strong>项目特点:</strong>边坡较陡(最陡的部分长约27.5m,高约18m),挖除部分素填土并采取锚杆支护。</p><p><strong>软件优势:</strong>GEO5「土质边坡稳定性分析」模块的多工况阶段可以体现设计过程。</p><p><strong>过程与结果:</strong></p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td><p><strong>名称 : </strong><strong>原有边坡</strong><strong>分析</strong></p></td><td><p><strong>工况阶段 : 1</strong></p></td></tr><tr><td style="word-break: break-all;" rowspan="1" colspan="2"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1506388351185927.png" alt="blob.png" width="540" height="274" style="width: 540px; height: 274px;"/></td></tr><tr><td rowspan="1" colspan="2"><p>自动搜索后的滑动面</p></td></tr><tr><td rowspan="1" colspan="2" style="word-break: break-all;"><p><strong>边坡稳定性验算 (不平衡推力法(隐式))</strong></p><p>安全系数 = 0.65&nbsp;&lt; 1.35</p><p><strong>边坡稳定性 不满足要求</strong></p><p>滑动面前缘剩余下滑力 Fn&nbsp;=371.67&nbsp;kN/m</p><p>剩余下滑力倾角 α= 28.37&nbsp;°</p></td></tr></tbody></table><p>初始方案:</p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td><p><strong>名称 : </strong><strong>抗滑桩+锚杆</strong><strong>分析</strong></p></td><td><p><strong>工况阶段 : </strong><strong>2</strong></p></td></tr><tr><td style="word-break: break-all;" rowspan="1" colspan="2"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1506388398215850.png" alt="blob.png"/></td></tr><tr><td><p>自动搜索后的滑动面</p></td><td><br/></td></tr><tr><td><p><strong>边坡稳定性验算 (不平衡推力法(隐式))</strong></p><p>安全系数 = 1.49&nbsp;&gt; 1.35</p><p><strong>边坡稳定性 满足要求</strong></p></td><td><br/></td></tr></tbody></table><p>这里的安全系数为1.49,有富余,我们去掉抗滑桩再计算一下</p><p>方案调整:去掉抗滑桩</p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td><p><strong>名称 : </strong><strong>纯锚杆支护</strong><strong>分析</strong></p></td><td><p><strong>工况阶段 : </strong><strong>3</strong></p></td></tr><tr><td style="word-break: break-all;" rowspan="1" colspan="2"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1506388425891015.png" alt="blob.png"/></td></tr><tr><td><p>自动搜索后的滑动面</p></td><td><br/></td></tr><tr><td><p><strong>边坡稳定性验算 (不平衡推力法(隐式))</strong></p><p>安全系数 = 1.37&nbsp;&gt; 1.35</p><p><strong>边坡稳定性 满足要求</strong></p></td><td><br/></td></tr></tbody></table><p>上面分析可以看出,抗滑桩的作用是增加边坡的安全储备,不设置抗滑桩安全系数依然满足要求。</p>

EVS案例:三维隧道地质建模

库仑产品库仑焦工 发表了文章 • 2 个评论 • 711 次浏览 • 2017-09-20 09:16 • 来自相关话题

项目名称:某隧道三维地质模型项目背景:纵观国内外,对三维地质建模技术的研究,大部分集中于对三维地形可视化及油田、矿井、巷道等三维地质模型的研究,而专门针对隧道三维地质自动建模的研究却很鲜见,究其原因,主要有以下三个方面:(1)铁路工程相关数据不充足,大多只源于表面地质测绘,而地质的相对复杂性却不可知;(2)建模方法不成熟,现阶段对于简单地质模型的高精度三维建模研究比较成熟,而对于复杂地质的研究却很匮乏;(3)原始数据获取的艰难性、地质复杂性、地质体属性的未知性,导致地质曲面的构造难度大。三维地质建模软件EVS在隧道建模方面有着突出的特色及强大的功能,以数据为驱动,能够很方便的完成建模过程。图1隧道三维地质建模图2 多种形式的隧道地质模型图3 多种形式的隧道地质模型  项目特点:建模流程首先是根据钻孔数据等资料生成三维地质模型,然后根据线路起终点坐标、曲线要素等数据,按照线路平面计算确定线路中心线,分别对隧道内部及洞门进行三维建模;隧道断面形状以及隧道线可以由CAD等软件来完成并导入进EVS中,这样就得到隧道内部模型;再通过模型裁剪等算法依据隧道模型从三维地质模型中裁剪出隧道内部地质剖面。此外还可以将其他地质数据(物探、岩性等)附着在模型内,使得整个模型不但可以呈现出隧道等地形地貌特征,还能够将各类数据展现出来。图4 隧道截面模型图5 隧道外部山体模型 软件优势: 三维地质建模是计算机图形科学、地理信息系统等领域研究的热点,在工程设计和分析中越来越受到相关科研人员的青睐。EVS拥有强大的建模能力,能够将模型真实的呈现在工程师面前,利用离散光滑插值技术对多种地质信息综合处理的灵活性和适应性,有效地突破了复杂地质体和地下隧道三维建模表达的限制,提供了表达精确的地质模型及隧道开挖模型,达到了实际工程的需求。针对隧道工程中遇到的地质体结构的复杂性和不确定性,可以精确表达,并建立了完善的三维可视化模型,为隧道工程的设计、施工、勘探布置等提供模型资料,为地质人员的分析判断提供综合信息,为设计人员提供可视化参考和分析。图6 外部渲染图例的隧道山体模型 查看全部
<p><strong>项目名称:</strong>某隧道三维地质模型</p><p><strong>项目背景:</strong>纵观国内外,对三维地质建模技术的研究,大部分集中于对三维地形可视化及油田、矿井、巷道等三维地质模型的研究,而专门针对隧道三维地质自动建模的研究却很鲜见,究其原因,主要有以下三个方面:</p><p>(1)铁路工程相关数据不充足,大多只源于表面地质测绘,而地质的相对复杂性却不可知;</p><p>(2)建模方法不成熟,现阶段对于简单地质模型的高精度三维建模研究比较成熟,而对于复杂地质的研究却很匮乏;</p><p>(3)原始数据获取的艰难性、地质复杂性、地质体属性的未知性,导致地质曲面的构造难度大。</p><p>三维地质建模软件EVS在隧道建模方面有着突出的特色及强大的功能,以数据为驱动,能够很方便的完成建模过程。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505870119183328.png" alt="1.png"/></p><p style="text-align: center;"><strong>图1隧道三维地质建模</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505870124986254.png" alt="2.png"/></p><p style="text-align: center;"><strong>图2 多种形式的隧道地质模型</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505870129321581.png" alt="3.png"/></p><p style="text-align: center;"><strong>图3 多种形式的隧道地质模型</strong></p><p style="text-align: center;">&nbsp;</p><p>&nbsp;</p><p><strong>项目特点:</strong>建模流程首先是根据钻孔数据等资料生成三维地质模型,然后根据线路起终点坐标、曲线要素等数据,按照线路平面计算确定线路中心线,分别对隧道内部及洞门进行三维建模;隧道断面形状以及隧道线可以由CAD等软件来完成并导入进EVS中,这样就得到隧道内部模型;再通过模型裁剪等算法依据隧道模型从三维地质模型中裁剪出隧道内部地质剖面。此外还可以将其他地质数据(物探、岩性等)附着在模型内,使得整个模型不但可以呈现出隧道等地形地貌特征,还能够将各类数据展现出来。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505870148859363.png" alt="4.png"/></p><p style="text-align: center;"><strong>图4 隧道截面模型</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505870158981501.png" alt="5.png"/></p><p style="text-align: center;"><strong>图5 隧道外部山体模型</strong></p><p><strong>&nbsp;</strong></p><p><strong>软件优势: </strong>三维地质建模是计算机图形科学、地理信息系统等领域研究的热点,在工程设计和分析中越来越受到相关科研人员的青睐。EVS拥有强大的建模能力,能够将模型真实的呈现在工程师面前,利用离散光滑插值技术对多种地质信息综合处理的灵活性和适应性,有效地突破了复杂地质体和地下隧道三维建模表达的限制,提供了表达精确的地质模型及隧道开挖模型,达到了实际工程的需求。针对隧道工程中遇到的地质体结构的复杂性和不确定性,可以精确表达,并建立了完善的三维可视化模型,为隧道工程的设计、施工、勘探布置等提供模型资料,为地质人员的分析判断提供综合信息,为设计人员提供可视化参考和分析。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505870173942152.png" alt="6.png"/></p><p style="text-align: center;"><strong>图6 外部渲染图例的隧道山体模型</strong></p><p><br/></p>

GEO5案例:降水分析-某国外项目

库仑产品库仑沈工 发表了文章 • 0 个评论 • 1422 次浏览 • 2017-09-12 09:54 • 来自相关话题

项目名称:某降水分析项目使用软件:GEO5岩土工程有限元分析设计方案:放置两个降水井,岩土材料为粉土。项目背景: 项目特点:此项目是位于国外,但是由国内某著名设计院设计的。软件优势:GEO5有限元渗流分析能简单快速的计算出渗流结果,软件同时支持18种语言与计算书,可直接中文界面下设计,计算书可选择合适的语言,无需单独翻译。过程: 接触面编号位置渗透性1编号5网格线dn = 700.0 mm, kn = 5.00E+04 m/天, ks = 5.00E+04 m/天2编号6网格线dn = 700.0 mm, kn = 5.00E+04 m/天, ks = 5.00E+04 m/天点渗流边界编号位置渗流边界类型参数1编号6网格点孔隙水压力 - 水位坐标z水位 = 81.60 m2编号8网格点孔隙水压力 - 水位坐标z水位 = 81.60 m线渗流边界条件编号线渗流边界条件位置位置边界条件类型参数新修改1是编号1网格线孔隙水压力边界z水位 = 119.00 m2是编号2网格线不透水边界3是编号3网格线孔隙水压力边界z水位 = 119.00 m4是编号4网格线不透水边界5是编号7网格线不透水边界6是编号8网格线不透水边界结果:名称 : 分析工况阶段 : 1结果 : 全量; 变量 : 孔隙水压力 u 渗流; 范围 : <0.00; 1994.00> kPa∑Q [m3/天/m]计算总的流出量 /流入量位置流入流出边界[m3/天/m][m3/天/m]点渗流边界条件编号1476.927点渗流边界条件编号2476.893线渗流边界条件编号1-477.177线渗流边界条件编号3-476.644总数953.820-953.820 查看全部
<p><strong>项目名称</strong>:某降水分析项目</p><p><strong>使用软件:</strong>GEO5岩土工程有限元分析</p><p><strong>设计方案:</strong>放置两个降水井,岩土材料为粉土。</p><p><strong>项目背景:</strong></p><p>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505181133715953.png" alt="blob.png"/></p><p><strong>项目特点:</strong>此项目是位于国外,但是由国内某著名设计院设计的。</p><p><strong>软件优势:</strong>GEO5有限元渗流分析能简单快速的计算出渗流结果,软件同时支持18种语言与计算书,可直接中文界面下设计,计算书可选择合适的语言,无需单独翻译。</p><p><strong>过程</strong><strong>:</strong></p><p>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505181142516064.png" alt="blob.png"/></p><p><strong>接触面</strong></p><table><tbody><tr class="firstRow"><td style="border-width: 1px; border-style: solid;"><p><strong>编号</strong></p></td><td style="border-width: 1px; border-style: solid;"><p><strong>位置</strong></p></td><td style="border-width: 1px; border-style: solid;"><p><strong>渗透性</strong></p></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>1</p></td><td style="border-width: 1px; border-style: solid;"><p>编号5网格线</p></td><td style="border-width: 1px; border-style: solid;"><p>dn&nbsp;= 700.0 mm, kn&nbsp;= 5.00E+04 m/天, ks&nbsp;= 5.00E+04 m/天</p></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>2</p></td><td style="border-width: 1px; border-style: solid;"><p>编号6网格线</p></td><td style="word-break: break-all; border-width: 1px; border-style: solid;"><p>dn&nbsp;= 700.0 mm, kn&nbsp;= 5.00E+04 m/天, ks&nbsp;= 5.00E+04 m/天</p></td></tr></tbody></table><p><strong>点渗流边界</strong></p><table><tbody><tr class="firstRow"><td style="border-width: 1px; border-style: solid;"><p><strong>编号</strong></p></td><td style="border-width: 1px; border-style: solid;"><p><strong>位置</strong></p></td><td style="border-width: 1px; border-style: solid;"><p><strong>渗流边界类型</strong></p></td><td style="border-width: 1px; border-style: solid;"><p><strong>参数</strong></p></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>1</p></td><td style="border-width: 1px; border-style: solid;"><p>编号6网格点</p></td><td style="border-width: 1px; border-style: solid;"><p>孔隙水压力 - 水位坐标</p></td><td style="border-width: 1px; border-style: solid;"><p>z水位&nbsp;= 81.60 m</p></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>2</p></td><td style="border-width: 1px; border-style: solid;"><p>编号8网格点</p></td><td style="border-width: 1px; border-style: solid;"><p>孔隙水压力 - 水位坐标</p></td><td style="word-break: break-all; border-width: 1px; border-style: solid;"><p>z水位&nbsp;= 81.60 m</p></td></tr></tbody></table><p><strong>线渗流边界条件</strong></p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td rowspan="2" colspan="1" style="border-width: 1px; border-style: solid;"><p><strong>编号</strong></p></td><td style="border-width: 1px; border-style: solid;"><p><strong>线渗流边界条件</strong></p></td><td style="word-break: break-all; border-width: 1px; border-style: solid;"><p><strong>位置</strong></p></td><td style="word-break: break-all; border-width: 1px; border-style: solid;" rowspan="2" colspan="1"><p><b>位置</b></p></td><td style="word-break: break-all; border-width: 1px; border-style: solid;" rowspan="2" colspan="1"><p><b>边界条件类型</b></p></td><td style="word-break: break-all; border-width: 1px; border-style: solid;" rowspan="2" colspan="1"><strong>参数</strong></td></tr><tr><td style="word-break: break-all; border-width: 1px; border-style: solid;"><span style="line-height: 22.5px;"><b>新</b></span></td><td style="word-break: break-all; border-width: 1px; border-style: solid;"><strong>修改</strong></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>1</p></td><td style="border-width: 1px; border-style: solid;"><p>是</p></td><td style="border-width: 1px; border-style: solid;"><br/></td><td style="border-width: 1px; border-style: solid;"><p>编号1网格线</p></td><td style="border-width: 1px; border-style: solid;"><p>孔隙水压力边界</p></td><td style="border-width: 1px; border-style: solid;"><p>z水位&nbsp;= 119.00 m</p></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>2</p></td><td style="border-width: 1px; border-style: solid;"><p>是</p></td><td style="border-width: 1px; border-style: solid;"><br/></td><td style="border-width: 1px; border-style: solid;"><p>编号2网格线</p></td><td style="border-width: 1px; border-style: solid;"><p>不透水边界</p></td><td style="border-width: 1px; border-style: solid;"><br/></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>3</p></td><td style="border-width: 1px; border-style: solid;"><p>是</p></td><td style="border-width: 1px; border-style: solid;"><br/></td><td style="border-width: 1px; border-style: solid;"><p>编号3网格线</p></td><td style="border-width: 1px; border-style: solid;"><p>孔隙水压力边界</p></td><td style="border-width: 1px; border-style: solid;"><p>z水位&nbsp;= 119.00 m</p></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>4</p></td><td style="border-width: 1px; border-style: solid;"><p>是</p></td><td style="border-width: 1px; border-style: solid;"><br/></td><td style="border-width: 1px; border-style: solid;"><p>编号4网格线</p></td><td style="border-width: 1px; border-style: solid;"><p>不透水边界</p></td><td style="border-width: 1px; border-style: solid;"><br/></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>5</p></td><td style="border-width: 1px; border-style: solid;"><p>是</p></td><td style="border-width: 1px; border-style: solid;"><br/></td><td style="border-width: 1px; border-style: solid;"><p>编号7网格线</p></td><td style="border-width: 1px; border-style: solid;"><p>不透水边界</p></td><td style="border-width: 1px; border-style: solid;"><br/></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>6</p></td><td style="border-width: 1px; border-style: solid;"><p>是</p></td><td style="border-width: 1px; border-style: solid;"><br/></td><td style="border-width: 1px; border-style: solid;"><p>编号8网格线</p></td><td style="border-width: 1px; border-style: solid;"><p>不透水边界</p></td><td style="word-break: break-all; border-width: 1px; border-style: solid;"><br/></td></tr></tbody></table><p><strong>结果:</strong></p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td><p><strong>名称 : 分析</strong></p></td><td><p><strong>工况阶段 : 1</strong></p></td></tr><tr><td style="word-break: break-all;" height="65" rowspan="1" colspan="2"><p>结果 : 全量; 变量 : 孔隙水压力 u&nbsp;渗流; 范围 : &lt;0.00; 1994.00&gt; kPa</p><p>∑Q [m3/天/m]</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505181211306436.png" alt="blob.png" width="486" height="239" style="width: 486px; height: 239px;"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505181217365438.png" alt="blob.png"/><br/></p></td></tr></tbody></table><p><strong>计算总的流出量 /流入量</strong></p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td style="border-width: 1px; border-style: solid;" rowspan="2" colspan="1"><p><strong>位置</strong></p></td><td style="border-width: 1px; border-style: solid;"><p><strong>流入</strong></p></td><td style="border-width: 1px; border-style: solid;"><p><strong>流出边界</strong></p></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p><strong>[m</strong><strong>3</strong><strong>/天/m]</strong></p></td><td style="border-width: 1px; border-style: solid; word-break: break-all;"><strong>[m</strong><strong>3</strong><strong>/天/m]</strong></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>点渗流边界条件编号1</p></td><td style="border-width: 1px; border-style: solid;"><p>476.927</p></td><td style="border-width: 1px; border-style: solid;"><br/></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>点渗流边界条件编号2</p></td><td style="border-width: 1px; border-style: solid;"><p>476.893</p></td><td style="border-width: 1px; border-style: solid;"><br/></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>线渗流边界条件编号1</p></td><td style="border-width: 1px; border-style: solid;"><br/></td><td style="border-width: 1px; border-style: solid;"><p>-477.177</p></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>线渗流边界条件编号3</p></td><td style="border-width: 1px; border-style: solid;"><br/></td><td style="border-width: 1px; border-style: solid;"><p>-476.644</p></td></tr><tr><td style="border-width: 1px; border-style: solid;"><p>总数</p></td><td style="border-width: 1px; border-style: solid;"><p>953.820</p></td><td style="border-width: 1px; border-style: solid;"><p>-953.820</p></td></tr></tbody></table><p><br/></p>

GEO5案例:新建抗滑桩桩后填土——某边坡

库仑产品库仑沈工 发表了文章 • 0 个评论 • 843 次浏览 • 2017-09-12 09:49 • 来自相关话题

项目名称:某边坡使用软件:GEO5土质边坡稳定性分析+抗滑桩设计设计方案:现有边坡上新建抗滑桩,桩后需要填土,岩土材料从上之下分别为含碎石粉质粘土,千枚岩。 软件优势:GEO5可以进行多工况设计,在新建工况2中可进行填方设计,软件先整体后局部,稳定性分析满足要求之后,再进行抗滑桩细化设计。可在「土质边坡稳定性分析」模块中直接调用「抗滑桩设计」模块,大大减少建模时间。过程与结果:名称 : 填方前稳定性分析工况阶段 : 1 给定滑面的分析。边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 1.79 > 1.30边坡稳定性 满足要求滑面控制点处倾角变化大于10°,计算结果可能偏危险。可以在 "抗滑桩设计" 软件中进行验算分析。桩后滑坡推力:131.66kN/m桩前滑体抗力:23.20kN/m滑面深度:5.77m地表以下桩长:13.00m名称 : 填方后稳定性分析工况阶段 : 2给定滑面的分析。边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 1.31> 1.30边坡稳定性 满足要求滑面控制点处倾角变化大于10°,计算结果可能偏危险。可以在 "抗滑桩设计" 软件中进行验算分析。桩后滑坡推力:275.01kN/m桩前滑体抗力:16.77kN/m滑面深度:7.77m地表以下桩长:15.00m调用「抗滑桩设计」模块,补充参数,进行[分析]。结构内力最大值剪力最大值=311.27kN/m弯矩最大值=1161.78kNm/m位移最大值=27.2mm岩石地基承载力验算桩的最大横向压应力s=810.42kPa岩石地基横向容许承载力Rd=6000.00kPa岩石地基横向承载力 满足要求抗滑桩验算名称 : 工况阶段 - 分析工况 : 1 - 1验算钢筋混凝土结构截面 (排桩 a = 4.00 m; b = 1.20 m; h = 1.50 m)对所有工况阶段进行分析。作用基本组合的综合分项系数 = 1.00钢筋数量13 钢筋直径32.0 mm; 保护层厚度 70.0 mm配筋率r=0.62%>0.20%=rmin中和轴位置x/b1=0.27m<0.91m=xbh0/b1截面受剪承载力设计值Vu=1705.28kN>1245.07kN=V截面受弯承载力设计值Mu=4910.98kNm>4647.10kNm=M截面满足要求。 查看全部
<p>项目名称:某边坡</p><p>使用软件:GEO5土质边坡稳定性分析+抗滑桩设计</p><p>设计方案:现有边坡上新建抗滑桩,桩后需要填土,岩土材料从上之下分别为含碎石粉质粘土,千枚岩。</p><p>&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505180835839058.png" alt="blob.png"/></p><p><strong>软件优势:</strong>GEO5可以进行多工况设计,在新建工况2中可进行填方设计,软件先整体后局部,稳定性分析满足要求之后,再进行抗滑桩细化设计。可在「土质边坡稳定性分析」模块中直接调用「抗滑桩设计」模块,大大减少建模时间。</p><p><strong>过程与结果:</strong></p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td><p><strong>名称 : </strong><strong>填方前稳定性分析</strong></p></td><td><p><strong>工况阶段 : </strong><strong>1</strong></p></td></tr><tr><td style="word-break: break-all;" rowspan="1" colspan="2"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505180865253176.png" alt="blob.png"/><span style="line-height: 1.5em;">&nbsp;</span></td></tr></tbody></table><p>给定滑面的分析。</p><p><strong>边坡稳定性验算 (不平衡推力法(隐式))</strong></p><p>安全系数 = 1.79 &gt; 1.30</p><p><strong>边坡稳定性 满足要求</strong></p><p>滑面控制点处倾角变化大于10°,计算结果可能偏危险。</p><p><strong>可以在 &quot;抗滑桩设计&quot; 软件中进行验算分析。</strong></p><table><tbody><tr class="firstRow"><td><p>桩后滑坡推力:</p></td><td><p>131.66</p></td><td><p>kN/m</p></td><td><br/></td></tr><tr><td><p>桩前滑体抗力:</p></td><td><p>23.20</p></td><td><p>kN/m</p></td><td><br/></td></tr><tr><td><p>滑面深度:</p></td><td><p>5.77</p></td><td><p>m</p></td><td><br/></td></tr><tr><td><p>地表以下桩长:</p></td><td><p>13.00</p></td><td><p>m</p></td><td style="word-break: break-all;"><br/></td></tr></tbody></table><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td style="word-break: break-all;"><p><strong>名称 : </strong><strong>填方后稳定性分析</strong></p></td><td><p><strong>工况阶段 : </strong><strong>2</strong></p></td></tr><tr><td style="word-break: break-all;" rowspan="1" colspan="2"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505180893754230.png" alt="blob.png"/></td></tr></tbody></table><p>给定滑面的分析。</p><p><strong>边坡稳定性验算 (不平衡推力法(隐式))</strong></p><p>安全系数 = 1.31&gt; 1.30</p><p><strong>边坡稳定性 满足要求</strong></p><p>滑面控制点处倾角变化大于10°,计算结果可能偏危险。</p><p><strong>可以在 &quot;抗滑桩设计&quot; 软件中进行验算分析。</strong></p><table><tbody><tr class="firstRow"><td><p>桩后滑坡推力:</p></td><td><p>275.01</p></td><td><p>kN/m</p></td><td><br/></td></tr><tr><td><p>桩前滑体抗力:</p></td><td><p>16.77</p></td><td><p>kN/m</p></td><td><br/></td></tr><tr><td><p>滑面深度:</p></td><td><p>7.77</p></td><td><p>m</p></td><td><br/></td></tr><tr><td><p>地表以下桩长:</p></td><td><p>15.00</p></td><td><p>m</p></td><td><br/></td></tr></tbody></table><p>调用「抗滑桩设计」模块,补充参数,进行[分析]。</p><p><strong>结构内力最大值</strong></p><table><tbody><tr class="firstRow"><td><p>剪力最大值</p></td><td><p>=</p></td><td><p>311.27</p></td><td><p>kN/m</p></td></tr><tr><td><p>弯矩最大值</p></td><td><p>=</p></td><td><p>1161.78</p></td><td><p>kNm/m</p></td></tr><tr><td><p>位移最大值</p></td><td><p>=</p></td><td><p>27.2</p></td><td style="word-break: break-all;"><p>mm</p></td></tr></tbody></table><p><strong>岩石地基承载力验算</strong></p><table><tbody><tr class="firstRow"><td><p>桩的最大横向压应力</p></td><td><p>s</p></td><td><p>=</p></td><td><p>810.42</p></td><td><p>kPa</p></td></tr><tr><td><p>岩石地基横向容许承载力</p></td><td><p>Rd</p></td><td><p>=</p></td><td><p>6000.00</p></td><td style="word-break: break-all;"><p>kPa</p></td></tr></tbody></table><p>岩石地基横向承载力 满足要求</p><p><strong>抗滑桩验算</strong></p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td><p><strong>名称 : </strong></p></td><td><p><strong>工况阶段 - 分析工况 : </strong><strong>1</strong><strong>&nbsp;- 1</strong></p></td></tr><tr><td rowspan="1" colspan="2" style="word-break: break-all;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1505180963687491.png" alt="blob.png"/></td></tr></tbody></table><p><strong>验算钢筋混凝土结构截面 (排桩 a = 4.00 m; b = 1.20 m; h = 1.50 m)</strong></p><p>对所有工况阶段进行分析。</p><p>作用基本组合的综合分项系数 = 1.00</p><p>钢筋数量13&nbsp;钢筋直径32.0 mm; 保护层厚度 70.0 mm</p><table><tbody><tr class="firstRow"><td><p>配筋率</p></td><td><p>r</p></td><td><p>=</p></td><td><p>0.62</p></td><td><p>%</p></td><td><p>&gt;</p></td><td><p>0.20</p></td><td><p>%</p></td><td><p>=</p></td><td><p>rmin</p></td></tr><tr><td><p>中和轴位置</p></td><td><p>x/b1</p></td><td><p>=</p></td><td><p>0.27</p></td><td><p>m</p></td><td><p>&lt;</p></td><td><p>0.91</p></td><td><p>m</p></td><td><p>=</p></td><td><p>xbh0/b1</p></td></tr><tr><td><p>截面受剪承载力设计值</p></td><td><p>Vu</p></td><td><p>=</p></td><td><p>1705.28</p></td><td><p>kN</p></td><td><p>&gt;</p></td><td><p>1245.07</p></td><td><p>kN</p></td><td><p>=</p></td><td><p>V</p></td></tr><tr><td><p>截面受弯承载力设计值</p></td><td><p>Mu</p></td><td><p>=</p></td><td><p>4910.98</p></td><td><p>kNm</p></td><td><p>&gt;</p></td><td><p>4647.10</p></td><td><p>kNm</p></td><td><p>=</p></td><td style="word-break: break-all;"><p>M</p></td></tr></tbody></table><p>截面满足要求。</p><p><br/></p>

如何使用GEO5设计桩板式挡墙

库仑产品库仑戚工 发表了文章 • 0 个评论 • 2635 次浏览 • 2017-09-08 16:23 • 来自相关话题

  本文主要说明采用桩板墙支挡边坡时GEO5中的设计流程。情况一  根据现场勘察情况,已探明有明显滑动面或软弱面,此时很容易判断边坡破坏模式为滑坡滑动破坏,则采用GEO5“土质边坡稳定分析”模块和“抗滑桩设计”模块进行设计。此时桩板墙受力模式为滑面以上桩后受滑坡剩余下滑力,滑面以上桩前受剩余抗滑力,滑面以下为嵌固段,桩土之间采用土弹簧模拟,如下图所示。  此时,只要按照抗滑桩设计流程进行设计即可,或者采用“土质边坡稳定分析”模块计算得到桩后滑坡推力和桩前滑体抗力后再采用“抗滑桩设计”模块进行设计即可。关于抗滑桩的设计流程,请参考《GEO5工程设计手册》中的:第十章:抗滑桩设计。  “抗滑桩设计”模块可以完成桩的变形、内力和配筋计算,关于板的计算,将在本文章的后面部分介绍。情况二  现场勘测不到滑动面,此时需要用GEO5“土质边坡稳定分析”模块、“深基坑支护结构分析”模块、“土压力计算”模块和“抗滑桩设计”模块分别考虑两种不同的破坏模式,即滑坡破坏模式或基坑破坏模式,比较二者计算结果,选择最不利的一种情况作为后续配筋验算指标。滑坡破坏模式的计算和情况一相同,基坑破坏模式则按照基坑进行计算,其受力模式如下图所示。  此时,采用“深基坑支护结构分析”模块按照基坑设计的流程进行设计即可。关于基坑的设计流程,请参考《GEO5工程设计手册》中的:第六章:单支点锚拉式排桩基坑支护分析  关于滑坡破坏模式和基坑破坏模式,其在配筋上有一点不同,需要注意:  滑坡破坏模式中采用剩余下滑力作为荷载,而剩余下滑力是在设计安全系数下计算得到的,也就是说剩余下滑力是荷载的设计值。例如设计安全系数取1.3,那么得到的剩余下滑力是已经考虑了安全系数1.3的设计值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为设计值,无需再单独考虑内力的分项系数。  基坑破坏模式中采用土压力作为荷载,土压力计算时并没有单独考虑安全系数,相当于安全系数为1,也就是说土压力是荷载的标准值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为标准值,需要单独考虑内力的分项系数。基坑规范中要求此分项系数不小于1.25。板的设计  桩板式挡墙采用的大部分均为预制板,通常情况下可不用单独验算,如果需要计算,按照下述方式手算即可。注:板的验算会在后续的GEO5“抗滑桩设计”和“深基坑支护结构分析”模块的更新中加入。(当前版本为GEO5 2017)  对于同一种类型的板,选择一跨内最低端的板下边缘水平荷载(土压力或剩余下滑力)作为该类型板上的荷载,如下图所示。根据铁路路基支挡结构规范(TB10025-2006),该荷载可以乘以0.7~0.8的折减系数。  确定作用在板上的荷载后,对于前置板(即板和桩采用钢筋链接),板和桩的连接处按照刚接处理,对于后置板(后插的预制板),板和钢筋的连接处按照铰接处理,如下图所示。  对于后置板,其最大弯矩和剪力计算如下(其中l为一跨的板长或桩的净距。):  对于前置板,其最大弯矩和剪力计算如下:  得到最大弯矩和剪力后,按照混凝土结构设计规范进行配筋验算即可。 查看全部
<p>  本文主要说明采用桩板墙支挡边坡时GEO5中的设计流程。</p><p><strong>情况一</strong></p><p>  根据现场勘察情况,已探明有明显滑动面或软弱面,此时很容易判断边坡破坏模式为滑坡滑动破坏,则采用GEO5“土质边坡稳定分析”模块和“抗滑桩设计”模块进行设计。此时桩板墙受力模式为滑面以上桩后受滑坡剩余下滑力,滑面以上桩前受剩余抗滑力,滑面以下为嵌固段,桩土之间采用土弹簧模拟,如下图所示。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504858793758890.png" alt="blob.png"/></p><p>  此时,只要按照抗滑桩设计流程进行设计即可,或者采用“土质边坡稳定分析”模块计算得到桩后滑坡推力和桩前滑体抗力后再采用“抗滑桩设计”模块进行设计即可。关于抗滑桩的设计流程,请参考《GEO5工程设计手册》中的:<a href="/dochelp/1649" target="_blank" textvalue="第十章:抗滑桩设计">第十章:抗滑桩设计</a>。</p><p>  “抗滑桩设计”模块可以完成桩的变形、内力和配筋计算,关于板的计算,将在本文章的后面部分介绍。</p><p><strong>情况二</strong></p><p>  现场勘测不到滑动面,此时需要用GEO5“土质边坡稳定分析”模块、“深基坑支护结构分析”模块、“土压力计算”模块和“抗滑桩设计”模块分别考虑两种不同的破坏模式,即滑坡破坏模式或基坑破坏模式,比较二者计算结果,选择最不利的一种情况作为后续配筋验算指标。滑坡破坏模式的计算和情况一相同,基坑破坏模式则按照基坑进行计算,其受力模式如下图所示。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504858813205417.png" alt="blob.png"/></p><p>  此时,采用“深基坑支护结构分析”模块按照基坑设计的流程进行设计即可。关于基坑的设计流程,请参考《GEO5工程设计手册》中的:<a href="/dochelp/80" target="_blank" textvalue="第六章:单支点锚拉式排桩基坑支护分析">第六章:单支点锚拉式排桩基坑支护分析</a></p><p>  关于滑坡破坏模式和基坑破坏模式,其在配筋上有一点不同,需要注意:</p><p>  滑坡破坏模式中采用剩余下滑力作为荷载,而剩余下滑力是在设计安全系数下计算得到的,也就是说剩余下滑力是荷载的设计值。例如设计安全系数取1.3,那么得到的剩余下滑力是已经考虑了安全系数1.3的设计值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为设计值,无需再单独考虑内力的分项系数。</p><p>  基坑破坏模式中采用土压力作为荷载,土压力计算时并没有单独考虑安全系数,相当于安全系数为1,也就是说土压力是荷载的标准值。因此,在进行配筋验算时,采用这种破坏模式计算得到的内力值为标准值,需要单独考虑内力的分项系数。基坑规范中要求此分项系数不小于1.25。</p><p><strong>板的设计</strong></p><p>  桩板式挡墙采用的大部分均为预制板,通常情况下可不用单独验算,如果需要计算,按照下述方式手算即可。</p><blockquote><p>注:板的验算会在后续的GEO5“抗滑桩设计”和“深基坑支护结构分析”模块的更新中加入。(当前版本为GEO5&nbsp;2017)</p></blockquote><p>  对于同一种类型的板,选择一跨内最低端的板下边缘水平荷载(土压力或剩余下滑力)作为该类型板上的荷载,如下图所示。根据铁路路基支挡结构规范(TB10025-2006),该荷载可以乘以0.7~0.8的折减系数。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504858836361793.png" alt="blob.png"/></p><p>  确定作用在板上的荷载后,对于前置板(即板和桩采用钢筋链接),板和桩的连接处按照刚接处理,对于后置板(后插的预制板),板和钢筋的连接处按照铰接处理,如下图所示。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504858852323806.png" alt="blob.png"/></p><p>  对于后置板,其最大弯矩和剪力计算如下(其中<em>l</em>为一跨的板长或桩的净距。):</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504858882237047.png" alt="blob.png"/></p><p>  对于前置板,其最大弯矩和剪力计算如下:</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1504858893584952.png" alt="blob.png"/></p><p>  得到最大弯矩和剪力后,按照混凝土结构设计规范进行配筋验算即可。</p><p><br/></p>

GEO5深基坑分析中在添加内支撑的的工况轴力很小和前一个工况弯矩、剪力基本无变化,这个怎么解释?

回答

岩土工程库仑沈工 回答了问题 • 2 人关注 • 1 个回答 • 65 次浏览 • 2019-11-14 09:45 • 来自相关话题

锚拉桩设计,加了锚索后反而不稳定

回答

岩土工程库仑刘工 回答了问题 • 2 人关注 • 1 个回答 • 296 次浏览 • 2019-05-31 14:42 • 来自相关话题

请问GEO5深基坑支护结构分析中的位移是否是真实数据?

回答

岩土工程库仑吴汶垣 回答了问题 • 3 人关注 • 1 个回答 • 609 次浏览 • 2018-10-31 10:22 • 来自相关话题

模拟基坑开挖过程中,有位移的突变如何处理?

回答

岩土工程库仑李建 回答了问题 • 2 人关注 • 1 个回答 • 460 次浏览 • 2018-10-16 13:45 • 来自相关话题

一个围堰开挖模型,用GEO5计算能通过,用OptumG2计算通不过是为什么?

回答

岩土工程张皎 回答了问题 • 2 人关注 • 2 个回答 • 857 次浏览 • 2018-10-15 13:49 • 来自相关话题

土质边坡,抗滑桩分析

回答

岩土工程库仑吴汶垣 回答了问题 • 2 人关注 • 1 个回答 • 869 次浏览 • 2017-10-21 23:17 • 来自相关话题

GEO5案例:双排桩的内力和变形计算——山东某边坡工程

库仑产品库仑沈工 发表了文章 • 0 个评论 • 2003 次浏览 • 2018-01-22 14:53 • 来自相关话题

项目名称:山东某边坡工程使用软件:GEO5土质边坡稳定分析、GEO5岩土工程有限元分析设计方案:边坡开挖并设置双排桩。设计思路:设计采用「土坡」模块和「有限元」模块。「土坡」模块的目的是分析抗滑桩支护后每一个危险结构面的稳定系数是否符合规范要求,以及边坡作用在抗滑桩上的剩余下滑力,为「有限元」模块分析抗滑桩变形和内力提供荷载参数。「有限元」模块的目的是分析桩身在剩余下滑力的作用下,桩身的弯矩、剪力、变形等数据,为桩身配筋提供内力参数。软件优势:1.多段线建模支持导入dxf图形,2.GEO剪贴板支持岩土材料创建,实现软件两个不同的模块之间很好的数据对接。计算结果:1.利用土质边坡稳定性分析模块计算名称 : 原始坡体稳定性分析工况阶段 : 1 给定滑面的分析。边坡稳定性验算 (不平衡推力法(隐式))安全系数 = 1.07 < 1.35边坡稳定性 不满足要求滑面控制点处倾角变化大于10°,计算结果可能偏危险。滑动面前缘剩余下滑力 Fn = 1037.26 kN/m剩余下滑力倾角 a = 2.05 °名称 :削坡+排桩支护稳定性分析工况阶段 : 2 2岩土工程有限元分析模块有限元建模这里不在赘述 名称 : 初始地应力分析 工况阶段 : 1结果 : 全量; 变量 : 剪应力 XZ; 范围 : <-1316.86; 1870.75> kPa     滑坡体内的抗滑桩部分直接以梁荷载方式输入后排桩桩后滑坡推力和前排桩桩前滑体抗滑力。桩间土和嵌固段均采用弹性模型模拟,和规范中的弹簧模拟近似。以下为有限元分析计内容。 名称 : 桩身内力和位移分析 工况阶段 : 2结果 : 全量; 变量 : 剪应力 XZ; 范围 : <-548.12; 1558.65> kPaM [kNm/m],Q [kN/m]       依据有限元分析结果可得前后排桩以及连梁的最大内力值,据此可依据《混凝土结构设计规范》进行抗剪、抗弯配筋验算,这里不再赘述。  详细理论和计算过程可以参考工程实例手册:门型抗滑桩+锚索(杆)设计——以贵州某边坡工程为例 查看全部
<p><strong>项目名称:</strong>山东某边坡工程</p><p><strong>使用软件:</strong>GEO5土质边坡稳定分析、GEO5岩土工程有限元分析</p><p><strong>设计方案:</strong>边坡开挖并设置双排桩。</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603710985436.png" alt="blob.png"/></p><p><strong>设计思路</strong><strong>:</strong>设计采用「土坡」模块和「有限元」模块。「土坡」模块的目的是分析抗滑桩支护后每一个危险结构面的稳定系数是否符合规范要求,以及边坡作用在抗滑桩上的剩余下滑力,为「有限元」模块分析抗滑桩变形和内力提供荷载参数。「有限元」模块的目的是分析桩身在剩余下滑力的作用下,桩身的弯矩、剪力、变形等数据,为桩身配筋提供内力参数。</p><p><strong>软件优势:</strong>1.多段线建模支持导入dxf图形,2.GEO剪贴板支持岩土材料创建,实现软件两个不同的模块之间很好的数据对接。</p><p><strong>计算结果:</strong></p><p>1.利用土质边坡稳定性分析模块计算</p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td><p><strong>名称 : </strong><strong>原始坡体稳定性分析</strong></p></td><td><p><strong>工况阶段 : 1</strong></p></td></tr><tr><td style="word-break: break-all;" rowspan="1" colspan="2">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603747831963.png" alt="blob.png"/><p>给定滑面的分析。</p><p><strong>边坡稳定性验算 (不平衡推力法(隐式))</strong></p><p>安全系数 = 1.07 &lt; 1.35</p><p><strong>边坡稳定性 不满足要求</strong></p><p>滑面控制点处倾角变化大于10°,计算结果可能偏危险。</p><p>滑动面前缘剩余下滑力 Fn&nbsp;= 1037.26 kN/m</p><p>剩余下滑力倾角 a&nbsp;= 2.05 °</p></td></tr></tbody></table><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td style="word-break: break-all;"><p><strong>名称 :</strong><strong>削坡+排桩支护稳定性分析</strong></p></td><td style="word-break: break-all;"><p><strong>工况阶段 : 2</strong></p></td></tr><tr><td rowspan="1" colspan="2" style="word-break: break-all;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603808892835.png" alt="blob.png"/>&nbsp;</td></tr></tbody></table><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603815295673.png" alt="blob.png"/></p><p>2岩土工程有限元分析模块</p><p>有限元建模这里不在赘述</p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td><p>&nbsp;<strong>名称 : </strong><strong>初始地应力分析</strong></p></td><td><p><strong>&nbsp;工况</strong><strong>阶段</strong><strong>&nbsp;: 1</strong></p></td></tr><tr><td rowspan="1" colspan="2" style="word-break: break-all;">结果 : 全量; 变量 : 剪应力&nbsp;XZ; 范围 : &lt;-1316.86; 1870.75&gt; kPa&nbsp;&nbsp;&nbsp;<p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603841734143.png" alt="blob.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603850499727.png" alt="blob.png"/></p></td></tr></tbody></table><p>  滑坡体内的抗滑桩部分直接以梁荷载方式输入后排桩桩后滑坡推力和前排桩桩前滑体抗滑力。桩间土和嵌固段均采用弹性模型模拟,和规范中的弹簧模拟近似。以下为有限元分析计内容。</p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td><p>&nbsp;<strong>名称 : </strong><strong>桩身内力和位移分析</strong></p></td><td><p><strong>&nbsp;工况</strong><strong>阶段</strong><strong>&nbsp;: </strong><strong>2</strong></p></td></tr><tr><td rowspan="1" colspan="2" style="word-break: break-all;"><p>结果 : 全量; 变量 : 剪应力&nbsp;XZ; 范围 : &lt;-548.12; 1558.65&gt; kPa</p><p>M [kNm/m],Q [kN/m]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603886790648.png" alt="blob.png"/><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603891536417.png" alt="blob.png"/></p></td></tr></tbody></table><p>  依据有限元分析结果可得前后排桩以及连梁的最大内力值,据此可依据《混凝土结构设计规范》进行抗剪、抗弯配筋验算,这里不再赘述。</p><p>  详细理论和计算过程可以参考工程实例手册:<a href="/dochelp/121" target="_self">门型抗滑桩+锚索(杆)设计——以贵州某边坡工程为例</a></p><p><br/></p>

GEO5案例:混凝土砌块挡土墙设计——某海外码头项目

库仑产品库仑沈工 发表了文章 • 0 个评论 • 856 次浏览 • 2018-01-22 14:45 • 来自相关话题

项目名称:某海外码头项目使用软件:GEO5混凝土砌块挡土墙设计设计方案:软件优势:GEO5企业版内置65种规范,涉及23个国家(中、欧、美)可直接用于海外项目设计,同时支持18种语言及计算书,在国内,「混凝土砌块挡土墙设计」多用于生态挡墙设计。过程与结果:倾覆滑移验算承载能力验算 截面强度验算外部稳定性验算边坡稳定性验算(摩根斯坦法)荷载组合1利用率:77.4%边坡稳定性 满足要求荷载组合2利用率:97.7%边坡稳定性 满足要求 查看全部
<p><strong>项目名称:</strong>某海外码头项目</p><p><strong>使用软件:</strong>GEO5混凝土砌块挡土墙设计</p><p><strong>设计方案:</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603389633288.png" alt="blob.png"/></p><p><strong>软件优势:</strong>GEO5企业版内置65种规范,涉及23个国家(中、欧、美)可直接用于海外项目设计,同时支持18种语言及计算书,在国内,「混凝土砌块挡土墙设计」多用于生态挡墙设计。</p><p><strong>过程与结果:</strong></p><p><strong>倾覆滑移验算</strong></p><p style="text-align: center;"><strong><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603413662368.png" alt="blob.png"/></strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603419829854.png" alt="blob.png"/></p><p><strong>承载能力验算</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603446333367.png" alt="blob.png"/>&nbsp;</p><p><strong>截面强度验算</strong></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603457579209.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516603464383984.png" alt="blob.png"/></p><p><strong>外部稳定性验算</strong></p><p><strong>边坡稳定性验算(摩根斯坦法)</strong></p><p><strong>荷载组合1</strong></p><p>利用率:77.4%</p><p>边坡稳定性 满足要求</p><p><strong>荷载组合2</strong></p><p>利用率:97.7%</p><p>边坡稳定性 满足要求</p><p><br/></p>

GEO5案例:上下游翼墙——某悬臂式挡土墙项目

库仑产品库仑沈工 发表了文章 • 0 个评论 • 1591 次浏览 • 2018-01-22 14:37 • 来自相关话题

项目名称:某悬臂式挡土墙项目使用软件:GEO5悬臂式挡土墙设计设计方案:软件优势:GEO5墙后填土软件可供多种选择过程与结果:倾覆滑移稳定性验算倾覆稳定性验算抗倾覆力矩 Mres = 9583.28 kNm/m倾覆力矩 Movr = 2747.21 kNm/m安全系数 = 3.49 > 1.60倾覆稳定性验算 满足要求滑移稳定性验算抗滑力(平行基底) Hres = 439.57 kN/m滑动力(平行基底) Hact = 337.92 kN/m安全系数 = 1.30 > 1.30滑移稳定性验算 满足要求倾覆滑移验算 满足要求承载力验算 截面强度验算墙踵验算截面强度验算和配筋验算16 钢筋直径 22.0mm,保护层 30.0mm截面宽度 = 1.00 m 截面高度 = 1.00 m 配筋率 ρ = 0.63 % > 0.20 % = ρmin中和轴位置 x/β1 = 0.19 m < 0.62 m = ξbh0/β1截面受剪承载力设计值 Vu = 963.79 kN > 468.68 kN = V截面受弯承载力设计值 Mu = 1932.83 kNm > 1882.46 kNm = M截面满足要求。墙趾验算截面强度验算和配筋验算8 钢筋直径 18.0mm,保护层 30.0mm截面宽度 = 1.00 m 截面高度 = 1.00 m 配筋率 ρ = 0.21 % > 0.20 % = ρmin中和轴位置 x/β1 = 0.06 m < 0.62 m = ξbh0/β1截面受剪承载力设计值 Vu = 965.80 kN > 357.93 kN = V截面受弯承载力设计值 Mu = 685.58 kNm > 395.47 kNm = M截面满足要求。墙身验算(墙址墙踵台阶顶截面)截面强度验算和配筋验算10 钢筋直径 22.0mm,保护层 30.0mm截面宽度 = 1.00 m 截面高度 = 0.90 m 配筋率 ρ = 0.44 % > 0.20 % = ρmin中和轴位置 x/β1 = 0.12 m < 0.56 m = ξbh0/β1截面受剪承载力设计值 Vu = 863.29 kN > 318.58 kN = V截面受弯承载力设计值 Mu = 1110.30 kNm > 766.98 kNm = M截面满足要求。名称 :外部稳定性分析工况阶段 : 1自动搜索后的滑动面 边坡稳定性验算 (毕肖普法(Bishop)) 滑面上下滑力的总和 :Fa =1263.41kN/m滑面上抗滑力的总和 :Fp =2260.75kN/m下滑力矩 :Ma =18597.44kNm/m抗滑力矩 :Mp =33278.22kNm/m安全系数 = 1.79 > 1.30  边坡稳定性 满足要求   注:当抗滑移验算不能满足要求,同时挡墙尺寸改变受限时,可采用【基底锚固】,基底锚固将产生一个竖向向下的力,但是该力对于基底应力的验算是不利的。此外,也可以采用桩基础,设计成挡墙+桩基组合结构,参考这里。 查看全部
<p><strong>项目名称:</strong>某悬臂式挡土墙项目</p><p><strong>使用软件:</strong>GEO5悬臂式挡土墙设计</p><p><strong>设计方案:</strong></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516602855314478.png" alt="blob.png"/></p><p><strong>软件优势:</strong>GEO5墙后填土软件可供多种选择</p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516602903572402.png" alt="blob.png"/></p><p><strong>过程与结果:</strong></p><p><strong>倾覆滑移稳定性验算</strong></p><p><strong>倾覆稳定性验算</strong></p><p>抗倾覆力矩&nbsp;Mres&nbsp;=&nbsp;9583.28&nbsp;kNm/m</p><p>倾覆力矩&nbsp;Movr&nbsp;=&nbsp;2747.21&nbsp;kNm/m</p><p>安全系数 = 3.49 &gt; 1.60</p><p>倾覆稳定性验算 满足要求</p><p><strong>滑移稳定性验算</strong></p><p>抗滑力(平行基底)&nbsp;Hres&nbsp;=&nbsp;439.57&nbsp;kN/m</p><p>滑动力(平行基底)&nbsp;Hact&nbsp;=&nbsp;337.92&nbsp;kN/m</p><p>安全系数 = 1.30 &gt; 1.30</p><p>滑移稳定性验算 满足要求</p><p>倾覆滑移验算 满足要求</p><p><strong>承载力验算</strong></p><p><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516602912631059.png" alt="blob.png"/>&nbsp;</p><p><strong>截面强度验算</strong></p><p><strong>墙踵验算</strong></p><p>截面强度验算和配筋验算</p><p>16 钢筋直径 22.0mm,保护层 30.0mm</p><p>截面宽度&nbsp;=&nbsp;1.00&nbsp;m&nbsp;</p><p>截面高度&nbsp;=&nbsp;1.00&nbsp;m&nbsp;</p><p>配筋率&nbsp;ρ&nbsp;=&nbsp;0.63&nbsp;%&nbsp;&gt;&nbsp;0.20&nbsp;%&nbsp;=&nbsp;ρmin</p><p>中和轴位置&nbsp;x/β1&nbsp;=&nbsp;0.19&nbsp;m&nbsp;&lt;&nbsp;0.62&nbsp;m&nbsp;=&nbsp;ξbh0/β1</p><p>截面受剪承载力设计值&nbsp;Vu&nbsp;=&nbsp;963.79&nbsp;kN&nbsp;&gt;&nbsp;468.68&nbsp;kN&nbsp;=&nbsp;V</p><p>截面受弯承载力设计值&nbsp;Mu&nbsp;=&nbsp;1932.83&nbsp;kNm&nbsp;&gt;&nbsp;1882.46&nbsp;kNm&nbsp;=&nbsp;M</p><p>截面满足要求。</p><p><strong>墙趾验算</strong></p><p>截面强度验算和配筋验算</p><p>8 钢筋直径 18.0mm,保护层 30.0mm</p><p>截面宽度&nbsp;=&nbsp;1.00&nbsp;m&nbsp;</p><p>截面高度&nbsp;=&nbsp;1.00&nbsp;m&nbsp;</p><p>配筋率&nbsp;ρ&nbsp;=&nbsp;0.21&nbsp;%&nbsp;&gt;&nbsp;0.20&nbsp;%&nbsp;=&nbsp;ρmin</p><p>中和轴位置&nbsp;x/β1&nbsp;=&nbsp;0.06&nbsp;m&nbsp;&lt;&nbsp;0.62&nbsp;m&nbsp;=&nbsp;ξbh0/β1</p><p>截面受剪承载力设计值&nbsp;Vu&nbsp;=&nbsp;965.80&nbsp;kN&nbsp;&gt;&nbsp;357.93&nbsp;kN&nbsp;=&nbsp;V</p><p>截面受弯承载力设计值&nbsp;Mu&nbsp;=&nbsp;685.58&nbsp;kNm&nbsp;&gt;&nbsp;395.47&nbsp;kNm&nbsp;=&nbsp;M</p><p>截面满足要求。</p><p><strong>墙身验算(墙址墙踵台阶顶截面)</strong></p><p>截面强度验算和配筋验算</p><p>10 钢筋直径 22.0mm,保护层 30.0mm</p><p>截面宽度&nbsp;=&nbsp;1.00&nbsp;m&nbsp;</p><p>截面高度&nbsp;=&nbsp;0.90&nbsp;m&nbsp;</p><p>配筋率&nbsp;ρ&nbsp;=&nbsp;0.44&nbsp;%&nbsp;&gt;&nbsp;0.20&nbsp;%&nbsp;=&nbsp;ρmin</p><p>中和轴位置&nbsp;x/β1&nbsp;=&nbsp;0.12&nbsp;m&nbsp;&lt;&nbsp;0.56&nbsp;m&nbsp;=&nbsp;ξbh0/β1</p><p>截面受剪承载力设计值&nbsp;Vu&nbsp;=&nbsp;863.29&nbsp;kN&nbsp;&gt;&nbsp;318.58&nbsp;kN&nbsp;=&nbsp;V</p><p>截面受弯承载力设计值&nbsp;Mu&nbsp;=&nbsp;1110.30&nbsp;kNm&nbsp;&gt;&nbsp;766.98&nbsp;kNm&nbsp;=&nbsp;M</p><p>截面满足要求。</p><table data-sort="sortDisabled"><tbody><tr class="firstRow"><td><p><strong>名称 :</strong><strong>外部稳定性分析</strong></p></td><td><p><strong>工况阶段 : </strong><strong>1</strong></p></td></tr><tr><td style="word-break: break-all;" rowspan="1" colspan="2"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1516602955216908.png" alt="blob.png"/></td></tr></tbody></table><p>自动搜索后的滑动面&nbsp;</p><p><strong>边坡稳定性验算 (毕肖普法(Bishop)) </strong></p><p>滑面上下滑力的总和 :Fa =1263.41kN/m</p><p>滑面上抗滑力的总和 :Fp =2260.75kN/m</p><p>下滑力矩 :Ma =18597.44kNm/m</p><p>抗滑力矩 :Mp =33278.22kNm/m</p><p>安全系数 = 1.79 &gt; 1.30 &nbsp;</p><p>边坡稳定性 满足要求 &nbsp;<strong>&nbsp;</strong></p><p>注:当抗滑移验算不能满足要求,同时挡墙尺寸改变受限时,可采用【基底锚固】,基底锚固将产生一个竖向向下的力,但是该力对于基底应力的验算是不利的。此外,也可以采用桩基础,设计成挡墙+桩基组合结构,参考<a href="/dochelp/1603" target="_self">这里</a>。</p><p><br/></p>

国内某岩溶地质隧道开挖分析

库仑产品库仑沈工 发表了文章 • 0 个评论 • 1234 次浏览 • 2018-01-03 14:49 • 来自相关话题

项目名称:国内某岩溶地质隧道开挖分析项目视频教程:岩溶地质隧道开挖建模和分析使用软件:EVS、OptumG2项目背景:本项目为国内某地铁开挖项目,由于地铁穿过一段岩溶地区,因此需要通过三维地质建模技术来进一步查明溶洞的分布情况,并据此进行隧道开挖数值分析。为了简化数值分析,采用收敛约束法,通过二维分析来模拟隧道开挖的三维效应。项目特点:不同于沉积地质,岩溶地质往往不能创建地层模型,需要利用指数克里金方法进行三维空间差值,创建岩性模型(地层模型和岩性模型的区别在视频教程中有详细说明)。溶洞作为一种特殊的地质体参与空间三维差值,这也是岩溶地质建模的常用处理手段。得到岩性模型以后,可以在EVS中进行隧道开挖,并提取剖面进行数值分析。当分析的剖面足够多时,也可以把数值分析对计算结果表达到EVS中。建模和分析流程:  1. 利用EVS创建三维岩性模型  1.1  根据钻孔数据生成pgf文件 – 溶洞作为一种特殊的岩性材料  1.2  利用指数克里金方法生成三维岩性模型  1.3  利用tunnel_cut模块创建隧道  1.4  利用slice模块并结合python脚本沿隧道轴线切得多个计算剖面三维岩性模型(岩溶以实体表示)钻孔分布溶洞分布(绿色实体表示)溶洞和钻孔的相对位置关系计算剖面X = 2516209计算剖面X = 2516170隧道位置和隧道穿过的地层岩性隧道和溶洞的相对位置关系计算剖面X = 2516209(含隧道)计算剖面X = 2516170(含隧道)计算剖面X = 2516136(含隧道)  2. 导入计算剖面至OptumG2进行隧道分析  2.1  计算无溶洞时的地应力分布  2.2  计算有溶洞时的地应力分布,并位移归零  2.3  利用收敛约束法分析隧道注:这里仅分析了岩溶影响最大的剖面X = 2516209X = 2516209剖面(不含溶洞)X = 2516209剖面竖向初始地应力(不含溶洞)X = 2516209剖面(含溶洞)X = 2516209剖面竖向初始地应力(含溶洞)X = 2516209剖面左侧隧道开挖完成引起的竖向土体位移 X = 2516209剖面两侧隧道开挖完成引起的竖向土体位移X = 2516209剖面隧道开挖完成衬砌的弯矩X = 2516209剖面隧道开挖完成衬砌收到的围岩压力 查看全部
<p><strong>项目名称</strong>:国内某岩溶地质隧道开挖分析</p><p><strong>项目视频教程</strong>:<a href="/dochelp/1670" target="_blank" title="岩溶地质隧道开挖建模和分析" textvalue="岩溶地质隧道开挖建模和分析">岩溶地质隧道开挖建模和分析</a></p><p><strong>使用软件</strong>:EVS、OptumG2</p><p><strong>项目背景</strong>:本项目为国内某地铁开挖项目,由于地铁穿过一段岩溶地区,因此需要通过三维地质建模技术来进一步查明溶洞的分布情况,并据此进行隧道开挖数值分析。为了简化数值分析,采用收敛约束法,通过二维分析来模拟隧道开挖的三维效应。</p><p><strong>项目特点</strong>:不同于沉积地质,岩溶地质往往不能创建地层模型,需要利用指数克里金方法进行三维空间差值,创建岩性模型(地层模型和岩性模型的区别在视频教程中有详细说明)。溶洞作为一种特殊的地质体参与空间三维差值,这也是岩溶地质建模的常用处理手段。得到岩性模型以后,可以在EVS中进行隧道开挖,并提取剖面进行数值分析。当分析的剖面足够多时,也可以把数值分析对计算结果表达到EVS中。</p><p><strong>建模和分析流程</strong>:</p><p>  1.&nbsp;利用EVS创建三维岩性模型</p><p>  1.1 &nbsp;根据钻孔数据生成pgf文件 – 溶洞作为一种特殊的岩性材料</p><p>  1.2 &nbsp;利用指数克里金方法生成三维岩性模型</p><p>  1.3 &nbsp;利用tunnel_cut模块创建隧道</p><p>  1.4 &nbsp;利用slice模块并结合python脚本沿隧道轴线切得多个计算剖面</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961323533376.png" alt="blob.png"/></p><p style="text-align: center;">三维岩性模型(岩溶以实体表示)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961338488153.png" alt="blob.png"/></p><p style="text-align: center;">钻孔分布</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961421558760.png" alt="blob.png"/></p><p style="text-align: center;">溶洞分布(绿色实体表示)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961443622125.png" alt="blob.png"/></p><p style="text-align: center;">溶洞和钻孔的相对位置关系</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961463553694.png" alt="blob.png"/></p><p style="text-align: center;">计算剖面X&nbsp;=&nbsp;2516209</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961482845350.png" alt="blob.png"/></p><p style="text-align: center;">计算剖面X&nbsp;=&nbsp;2516170</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961511493922.png" alt="blob.png"/></p><p style="text-align: center;">隧道位置和隧道穿过的地层岩性</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961531984146.png" alt="blob.png"/></p><p style="text-align: center;">隧道和溶洞的相对位置关系</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961623213306.png" alt="blob.png"/></p><p style="text-align: center;">计算剖面X&nbsp;=&nbsp;2516209(含隧道)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961641265510.png" alt="blob.png"/></p><p style="text-align: center;">计算剖面X&nbsp;=&nbsp;2516170(含隧道)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961659957384.png" alt="blob.png"/></p><p style="text-align: center;">计算剖面X&nbsp;=&nbsp;2516136(含隧道)</p><p>  2.&nbsp;导入计算剖面至OptumG2进行隧道分析</p><p>  2.1 &nbsp;计算无溶洞时的地应力分布</p><p>  2.2 &nbsp;计算有溶洞时的地应力分布,并位移归零</p><p>  2.3 &nbsp;利用收敛约束法分析隧道</p><blockquote><p>注:这里仅分析了岩溶影响最大的剖面X&nbsp;=&nbsp;2516209</p></blockquote><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961690289540.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面(不含溶洞)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961714406059.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面竖向初始地应力(不含溶洞)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961736987176.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面(含溶洞)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961758654870.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面竖向初始地应力(含溶洞)</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961780642363.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961796183006.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面左侧隧道开挖完成引起的竖向土体位移</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961847107225.png" alt="blob.png"/></p><p style="text-align: center;">&nbsp;<img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961862563634.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面两侧隧道开挖完成引起的竖向土体位移</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961889567833.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961900942553.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面隧道开挖完成衬砌的弯矩</p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961927273315.png" alt="blob.png"/></p><p style="text-align: center;"><img src="http://www.wen.kulunsoft.com/u ... ot%3B title="1514961935314542.png" alt="blob.png"/></p><p style="text-align: center;">X&nbsp;=&nbsp;2516209剖面隧道开挖完成衬砌收到的围岩压力</p><p><br/></p>